书签 分享 收藏 举报 版权申诉 / 38

一种路网潮汐交通流可变导向车道控制方法.pdf

  • 上传人:1**
  • 文档编号:5986916
  • 上传时间:2019-04-02
  • 格式:PDF
  • 页数:38
  • 大小:2.48MB
  • 摘要
    申请专利号:

    CN201610913808.8

    申请日:

    2016.10.20

    公开号:

    CN106548633A

    公开日:

    2017.03.29

    当前法律状态:

    实审

    有效性:

    审中

    法律详情:

    实质审查的生效IPC(主分类):G08G 1/08申请日:20161020|||公开

    IPC分类号:

    G08G1/08

    主分类号:

    G08G1/08

    申请人:

    中国科学院深圳先进技术研究院

    发明人:

    关金平; 关志超; 须成忠

    地址:

    518055 广东省深圳市南山区西丽大学城学苑大道1068号

    优先权:

    专利代理机构:

    深圳市科进知识产权代理事务所(普通合伙) 44316

    代理人:

    赵勍毅

    PDF完整版下载: PDF下载
    内容摘要

    本发明涉及交通控制技术领域,特别涉及一种路网潮汐交通流可变导向车道控制方法。所述路网潮汐交通流可变导向车道控制方法包括:步骤a:通过视频实时监测路网交通流及交叉口建模;步骤b:分析交叉口进口车流转向不均衡与可变导向车道;步骤c:建立可变导向车道交叉口上游车辆平滑过渡模式;步骤d:设置并联动控制潮汐拥堵交叉口可变导向车道。本发明采用无人机视频进行实时在线监测城市道路网络交通流运行状态,对于潮汐拥堵交叉口与关键路段,进行城市道路网络交通流及交叉口建模,能够实现可变导向车道控制新方式;从交通流动态需求与交通设施静态供给间的相互作用关系,以适应交叉口交通流转向非均衡性、减少对路段车流运行的扰动。

    权利要求书

    1.一种路网潮汐交通流可变导向车道控制方法,其特征在于,包括:
    步骤a:通过视频实时监测路网交通流及交叉口建模;
    步骤b:分析交叉口进口车流转向不均衡与可变导向车道;
    步骤c:建立可变导向车道交叉口上游车辆平滑过渡模式;
    步骤d:设置并联动控制潮汐拥堵交叉口可变导向车道。
    2.根据权利要求1所述的路网潮汐交通流可变导向车道控制方法,其特征在于,在所述
    步骤a中,所述通过视频实时监测路网交通流指通过无人机实时监测城市道路网络交通流
    以及交叉口动态交通流,具体包括:进入任务监控界面,实现交叉口镜像定点航拍任务的快
    速自动归档;结合飞行控制软件进行自动检测,确保飞机的GPS、罗盘、空速管及其俯仰翻滚
    状态良好;在城市道路网络与交叉口区域空照、导航、混合三种模式下进行飞行任务的规
    划;进行航飞监控;城市道路网络交通流与交叉口定点航拍任务完成后,提取航拍影像进行
    研究区域的影像拼接与交通采集数据特征。
    3.根据权利要求2所述的路网潮汐交通流可变导向车道控制方法,其特征在于,在所述
    步骤a中,所述交叉口建模包括:从交叉口几何拓扑特性、道路空间特性、交通流特性、交通
    信号控制特性了解交叉口的交通特性,寻找交叉口中交通流的变化特征;分析交叉口潮汐
    拥堵的诱发因素,确定交叉口溢流、绿灯空放、滞留排队对于交叉口交通拥堵的影响,确定
    过饱和状态形成的过程;确定分析城市道路交叉口交通运行状态所需要的交通参数,比较
    分析各种交通运行信息采集方法的优缺点及对过饱和状态交通信号控制的适应性,优选交
    叉口交通状态识别和交通控制所需的数据来源;建立交通数据清洗剂处理方法,确定交通
    流丢失数据补齐、交通流错误数据判别、修正及交通流冗余数据约简的算法。
    4.根据权利要求1所述的路网潮汐交通流可变导向车道控制方法,其特征在于,所述步
    骤b还包括:设置可变导向车道检测器,所述可变导向车道检测器获取车道占用情况、占有
    率、流量数据,分析不同转向车流是否存在明显的不均衡差异;所述可变导向车道检测器还
    用于测得各转向的交通流,重新确定各相位的交通流量比,依据新的流量比来配置合适的
    相位组合、信号周期、绿灯时间。
    5.根据权利要求1所述的路网潮汐交通流可变导向车道控制方法,其特征在于,所述步
    骤c还包括:设置交叉口上游检测器,以实现可变导向车道转向功能的自动触发。
    6.根据权利要求5所述的路网潮汐交通流可变导向车道控制方法,其特征在于,所述交
    叉口上游检测器包括第一排检测器和第二排检测器,所述第一排检测器负责检测车辆是否
    发生二次排队,为可变导向车道自适应控制或者信号配时策略的调整提供依据,所述第二
    排检测器的触发约束可变导向车道功能发生转变的触发条件,并为可变导向车道自适应控
    制的触发时刻的选择提供数据支持。
    7.根据权利要求6所述的路网潮汐交通流可变导向车道控制方法,其特征在于,所述步
    骤c还包括:设置双停车线及预信号控制,通过预信号设置为红灯,欲进入可变导向车道的
    车辆在第二排停车线后等待。
    8.根据权利要求1所述的路网潮汐交通流可变导向车道控制方法,其特征在于,所述步
    骤d还包括:对交叉口可变车道信号进行配时设计,其中,所述对交叉口可变车道信号进行
    配时设计包括低饱和状态下信号配时设计和高饱和状态下信号配时设计,其依据设置可变
    导向车道后重交通流进口车道关键车流是否饱和来划分。
    9.根据权利要求8所述的路网潮汐交通流可变导向车道控制方法,其特征在于,在所述
    步骤d中,在所述低饱和状态下,原饱和的重交通流进口车道关键车流在增加可变导向车道
    后变为非饱和状态,信号控制方法采用相等饱和度原则进行配时,控制目标选择为非饱和
    状态;原非饱和的轻交通流进口车道在减少车道数量后仍未非饱和状态,信号控制方法采
    用相等饱和度原则进行配时,控制目标选择交叉口总延误最小。
    10.根据权利要求8所述的路网潮汐交通流可变导向车道控制方法,其特征在于,在所
    述步骤d中,在所述高饱和状态下,信号控制方法为:根据交叉口信号周期时长上限或流量
    比确定信号周期;对于非饱和相位,选取饱和度的上限值反推有效绿灯时间;对于饱和或过
    饱和的关键车流,其绿灯时间根据相等饱和度原则分配剩余的有效绿灯时间,非饱和相位
    的饱和度上限值不大于0.9。

