基于局部熵凸优化的红外船舶图像活动轮廓分割方法技术领域
本发明属于红外成像技术领域,尤其是一种可提高分割精度及速度的基于局部熵
凸优化的红外船舶图像活动轮廓分割方法。
背景技术
随着计算机处理、网络通信等现代技术装备的发展,海面船舶管理日趋智能化和
自动化。在船舶航行及港口船舶监控中,红外成像系统的关键技术是目标的分割。分割精度
作为碰撞危险度评估、多目标决策、避碰最佳幅度等的前提,如何提高是目前亟待解决的一
个关键问题,其中活动轮廓模型利用动态的概念进行图像分割,成为了该领域中一次重大
的革新。基于活动轮廓模型进行图像分割的基本思想是:利用图像的几何特性建立一个能
量泛函,在变分法下求能量函数极小值,得到相应的Euler-Lagrange方程,然后,利用泛函
分析和数值分析等领域的相关知识对于模型的合理性进行分析,最终提取出感兴趣的图像
区域。这样,图像分割问题就变成了能量泛函求解问题。
目前,大量活动轮廓模型主要是一个非凸问题,存在局部极小解,从而使分割结果
高度依赖于初始轮廓线。另外,由于曲线演化过程过多地依赖于图像特征去控制,但在实际
图像中的离散梯度是有界的,或者目标物体附近边缘位置不可能是理想化的,这些都会造
成演化的曲线越过目标的实际位置。特别对具有强噪声图像,活动轮廓模型易陷入局部最
优,导致图像分割失败。因此,现有非凸活动轮廓模型适用范围窄,仅适用于较少噪声、目标
轮廓完整且与背景反差明显的图像。
然而,红外船舶图像具有复杂的海域环境如海面杂波、背景不稳定性等因素,海域
背景是由真实场景图像和成像干扰构成。另外,红外图像成像过程反映的是热辐射差,对温
度很敏感,加之周围环境对热辐射的散射和吸收,红外图像中边缘模糊、纹理细节几乎没
有。因此现有的活动轮廓分割方法并不适用于红外船舶图像,分割精度及速度均较低。
发明内容
本发明是为了解决现有技术所存在的上述技术问题,提供一种可提高分割精度及
速度的基于局部熵凸优化的红外船舶图像活动轮廓分割方法。
本发明的技术解决方案是:一种基于局部熵的凸优化红外船舶图像活动轮廓分割
方法,其特征在于按照如下步骤进行:
步骤1. 统计船舶图像的局部熵:
(1)
为船舶图像的高斯统计函数:,和分别为船舶
图像的均值和方差;
步骤2. 建立凸优化能量泛函:
(2)
,为船舶图像所在区域;为水平集函数的狄克拉函数;船舶图像的局
部区域选取如下:,为船舶图像长度的;通过高斯统计函数可得到
模型(2)的水平演化方程:
(3)
其中,以及 (4)
、和、分别为船舶图像区域和背景区域的均值和方差;
步骤3. 进一步由Euler-Lagrange方程,可得到模型(3)的水平集演化方程:
(5)
其中,和分别为水平集的散度算子和梯度算子;
步骤4. 设置时间步长;初始化水平集函数;
步骤5. 利用式(4),分别计算;
步骤6. 利用有限差分法,根据式(5)更新水平集函数;
步骤7. 使用停止准则检查演化曲线是否稳定收敛,若稳定收敛,则停止迭代;否则,转
入步骤5;所述停止准则是演化曲线趋近目标边界时,水平集函数值逐渐变小,当到达目标
边界时,函数值达到最小值,停止演化。
与现有技术相比,本发明具有以下优点:第一,引入的局部熵可根据曲线演化的当
前状态自适应调整能量泛函以控制演化的总体演化趋势。而且,所利用的局部信息可以保
证模型的全局特性,避免模型陷入局部极小值,保证了模型对复杂背景区域的目标分割精
度。第二,模型在演化过程中通过使用凸优化的能量泛函,避免了演化曲线越过目标的实际
位置。通过对多种类型红外船舶图像分割的仿真实验表明:本发明具有分割精度高、速度快
和对初始轮廓曲线位置及图像噪声具有鲁棒性的特点。
附图说明
图1为本发明实施例进行不同初始化方法对应的红外船舶图像分割结果图。
图2为本发明实施例进行不同局部区域对应的红外船舶图像分割结果图。
图3为本发明实施例与其它方法的分割结果比较图。
具体实施方式
本发明基于局部熵的凸优化红外船舶图像活动轮廓分割方法,按照如下步骤进
行:
步骤1. 统计船舶图像的局部熵:
(1)
为船舶图像的高斯统计函数:,和分别为船舶
图像的均值和方差;
步骤2. 建立凸优化能量泛函:
(2)
,为船舶图像所在区域;为水平集函数的狄克拉函数;船舶图像的局
部区域选取如下:,为船舶图像长度的;通过高斯统计函数可得
到模型(2)的水平演化方程:
(3)
其中,以及(4)
、和、分别为船舶图像区域和背景区域的均值和方差;
步骤3. 进一步由Euler-Lagrange方程,可得到模型(3)的水平集演化方程:
(5)
其中,和分别为水平集的散度算子和梯度算子;
步骤4. 设置时间步长;初始化水平集函数;
步骤5. 利用式(4),分别计算;
步骤6. 利用有限差分法,根据式(5)更新水平集函数;
步骤7. 使用停止准则检查演化曲线是否稳定收敛,若稳定收敛,则停止迭代;否则,转
入步骤5;所述停止准则是演化曲线趋近目标边界时,水平集函数值逐渐变小,当到达目标
边界时,函数值达到最小值,停止演化。
本发明实施例进行不同初始化方法对应的红外船舶图像分割结果如图1所示:(a)
初始化1;(b)初始化2;(c)分割结果。
本发明实施例进行不同局部区域对应的红外船舶图像分割结果如图2所示:(a)小
局部区域对应的分割结果;(b)大局部区域对应的分割结果;(c)适当局部区域对应的分割
结果。
本发明实施例与其它方法的分割结果比较如图3所示:从左至右分别为源图像、CV
模型分割结果、LBF模型分割结果、多特征结合的红外船舶分割结果、多特征映射的红外船
舶分割结果、本发明实施例。
结果表明:本发明实施例具有分割精度高、速度快和对初始轮廓曲线位置及图像
噪声具有鲁棒性的特点。