移动云计算中一种离散数据均匀量化算法技术领域
本发明涉及移动云计算,数据传输领域。
背景技术
在移动云计算中,对路由转发分簇簇间的波动离散数据进行量化处理是提高云计
算并行数据分析效率的关键。研究移动云计算的簇间离散波动数据的量化算法具有重要价
值和意义,受到相关领域专家的广泛重视。当前,对移动云计算的簇间离散波动数据的量化
算法主要有信号处理方法、时频特征分析算法、时延估计算法和非线性时间序列分析算法
等。有研究提出一种基于灰色关联系数和证据理论的决策方法,实现云数据的波动离散均
匀量化融合,并应用于区间数的投资决策中,取得了较好的性能,但算法的鲁棒性不好,稳
健性能不高。传统方法采用时延估计方法进行量化处理,当用户信道分配出现时滞时,量化
性能较差。
在移动云计算构架下的数据信息处理和资源调度可以为数据密集型作业提供平
台支撑。移动网络通信移动基站进行节点部署和信息收集,进行路由转发,层次路由的网络
被分成许多不同的簇,每个簇有一个簇头节点(CH)和若干簇内节点(MN),基于云计算实现
移动网络通信的基础在与对移动云计算的信道的实时估计,通过云计算采集的数据可以通
过网络系统进行传输汇总,最终实现移动网络通信。假设T表示变迁(Transition)的有穷集
合,分为两个变迁子集:T=Tt∪Ti,考虑对云计算簇间波动离散数据的均匀量
化处理方法,根据云服务业务流程管理的特点,给出了云服务的组合实现框架,提高数据并
行处理效率,为满足以上需求,本发明提供了移动云计算中一种离散数据均匀量化算法。
发明内容
针对于路由转发分簇簇间的波动离散数据进行量化处理的性能较差的问题,本发
明提供了移动云计算中一种离散数据均匀量化算法。
为了解决上述问题,本发明是通过以下技术方案实现的:
本发明方法提出一种基于贝叶斯粗糙集估计的移动云计算簇间波动离散数据均
匀量化算法,其步骤如下:
步骤1:构建移动云计算数据分簇模型和信道模型
步骤2:进行波动离散数据采集
步骤3:按照Logistic模式选择路径,得到移动云计算簇间波动离散数据均匀量化
的最优概率密度,构建贝叶斯粗糙集均匀量化优化目标函数,实现算法优化。
本发明的有益效果是:
采用该算法能有效实现对移动云计算簇间波动离散数据的特征分类,对波动离散
数据的量化效果较好,从而提高了云计算的并行计算效率。
附图说明
图1量化算法实现流程图
具体实施方式
为了提高路由转发分簇簇间的波动离散数据进行量化处理的性能,结合图1对本
发明进行了详细说明,其具体实施步骤如下:
步骤1:构建移动云计算数据分簇模型和信道模型,其具体计算过程如下:
步骤1.1)移动云计算数据分簇模型
在移动云计算构架下的数据信息处理和资源调度可以为数据密集型作业提供平
台支撑。移动网络通信移动基站进行节点部署和信息收集,进行路由转发,层次路由的网络
被分成许多不同的簇,每个簇有一个簇头节点(CH)和若干簇内节点(MN),基于云计算实现
移动网络通信的基础在与对移动云计算的信道的实时估计,通过云计算采集的数据可以通
过网络系统进行传输汇总,最终实现移动网络通信。
应用模型分为三个参与方,一是移动云服务提供端,为各行各业移动云服务的接
口;二是移动云服务管理平台,它是云服务的资源池,负责调配服务组合与推荐、服务需求
管理、Qos监控管理、模式检索匹配等;三是移动云服务接受端(用户),是移动端的直接用
户,或者提供接入服务的用户。
步骤1.2)移动云计算信道模型
在上述应用模型的基础上,为了提高云计算性能,需要进行波动离散数据的均匀
量化处
理,移动云计算通信系统一个双稳系统,解决传统方法中主要是通过调节系统参
数和增加信号强度的方法,出现信道不均等问题,本方法采用子信道传输方法构建信道模
型并进行簇间波动数据的均匀量化处理。
假设T表示变迁(Transition)的有穷集合,分为两个变迁子集:
T=Tt∪Ti,
Tc为移动云计算扩频码片的宽度,Tb为网络信号数据码的宽度,N为扩频码的长度,
构建移动云计算的多时段随机超预算期望用户信道分配模型,它是有两部分组成,第一部
分为路径的通信时间预算第二部分为通信超额时间:
按照Logistic模式选择路径,则可以表示为:
其中ω∈W,h∈H。
步骤2:进行波动离散数据采集,其具体计算过程如下:
对于移动云数据信号s(t),该云数据信号假设为一个连续的信号,其时频分布的
定义可以描述为:
假设时间间隔为n∈[n1,n2],两点假设为n1、n2,定义两点n1,n2之间的距离为属于
正态分布,同条件属性下对决策属性取值的划分可能出现重复。
通过上述步骤1和步骤2过程处理,实现了移动云计算信道模型及数据信息信号模
型构建,为实现云计算数据量化提供数据基础。
步骤3:按照Logistic模式选择路径,得到移动云计算簇间波动离散数据均匀量化
的最优概率密度,构建贝叶斯粗糙集均匀量化优化目标函数,实现算法优化,其具体计算过
程如下:
贝叶斯粗糙集均匀量化优化目标函数算法
贝叶斯粗糙集均匀量化分析的本身在于分析得到时间与频率的联合函数,用之描
述时间和频率的能量密度与强度。贝叶斯粗糙集均匀量化优化目标函数可以采用随时频率
估计值办法求得,假设粗糙集对象状态集合为:
T=(t1,t2,...,tn-1,tn)
目标量化数据集合为:
S=(s1,s2,…,sm-1,tm)
从而计算出两点之间的最小路径表达式为:
式中g(k(n);n1,n2)簇间波动离散数据量化的离散度,给出如下的归一化处理方
法,得到移动云计算簇间波动离散数据均匀量化的最优概率密度函数为:
其中l=1,2,…,k
上式表示为从点n1至n2之间的k(n)g(x,y)和f(x)的和,采用贝叶斯粗糙集理论,进
行决策表决策属性分区处理,对于移动云计算辨识框架Θ上的有限个mass函数
m1,m2,...,mn的粗糙集,引入新对象扩充决策表,进行簇间波动离散数据均匀量化。
定新对象的决策属性值为各决策属性值域,为:
其中:
通过上述处理,随着OD需求波动程度的增加和通信信道退化程度的加剧,需要进
行多时段信道分配优化设计,采用本文方法进行簇间波动离散数据均匀量化,能有效对云
数据进行时频分析,估计瞬时频率,提高信息融合精度,提高了云计算的并行计算效率。