    说明书

    一种路网潮汐交通流可变导向车道控制方法

    技术领域

    本发明涉及交通控制技术领域,特别涉及一种路网潮汐交通流可变导向车道控制
    方法。

    背景技术

    60年代末期,美国华盛顿通向新泽西州林肯大道上首次尝试开放使用可变导向车
    道。进入70年代,可变导向车道被应用在欧美及澳洲的桥梁隧道上;80年代,针对可变导向
    车道技术引入城市特殊用途的道路,如高承载率的道路、公交专用道进行研究。进入21世
    纪,可变导向车道技术的应用热点主要集中在极端气候条件下,交通流的紧急疏散。2004
    年,在对美国49个州可变导向车道实施情况调查发现,几乎所有大城市和一些中小城市都
    应用了可变导向车道技术。

    可变导向车道是指进入该车道后有不止一个车道走向,有的交叉口情况允许右转
    和直行(即右转和直行合并为一个车道),或者调头和左转合并为一个车道(一般用于左侧
    车道)。可变导向车道有着灵活性,不同于普通的车道指示线,只要进入车道直行就是直行,
    左转就是左转。

    2000年以来,上海市在四平路上率先应用可变导向车道技术,并在沿线相关路段
    的交叉口配合实施机动车禁左转向措施。2003年,上海市在外环越江隧道上设置了可变导
    向车道,通过自主设计的隔离护栏改变车道布局。2004年,沈阳珠江桥实施可变导向车道,
    并在珠江桥两侧距桥30米处设置提示牌。2005年,杭州北山路与保俶路交叉口实施可变导
    向车道。2008年,贵阳都司高架桥实施可变导向车道,是国内在完整路段上首次实施可变导
    向车道的交通组织管理方案;同年,苏州在竹辉路与南园路交叉口实施可变导向车道。2011
    年,无锡在莼湖达到与周新路交叉口实施可变导向车道;同年,长沙市韶山路实施可变导向
    车道,驾驶员通过车道上方绿色信号灯提示车辆的行驶;兰州市南滨河东路平沙落雁至金
    昌路北口段也实施了第一条600米长的可变导向车道。2012年,济南市在舜华路实施可变导
    向车道。从此以后,北京市、深圳市、大连市、重庆市、广州市等城市也开始应用可变导向车
    道技术。

    国内、外学者提出了若干种交通控制子区/交叉口可变导向车道范围界定算法、过
    饱和状态及识别算法、瓶颈潮汐路段判别算法、交通控制策略及智能算法,在一定程度上缓
    解了城市道路网络的交通拥堵。但是,现有的研究对过饱和状态下交叉口可变导向车道交
    通特性及容量等本质特性多为定性分析,未能见到定量化的揭示其特点;提出的交通控制
    策略多为针对实际问题的解决方案,不具备普适性;对应的信号控制模型及算法也多为单
    点交叉口处理论探索,未能在城市道路网络实时动态交通流环境中进行宏观层面的验证应
    用。现有技术的缺点主要表现在以下几个方面:

    交叉口协调控制范围未能体现可变导向车道交通关联性的实时动态变化:既有研
    究已经认识到交叉口可变导向车道的关联特征不仅受交叉口间距的影响,还与车流分布特
    征、信号控制方案等交叉口的交通运行特性有关。在实际工程运行使用中,交叉口可变导向
    车道和交通协调控制范围都是动态变化的,而传统交叉口范围确定方法智能化程度不高,
    只根据历史数据静态划分,且未考虑道路网络的拓扑关系,需要对交叉口关联性特征以及
    交叉口可变导向车道范围的判断进行从新认识。

    交叉口可变导向车道过饱和状态难以识别:过饱和状态交叉口可变导向车道中交
    通需求大于其通行能力,交叉口的排队过长甚至溢出,使常规交通检测方法不能准确检测
    实时交通运行数据。因过饱和状态的交通控制策略和稳态的交通控制策略不同,如果不能
    准确识别过饱和状态起始时间,将影响交通控制优化算法应用效果。应用实时动态交通运
    行数据分析交叉口可变导向车道过饱和状态在时空范围内的变化特性,设计过饱和状态识
    别算法是交通信号协调控制的基础。

    缺乏定量分析过饱和状态关键路径的方法:将交叉口可变导向车道作为整体进行
    信号协调控制,已经获得学者的认同与关注,但是已有交通控制策略通常以全局优化或关
    键交叉口整治为主,在优化过程中选取的协同路径一般为人工指定,未能对交叉口范围内
    的关键路径的识别与分级进行系统研究与应用。为优化过饱和状态交叉口可变导向车道交
    通控制结构,针对瓶颈路段建立交通控制模型,应结合交叉口可变导向车道关联特性从道
    路网络中提取交通负荷过载的关键路径,并对所有可行路径进行分级。针对交叉口可变导
    向车道的瓶颈路段,应用过饱和状态交通控制策略,依据实时动态交通运行状况优化信号
    控制方案,是缓解交叉口可变导向车道过饱和状态可行方法。

    交通协调控制算法未能根据过饱和状态交叉口可变导向车道交通特性优化:交叉
    口可变导向车道要求交通信号控制系统必须兼顾相邻交叉口之间的协调性,优化高密度道
    路网络内所有信号交叉口的信号控制方案。此外,由于交叉口可变导向车道相邻交叉口间
    距小,相邻交叉口之间交通流相互影响较大。在对过饱和状态下交叉口可变导向车道的关
    键路径识别上,应用动态、静态协同的分层信号配时算法,分交叉口层、关键路径层、单点交
    叉口层,优化整个交叉口可变导向车道的控制方案,是缓解交叉口过饱和状态有效可行途
    径。

    发明内容

    本发明提供了一种路网潮汐交通流可变导向车道控制方法,旨在至少在一定程度
    上解决现有技术中的上述技术问题之一。

    为了解决上述问题,本发明提供了如下技术方案:一种路网潮汐交通流可变导向
    车道控制方法,包括:

    步骤a:通过视频实时监测路网交通流及交叉口建模;

    步骤b:分析交叉口进口车流转向不均衡与可变导向车道;

    步骤c:建立可变导向车道交叉口上游车辆平滑过渡模式;

    步骤d:设置并联动控制潮汐拥堵交叉口可变导向车道。

    本发明实施例采取的技术方案还包括:在所述步骤a中,所述通过视频实时监测路
    网交通流指通过无人机实时监测城市道路网络交通流以及交叉口动态交通流,具体包括:
    进入任务监控界面,实现交叉口镜像定点航拍任务的快速自动归档;结合飞行控制软件进
    行自动检测,确保飞机的GPS、罗盘、空速管及其俯仰翻滚状态良好;在城市道路网络与交叉
    口区域空照、导航、混合三种模式下进行飞行任务的规划;进行航飞监控;城市道路网络交
    通流与交叉口定点航拍任务完成后,提取航拍影像进行研究区域的影像拼接与交通采集数
    据特征。

    本发明实施例采取的技术方案还包括:在所述步骤a中,所述交叉口建模包括:从
    交叉口几何拓扑特性、道路空间特性、交通流特性、交通信号控制特性了解交叉口的交通特
    性,寻找交叉口中交通流的变化特征;分析交叉口潮汐拥堵的诱发因素,确定交叉口溢流、
    绿灯空放、滞留排队对于交叉口交通拥堵的影响,确定过饱和状态形成的过程;确定分析城
    市道路交叉口交通运行状态所需要的交通参数,比较分析各种交通运行信息采集方法的优
    缺点及对过饱和状态交通信号控制的适应性,优选交叉口交通状态识别和交通控制所需的
    数据来源;建立交通数据清洗剂处理方法,确定交通流丢失数据补齐、交通流错误数据判
    别、修正及交通流冗余数据约简的算法。

    本发明实施例采取的技术方案还包括:所述步骤b还包括:设置可变导向车道检测
    器,所述可变导向车道检测器获取车道占用情况、占有率、流量数据,分析不同转向车流是
    否存在明显的不均衡差异;所述可变导向车道检测器还用于测得各转向的交通流,重新确
    定各相位的交通流量比,依据新的流量比来配置合适的相位组合、信号周期、绿灯时间。

    本发明实施例采取的技术方案还包括:所述步骤c还包括:设置交叉口上游检测
    器,以实现可变导向车道转向功能的自动触发。

    本发明实施例采取的技术方案还包括:所述交叉口上游检测器包括第一排检测器
    和第二排检测器,所述第一排检测器负责检测车辆是否发生二次排队,为可变导向车道自
    适应控制或者信号配时策略的调整提供依据,所述第二排检测器的触发约束可变导向车道
    功能发生转变的触发条件,并为可变导向车道自适应控制的触发时刻的选择提供数据支
    持。

    本发明实施例采取的技术方案还包括:所述步骤c还包括:设置双停车线及预信号
    控制,通过预信号设置为红灯,欲进入可变导向车道的车辆在第二排停车线后等待。

    本发明实施例采取的技术方案还包括:所述步骤d还包括:对交叉口可变车道信号
    进行配时设计,其中,所述对交叉口可变车道信号进行配时设计包括低饱和状态下信号配
    时设计和高饱和状态下信号配时设计,其依据设置可变导向车道后重交通流进口车道关键
    车流是否饱和来划分。

    本发明实施例采取的技术方案还包括:在所述步骤d中,在所述低饱和状态下,原
    饱和的重交通流进口车道关键车流在增加可变导向车道后变为非饱和状态,信号控制方法
    采用相等饱和度原则进行配时,控制目标选择为非饱和状态;原非饱和的轻交通流进口车
    道在减少车道数量后仍未非饱和状态,信号控制方法可采用相等饱和度原则进行配时,控
    制目标选择交叉口总延误最小。

    本发明实施例采取的技术方案还包括:在所述步骤d中,在所述高饱和状态下,信
    号控制方法为:根据交叉口信号周期时长上限或流量比确定信号周期;对于非饱和相位,选
    取饱和度的上限值反推有效绿灯时间;对于饱和或过饱和的关键车流,其绿灯时间根据相
    等饱和度原则分配剩余的有效绿灯时间,非饱和相位的饱和度上限值不大于0.9。

    相对于现有技术,本发明实施例产生的有益效果在于:本发明实施例的路网潮汐
    交通流可变导向车道控制方法采用无人机视频进行实时在线监测城市道路网络交通流运
    行状态,对于潮汐拥堵交叉口与关键路段,进行城市道路网络交通流及交叉口建模,能够实
    现可变导向车道控制新方式;从交通流动态需求与交通设施静态供给间的相互作用关系,
    以适应交叉口交通流转向非均衡性、减少对路段车流运行的扰动,调节路段交通流方向不
    均衡性为目标,进行交叉口进口车流转向不均衡特性与可变导向车道的有效控制;提出面
    向道路网络交通节点和关键路段中观、微观层面的交通资源时空协同管理,建立可变导向
    车道交叉口上游车辆平滑过渡模式,实现潮汐拥堵交叉口可变导向车道设置与诱导控制方
    法,提升城市道路交通资源从供给侧结构性改革的实效性应用水平。

    附图说明

    图1是本发明实施例的路网潮汐交通流可变导向车道控制的流程图;

    图2是本发明实施例的实时监测路网交通流及交叉口建模的方法的流程图;

    图3是单点式交叉口信号相位期间车流驶出停车线流量结构示意图;

    图4是典型的两相位信号控制交叉口配时设计流程图;

    图5是全感应式交叉口信号控制流程图;

    图6是本发明实施例的进口车道的交通特性分析流程图;

    图7是交叉口可变导向车道设置流程逻辑结构图;

    图8是交叉口可变导向车道感应式控制流程结构示意图;

    图9是可变导向车道信号配时控制逻辑流程图;

    图10是非饱和状态信号配时逻辑流程图;

    图11是本发明实施例的建立可变导向车道交叉口上游车辆平滑过渡模式流程图;

    图12是交叉口可变导向车道检测器布设示意图;

    图13是平滑过渡的可变导向车道触发及标识变换流程图;

    图14是K-meaans聚类算法工作流程图;

    图15是交叉口可变导向车道设置流程图;

    图16是深圳中心城区路网与新洲路关键路段交叉口静态模型图;

    图17是中心城区关键路径新洲路相关交叉口动态交通控制现状。

    具体实施方式

    为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对
    本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不
    用于限定本发明。

    请参阅图1,是本发明实施例的路网潮汐交通流可变导向车道控制方法的流程图。
    本发明实施例中的路网潮汐交通流可变导向车道控制方法包括:

    步骤100:通过视频实时监测路网交通流及交叉口建模;

    在步骤100中,引入无人机技术与视频采集处理技术相结合,实时监测城市道路网
    络交通流以及交叉口动态交通流,可以理解在本发明的其他实施例中,可以采用其他的视
    频方式进行监控。

    请一并参阅图2,是本发明实施例的实时监测路网交通流及交叉口建模的方法的
    流程图。实时监测路网交通流及交叉口建模的方法具体包括:

    步骤110:规划交叉口任务,引入无人机进行视频监控,并进入任务监控界面;

    在步骤110中,实现交叉口镜像定点航拍任务的快速自动归档,各功能划分开来,
    实现无人机软件运行的专一且稳定;

    步骤111:为保证实时监测交叉口任务的安全进行,垂直起飞前结合无人机飞行控
    制软件进行自动检测,确保飞机的GPS、罗盘、空速管及其俯仰翻滚等状态良好,避免在定点
    航拍中危险情况的发生;

    步骤112:控制无人机在城市道路网络与交叉口区域空照、导航、混合三种模式下
    进行飞行任务;

    步骤113:对无人机进行航飞监控:实时掌握飞机的姿态、方位、空速、位置、电池电
    压、即时风速风向、任务时间等重要状态,便于操作人员实时判断任务的可执行性,进一步
    保证任务的安全;

    步骤114:对无人机采集的影像进行拼接:城市道路网络交通流与交叉口定点航拍
    任务完成后,航拍影像进行研究区域的影像拼接与交通采集数据特征提取。

    无人机视频实时采集与处理交叉口数据重点调查两个方面:进口车道的静态交通
    数据和动态交通数据的调查,均可以采用无人机与视频结合技术实现,主要包括各转向车
    辆数据、信号配时数据。具体详见表1所示。

    表1:进口车道的静态交通数据和动态交通建模的调查数据


    步骤115:分析交叉口交通特性;

    在步骤115中,分别从交叉口几何拓扑特性、道路空间特性、交通流特性、交通信号
    控制特性等方面了解交叉口的交通特性,寻找交叉口中交通流的变化特征,为应用过饱和
    交通控制策略提供依据。其中,几何拓扑特性根据交叉口中两个交叉口间的道路路径数目
    特征将交叉口分类;道路空间特性,分析了道路交通设施设计会对交通流运行产生的影响;
    交通流特性,给出了适用于过饱和状态城市道路间断流的描述模型;交通信号控制特性分
    析基本控制原理与控制结构,为建立交通控制方法奠定了基础。

    步骤116:分析交叉口潮汐拥堵形成及疏散机理;

    在步骤116中,分析交叉口潮汐拥堵的诱发因素,确定交叉口溢流、绿灯空放、滞留
    排队等不良影响对于交叉口交通拥堵的影响,确定过饱和状态形成的过程;判断交通流瓶
    颈消散时的交通流运行状态,应用交通网络负载均衡理论描述拥堵状态疏散过程的交通流
    特征,为分析过饱和状态交叉口的交通状态奠定理论基础。

    步骤117:采集与处理交通运行数据;

    在步骤117中,确定分析城市道路交叉口交通运行状态所需要的交通参数,比较分
    析各种交通运行信息采集方法的优缺点及对过饱和状态交通信号控制的适应性,优选交叉
    口交通状态识别和交通控制所需的数据来源。建立交通数据清洗剂处理方法,确定交通流
    丢失数据补齐、交通流错误数据判别、修正及交通流冗余数据约简的算法,为交通状态分析
    奠定基础。

    步骤118:根据处理的交通运行数据进行交叉口建模。

    单点交叉口信号控制是指利用交通信号灯,对孤立交叉口各种转向车流(人流)进
    行通行权和通行时长的分配,对于道路交通的安全、有序、高效运行具有重要的作用。

    交叉口控制方式不仅包括信号控制,还包括通车让路控制、减速让路控制等,在通
    行权上处于次要地位的车流都需要等待拥有优先通行权的车流出现可穿越间隙时方可通
    行,而对于何种间隙为可穿越间隙并没有强制性规定,不同驾驶人员对可穿越间隙的执行
    标准也不相同。交叉口信号控制对通行权的分配带有更多的强制性,通过当前信号灯的颜
    色即可判断是否可以通行。

    当次要道路交通量大于其通行能力时应该采用信号控制;同时,当主要道路交通
    量接近通行能力值时,次要道路车辆穿越主要道路车流通行已变得困难,排队长度和延误
    时间也迅速上升,此时应该建立交叉口信号控制方式。交叉口是否采用信号控制主要关注
    两个指标:交叉口的通行能力和交叉口的延误。

    信号控制可以有效地降低次要道路车辆的平均延误时间,必然造成主要道路上部
    分车辆延误时间的增加。当采用信号控制时,应当考虑交叉口改变前、后车辆平均延误实践
    的变化情况。当交通信号控制和停车让路控制/减速让路控制两种控制在交叉口交通量的
    增大到某一临界点时(通常为800-1200pcu/h),两种控制方式的延误水平相同。之后,停车
    让路控制与减速让路控制的延误时间迅速大于信号控制的延误时间,应该采用信号控制。

    单点交叉口信号控制方式主要包括三种:

    定时式控制:定时式控制是指交叉口信号具有确定的控制方案,信号灯在控制时
    段内按照预先设定的控制方案周期式地进行信号控制。适用于交通需求波动小或交通量较
    大(接近饱和状态)的情况。

    感应式控制:感应式控制是指交通信号灯能根据交通检测器检测到的交叉口实时
    交通流状况,采用适当信号显示时间以适应交通需求的一种信号控制方式。感应式控制对
    车辆随机到达以及交通需求波动较大的情况适应性较强。

    自适应控制:自适应控制是基于人工智能技术发展起来的一种信号控制方式,具
    有学习、抽象、推理、决策等功能,根据不同环境的变化做出恰当的适应性反应,具有较强的
    实时性、鲁棒性、独立性。

    单点交叉口信号控制的指标与配时设计流程指标包括:

    信号周期:是指信号灯色按照设定的香味顺序显示一周所需要的时间。

    信号相位:是指在信号控制交叉口,每一种控制状态(一种通行权),即对各进口车
    道不同方向所显示的不同灯色的组合,定义为一个信号相位。

    绿信比:是指一个信号周期内某信号相位的有效绿灯时长与信号周期时长的比
    值。

    有效绿灯时长:是指与信号相位内可利用的通行时间相等效的理想通行状态所对
    应的绿灯时长。

    损失时间:是指在信号周期内无法被利用的时间,包括前损失时间、后损失时间、
    全红信号时间。有效绿灯时间与损失时间之和组成一个完整的信号周期。

    绿灯间隔时间:是指一个相位绿灯结束到下一相位绿灯开始之间的时间间隔,也
    定义为相位过渡时间,由黄灯或者黄灯时间加上全红时间组成。

    黄灯时间:是指设置于信号相位中绿灯结束之后,提醒驾驶人员红灯即将开启。

    全红时长:是指交叉口所有进口方向的车道信号灯都为红灯的状态,主要是使黄
    灯期间进入交叉口而未能驶出交叉口的车辆能够在下一个相位的首车到达冲突点前安全
    驶出交叉口。

    请参阅图3和图4,图3是单点式交叉口信号相位期间车流驶出停车线流量结构示
    意图,图4是典型的两相位信号控制交叉口配时设计流程图。信号配时设计最重要的方面之
    一是在给定条件下找到合适的信号控制方案,重点关注以下几点:

    信号控制可以通过分离冲突车流起到降低事故发生风险的作用(左转车流与对向
    直行车流分离),但是信号相位数的增多会导致信号周期时间变长、延误增加和通行能效率
    降低等不利影响。

    虽然相位数的增加导致了大量的时间损失,但是因为分离了冲突车流之间的相互
    干扰而使得饱和流率得到提高,在一定程度上能够消除上述不利影响。在确定相位个数时,
    需要慎重考虑并均衡利弊。

    信号控制方案的设计,必须和交叉口几何特征、车道的划分、交通量、车辆行驶速
    度、行人过街要求相一致。

    定时式信号控制具有固定不变的周期时长、相位序列和绿灯时间。然而,道路网络
    上交通需求随时间而变化,并且常常会在短期内发生剧烈的波动,从而导致某个信号周期
    内或者一系列信号周期内排队车辆的大量积累,甚至会引起交叉口的严重堵塞。

    感应式信号控制就是解决这类问题而诞生的,通过使用车辆检测器,可以给感应
    式信号控制器当前交通需求的实时信息,从而根据信息随不同周期内交通需求的变化而决
    定绿灯时间分配。主要包括半感应信号控制和全感应信号控制两种,通常采用全感应信号
    控制方式,其信号控制流程详见图5所示,图5是全感应式交叉口信号控制流程图。

    步骤200:分析交叉口进口车流转向不均衡与可变导向车道;

    在步骤200中,由于可变导向车道适用于解决交叉口进口车道的转向不均衡问题,
    研究可变导向车道的适用条件和控制方式之前,需要对有转向不均衡特征的进口车道的交
    通特性进行分析。建立评价转向不均衡强度的系数及计算方法,通过理论模型与仿真评价
    不同车道功能组合在不同转向需求下的延误差异。

    请一并参阅图6,是本发明实施例的进口车道的交通特性分析流程图。本发明实施
    例的进口车道的交通特性分析具体包括:

    步骤201:分析交叉口进口车道转向不均衡交通特性;

    城市信号交叉口进口车道交通流存在时段性、方向性转向不均衡现象,不同时段
    需要采用不同的交叉口控制方案,以保证不同状态下的交叉口运行效率,找出可变导向车
    道的设置与控制方法的依据。

    转向不均衡交通的形成原因复杂,既包括城市道路网络布局规划、居民生活习惯
    等外部因素,也包括交叉口控制措施等内部因素。一方面由于城市功能布局划分和居民出
    行的早晚差异,在许多城市道路或交叉口的不同时段,交通需求呈现明显差异;另一方面私
    人小汽车的增长在提高城市道路负荷时也加剧了转向不均衡交通影响。传统的交叉口交通
    信号控制与管理方式在应对这种时段性不均衡转向的交通状况时存在局限性,单纯依靠信
    号配时调控方式已经造成道路资源利用不均衡、交叉口延误过大、各转向排队不均衡等问
    题。具体交通特性如下:进口车道各转向交通流比例在不同时段有明显差异;由于职、住分
    离导致的转向不均衡交通现象具有一定的周期性和规律性;城市大型活动、节假日等导致
    的转向不均衡交通现象具有突发性和剧烈性。

    各转向车流排队长度的不均衡是进口车道转向不均衡交通需求最直观的表现,因
    此将各转向车流排队长度差异作为可变导向车道功能变换的触发依据。为了能获取较为准
    确的各转向排队长度,需要对车流在进口车道的排队特性进行深入分析。主要包括:转向车
    流排队特性和不同相位阶段转向车流运行特性。

    步骤202:组合配置车辆平均延误最小的交叉口进口车道时空资源;

    对于某一特定交叉口,由于绿信比之和与车道总数都是定值,若总需求量与总通
    行能力之比不超过其最大限值,则存在一组车道功能划分方案,使得每段车流的饱和度都
    不超过其最大限值时,所需要的总绿灯时间最小。

    运用MATLAB数学分析软件计算不同组合下最小车均延误,改变目标进口车道单一
    转向流量分析结果如下:交叉口总延误是随着车流量的增加而增大的,不同车道功能组合
    获得的车均延误值有明显差异;不同流量时,总有一组最优车道组合方式,使交叉口车均延
    误最小。

    运用MATLAB数学分析软件计算不同组合下最小车均延误,改变目标进口车道两个
    转向流量分析结果如下:不同的车道功能组合类型获得的交叉口最小车均延误时间存在差
    异,随着目标进口车道流量的变化,差异也随之变化;无论各转向流量如何,总存在一个最
    优车道组合,使总延误最小;各转向流量变换在一定的范围内,会存在临界点;当目标进口
    车道流量较对向进口车道流量小、各转向饱和度较低时,各组合类型差异不明显;当目标进
    口车道流量比对向进口车道流量最大、各转向饱和度较高时,不同的车道组合类型差异更
    明显。

    因此,动态的车道功能设置适用于流量较大的进口车道,车道功能的变换时机为
    某一转向处于饱和或过饱和状态的时候。

    步骤203:实时监测车道功能变换对进口车道交通的影响,并选择评价指标。

    理论分析表明,进口车道不同转向车道功能组合条件下获得的车均延误值有所差
    异,通过改革车道功能组合,配合信号控制,既能减小目标进口车道的延误与排队长度,也
    能减少对其他进口车道的影响。

    建立信号配时交通效益的评价指标主要包括:通行能力或饱和度、延误、行程时
    间、停车次数、排队长度、停车率、油耗等。对于呈现转向不均衡特性的进口车道需要将动态
    的车道功能组合与信号配时相结合,从而更有效地应对这种转向不均衡带来的交通问题。
    可变导向车道正是通过对道路空间资源的合理调配来提高道路资源的综合利用率,减少进
    口车道车均延误。提出可变导向车道的设置条件,通过转向不均衡交通在进口车道的排队、
    运行特性的分析、建立实现可变导向车道动态变换所需要设施的设置方式以及车道功能变
    换的触发方法。

    可变导向车道用于解决进口车道转向不均衡带来的交通问题,需要满足空间条
    件、信号配时条件、交通条件。

    车道划分方式与转向交通需求不匹配,在路段上表现为某方向车流排队长度明显
    大于其他方向车流、拥堵现象严重,其他方向车道饱和度较低、道路资源利用率不高等问
    题。排队长度的明显差异是转向不均衡交通在进口车道最直观的表现,而通过占有率(道路
    时间占有率)可以判定道路的拥堵状态。通过排队长度与占有率两者的结合能够确定可变
    导向车道的转向功能变换合适时机。当进口车道某方向排队长度或占有率明显大于其他方
    向,其他转向车道占有率很低时,可将低占有率的车道功能转换为高占有率的车道功能。详
    见图7所示,图7是交叉口可变导向车道设置流程逻辑结构图。

    当前的可变导向车道以人工控制或定时调节为主,虽然操作简单,但是若变换时
    机不当会降低交通效益。通过设置可变导向车道检测器可以实现对可变导向车道的感应控
    制,实现对可变导向车道的实时控制,提高交叉口运行效率。

    可变导向车道检测器的设置需要流量、各转向车道的占有率等数据的支持,合理
    布设可变导向车道检测器能够满足可变导向车道感应控制的需求。可变导向车道检测器的
    设置数量与位置部署如下所示:

    根据交叉口的排队特性,将进口车道的车辆排队状态分为四个部分:初始排队形
    成、排队蔓延、排队上溯、赌赛路段。

    由于排队起始位置基本不变,关键依据排队末端位置来判断排队状态。

    可变导向车道主要用于解决由于进口车道转向不均衡造成的道路资源利用不均
    问题,这种道路资源的利用不均主要表现为排队长度不均衡、各转向车流饱和度不均衡等。
    当各转向排队差异达到一定阈值时,应对可变导向车道转向功能进行变换。判定以下条件
    进行触发流程,详见图8所示,图8是交叉口可变导向车道感应式控制流程结构示意图,其具
    体包括:排队长度初步判定;转向车流饱和度的判定;可变导向车道功能变换触发。

    可变导向车道转向功能变换后,需要配合信号控制方案的调整以提高整体运行效
    率。通过制定合理的控制策略,达到提高交叉口通行效率的目的。在车道功能变换后,根据
    检测到的交通流量重新计算信号周期和各相位绿信比,分别考虑非饱和状态与饱和状态
    下,通过不同的优化方案实现信号配时与车道功能的协同优化控制,提高进口车道的通行
    效率;通过仿真软件对提出的优化控制方案进行评价。

    对于交叉口评价交通效率的指标主要包括:通行能力、饱和度、延误、停车次数、排
    队长度、停车率、油耗、行程时间等。Webster法和Akcelik法是当前应用最广泛的两种单点
    信号控制配时方法。其中Webster法是以车辆延误最小为控制目标求解最佳周期时长,该方
    法应用比较广,是针对低饱和度的情况下给出的较合理的配时方案;而Akcelik法是在
    Webster法基础上引入“停车补偿系数”进行修正,而对于高饱和度下,需要提高通行能力,
    而该方法获得的指标更能反映出此时交叉口的延误状况,但需要进一步优化。因此需要综
    合考虑交叉口不同状态,建立控制目标与策略。

    针对进口车道时段性、方向性转向不均衡的交通特征,可变导向车道的控制将以
    各转向车流排队长度差异作为车道功能转换的触发依据,通过车道功能与信号配时的协同
    控制,使进口车道饱和度控制在合理的范围,进而达到减小交叉口总延误、提高通行能力的
    效果。

    通过可变导向车道检测器获取车道占用情况、占有率、流量数据,分析不同转向车
    流是否存在明显的不均衡差异。首先确定当前可变导向车道转向功能,若可变导向车道为
    左转时,检测直行车流是否溢出,左转车道占有率是否较低,当满足一定触发条件后进行属
    性变换,并根据各转向流率对信号配时进行调整。不同交通状态下的控制策略有所不同。

    当进口车道饱和度较低时,即道路通过流量小于其通行能力时,以延误最小作为
    控制目标可以采用传统韦伯斯特法进行周期与信号配时计算;

    当某一方向出现高饱和,即交通流量接近或超过其通行能力时,需要以提高路口
    通行能力与减小延误为目标,此时为了缓解目标进口车道的排队,需要增大过饱和车流的
    通行能力,并使进口车道的总延误时间最少。可变导向车道信号配时控制逻辑流程详见图9
    所示。

    可变导向车道功能的变换对各转向通行能力的影响较大,当车道功能发生变换
    时,若不对信号配时进行调整,往往效果欠佳。只有通过车道功能与信号配时的协同作用,
    才能使进口车道的通行效益达到最佳。通过调整不同交通状态下的信号配时,提高交叉口
    时空协同控制下的进口车道的交通运行效率。

    可变导向车道在转向功能变换后,各转向饱和流率也会发生变化。通过可变导向
    车道检测器测得各转向的交通流,重新确定各相位的交通流量比,依据新的流量比来配置
    合适的相位组合、信号周期、绿灯时间。

    非饱和状态下,流量铰低,改变可变导向车道转向功能后,各转向饱和度xi≤x0时,
    不需要对相位作调整,仅优化设置信号配时。

    在可变导向车道功能变换后,若各转向饱和度均未达到限值饱和度,则根据低流
    量信号控制方案进行信号配时。随着流量的增加,在信号配时方式不变的情况下,目标进口
    车道排队可能溢出到检测器,若此时不能满足可变导向车道的变更条件,则需要采用高流
    量时信号控制方案进行优化,详见图10所示。

    单方向过饱和时信号配时优化:

    随着进口车道流量增加,特别表现在某一转向相位xi>x0时,此时仅依靠可变导向
    车道功能变换不足以满足各转向通行需求时,需要结合信号配时进行调整,从而优化控制
    方案。

    若出现过饱和的车流为减少车道的车流方向,说明车道功能的变换造成其他转向
    车流的过饱和现象,因此通过调整周期时长与绿信比进行优化。若出现过饱和的车流为增
    加车道的车流方向,说明仅增加一条可变导向车道的情况下不能满足交通需求,在满足增
    加一条可变导向车道的情况下应当继续变更一条可变导向车道的转向功能。

    各转向均达饱和时信号配时优化:

    随着车流量的增加,进口车道会趋于拥堵,此时流量比明显大于同相位其他进口
    车道流量比。对于十字交叉口,若目标进口车道的各转向流量比均明显大于对向进口车道
    各转向流量比时,常规四相位的信号组合往往造成同相位对向车流饱和度的不均衡,流量
    高的一方过饱和,流量低的一方时空资源得不到充分利用,增大了延误。因此,针对进口车
    道高流量的进口车道的特性,在常规四相位配时方案基础上进行组合。

    步骤300:建立可变导向车道交叉口上游车辆平滑过渡模式;

    对于应用可变导向车道系统的信号控制交叉口,车辆的换道以及车辆之间的交织
    主要在进口车道上游完成,其运行是否稳定、高效又和可变导向车道上游车辆是否能平滑
    过渡到进口车道密切相关。通过采集和处理可变导向车道系统的信号控制交叉口进口车道
    数据,能够通过交通参数的特征提取,揭示设置可变导向车道的信号控制交叉口进口车道
    上游车辆的运行特性。

    请参阅图11,是本发明实施例的建立可变导向车道交叉口上游车辆平滑过渡模式
    流程图。本发明实施例的建立可变导向车道交叉口上游车辆平滑过渡模式具体包括:

    步骤301:调查设置可变导向车道的进口交通;

    对可变导向车道的信号控制交叉口进口车道进行调查的主要目的,就是明确设置
    可变导向车道的信号控制交叉口上游交织区对交通阻滞和交通安全的显著影响因素,量化
    交织区影响因素对信号控制交叉口上游各种资源配置间的内在联系,定量分析信号控制交
    叉口上游车辆的换道集中区域。

    步骤302:研究进口车道车辆换道特性;

    车辆的跟驰行为和换道行为是车辆在行进过程中最基本的两个驾驶行为,换道行
    为是驾驶人员为满足自己的驾驶舒适性要求而有意采取的避开本车道,换入其他车道行驶
    的驾驶行为。换道行为所描述的是驾驶人员自身驾驶的特性,通过对交叉口周围车辆的车
    速、车头间距、交通标志标线的指示等一系列道路环境信息的分析、调整,从而完成自身驾
    驶目的的综合过程。车辆换道过程包括:换道需求、换道可行性检测、换道执行。根据驾驶人
    员的动机不同,可以分为强制换道和自由换道两种。

    对于应用可变导向车道系统的信号控制交叉口而言,车辆的换道行为在进口车道
    上游更接近自由换道,驾驶人员通常根据驾驶经验选择车道行驶,越接近进口车道实线,车
    辆的换道行为越接近强制换道。可变导向车道功能转换前后进口车道上游车辆换道特性主
    要表现在以下几个方面:进口车道上游车辆提前换道;车辆在进口车道上游20-40米的范围
    是进入主要换道区域;车道选择概率;可变导向车道选择行为建模。

    步骤303:研究进口车道车辆速度特性;

    进口车道车辆速度特性重点从以下几个方面反应出来:①上游车辆速度与进口车
    道车辆排队的关系;②转换期内换道速度特性;③可变导向车道为目标车道的上游车辆速
    度特性。

    步骤304:了解进口车道车辆安全特性;

    对于信号控制交叉口而言,进口车道上游车辆进入展宽段时的车速比在上游正常
    路段上行驶速度要低,尤其是在进口车道相应转向是红灯的时候,上游车辆都会有明显的
    减速,在进口车道处排队等待放行。设置可变导向车道的进口车道上游更为明显,特别是在
    可变导向交通标志发生变化的前后,由于可变导向交通标志接收到的信息也可能不同,就
    会造成上游车辆之间容易发生干扰,车辆之间发生冲突的概率高于平时状态。主要从冲突
    特性和错误换道表现形式两个方面体现。

    步骤305:设置可变导向车道长度、标志和清空时间。

    可变导向车道长度的优化设置是可变导向车道系统能够高效运行的重要环节,车
    道设计过长将为车辆换道带来不便,甚至会引起违章、违规行驶;车道设计过短会增加换道
    的随意性,特别是可变导向车道转向功能发生变化前后,容易激增车辆间的相互扰动,引起
    进口车道不必要的混乱。可变导向车道长度的优化设置,也是确定设置可变导向车道的信
    号控制交叉口的影响区长的关键。

    可变导向车道设置前提与原则

    设置前提:

    信号配时条件,在现有交叉口信号配时条件下,难以通过信号配时手段解决交叉
    口进口车道车流转向不平衡的问题。其次,左转和直行车流具有不同的相位设置。

    道路交通条件,信号控制交叉口进口车道不适合加宽或多渠化车道,各转向车流
    不均衡性显著。

    设置原则:

    可变导向车道长度就是进口车道的实际长度,依据交通规则,车辆在进口车道实
    线段不允许变换车道,实线段如过短将影响交叉口的安全和稳定性,设计的过长则不能体
    现可变车道的灵活性。

    路权相对明确,在可变导向车道行驶或者等待行驶的车辆中,获得的转向信息是
    明确的,不应该出现排队等候放行的车队中,某一车辆获取的转向信息和前后车辆都不一
    致。

    可变导向车道在大部分时间段内要以一个转向功能为主,设置时要以尽量不影响
    主要的转向车辆为基础,以各转向车道的排队长度均衡化为目标。

    可变导向车道长度设计:

    对于信号控制交叉口进口车道而言,展宽长度L取决于直行车道排队长度l1、左转
    车道排队长度l2、和右转车道排队长度l3,其计算公式为:L=max(l1,l2,l3)。对于直行车道
    l1,其展宽段长度应当容纳一个周期红灯和黄灯期间内到达的车辆,车辆排队长度计算公
    式为:式中:C--交叉口信号周期长度s;Nl--直行车道数量;Ql直行车流
    流量,veh/h;gs直行和右转相位的有效绿灯时间s;lm--一辆车辆的排队长度m,通常取7-8
    米。

    对于左转车道l2,确定左转车道的展宽段长度重要影响因素包括:设计小时交通
    量;每个小时估计的周期数量,如果周期长度增加,则展宽段也将增加;信号相位与配时。

    设置左转专用相位的信号控制交叉口左转车道展宽的最大排队长度l2为:


    式中:Q2—高峰小时左转交通量;

    N2—左转车道数量;

    SL—一条左转车道的实际饱和流率veh/h;

    gL—左转保护相位的有效绿灯时间s;

    P—置信概率,一般用95%、90%或85%进行计算。

    基于左转车道和双左转车道的不同特性,Kikuchi S在对双左转车道进口车道长
    度设置的研究中,以所有左转车辆可以进入双左转车道(DLTL)的比例确定临界概率:


    式中:L—以车辆数为单位表示DLTL的长度;

    LT—每个红灯相位左转车辆的平均到达率;

    TH—每个红灯相位直行车辆的平均到达率。

    再根据大型车和小型车的比例和车辆长度确定双左转车道的展宽段长度。

    对于右转车道,进口车道必须提供足够的空间保证右转车辆减速和转弯。若空间
    不足,对进口车道将会造成两方面的影响。第一是若直行和右转分相位行驶,转弯车道的入
    口不能被直行排队车辆利用;第二是右转车辆溢出,阻塞相邻的直行车道,对直行车辆的通
    行造成阻碍。这两种情况都会对车道的利用造成影响,并增加追尾及延误的可能性。同时,
    右转车辆还要考虑停车视距的要求。

    进口车道的展宽段长度原则上依据左转、直行和右转车辆最大排队长度进行设
    计,这样可以最大限度地避免各转向车流间的相互干扰以及阻碍。

    可变导向车道标志的作用:

    可变导向车道标志是可变导向车道系统里最重要的组成部分,在实际应用中可变
    导向车道系统的进口车道里,上游车辆根据可变导向车道标志提供的信息,进入相应的进
    口车道展宽段,等待释放。可变导向车道标志要向上游车辆提供实时准确的专项信息,最大
    可能地使驾驶人员根据可变导向车道标识提供的信息,做出相应的判断,进入合适的进口
    车道。

    可变导向车道交通标志的位置确定:

    可变导向车道交通标志通常位于进口车道实线段,即进口车道展宽段上游。至于
    放置在展宽段上游端点处,还是放置在进口车道渐变处,对于可变导向车道系统的运行效
    果并没有本质的影响。其主要的设置原则是,可变导向车道向交通标志转向功能的变化能
    够和信号控制交叉口的信号配时相协调。

    设置可变导向车道的信号控制交叉口影响区域长度确定

    信号控制交叉口影响区的概念是将路段进一步划分为信号控制交叉口影响区和
    基本路段。设置可变导向车道的信号控制交叉口影响区,其界定范围是:信号控制交叉口影
    响区上游端点为车辆进入进口车道展宽段前,由于受信号控制交叉口上游可变标志牌的影
    响而导致车辆以不同于基本路段的状态行驶的起点,上游端点至可变导向交通标志牌的距
    离定义为视认距离。

    此段距离最明显的特征是车辆的换道停驶行为,下游端点为信号控制交叉口停车
    线。设置可变导向车道的信号控制交叉口影响区长度为:视认距离和可变导向车道长度之
    和。

    合理的进口车道长度设置有助于上游更好地驶入信号控制交叉口进口车道,面向
    可变导向车道转向功能发生变化的上游车辆的控制策略,对于车辆是否能够平滑过渡到正
    确进口车道同样非常重要。

    可变导向车道系统的控制方式:

    以往提出的可变导向车道系统的信号控制都是建立在信号控制交叉口进口车道
    上游,有明确的预信号停车线,上游车辆若进入可变导向车道需要在上游停车线处等待。但
    是在实际应用可变导向车道的信号控制交叉口中,极少有路口采用这种方式,而是根据进
    口的实时状况,由值班交警择机选择对可变导向车道的车道变换进行触发,对上游可变导
    向车道交通标志牌的车道方向进行变化,标志牌上游车辆根据可变导向车道发生变化进行
    转向,进口车道并没有明显的清空过程,但达到了清空的效果。

    在理论上,对于设置有预信号的信号控制交叉口进口车道,在应用可变导向车道
    系统时,可以明确路权,基本不会发生上游车辆误入错误车道的现象,但是增加预信号相当
    于在路段上增加新增信号控制,会增加路段的延误和控制成本,而且如果预信号红灯等待
    时间过长,导致停车线上的排队较多,上游车辆间的相互扰动会明显增加,不利于车辆变换
    车道。

    根据可变导向交通标志牌进行可变导向车道控制如果运用的得当,可以较为明显
    地提高交叉口的运行效率,但也存在着由于可变导向车道转向功能的变化并没有对驾驶人
    进行十分明确的提示,导致车辆进行错误换道、增加上游车辆相互扰动、进口车道混乱,甚
    至使进口车道“锁死”的现象发生。

    交叉口上游检测器布设及触发条件

    在进口车道布设感应线圈组实现可变导向车道转向功能的自动触发,尽量保证进
    口车道上游车辆能够平滑过渡到进口车道,首先分析各转向流量不均衡而引起可变导向车
    道功能发生变化的触发逻辑,然后给出交叉口上游检测器的布设及触发条件。

    交叉口上游检测器的布设方法

    可变导向车道的自适应控制应用需要实时交通数据的支持,交叉口上游检测器布
    设位置,需要对流量和占用情况进行判断,交叉口上游检测器所处位置距离停车线的长度
    与各相位绿灯时长、进口车道长度、过渡段线形条件有关。交叉口上游检测器包括固定左转
    车道上的第一排检测器和固定直行车道上的第二排检测器,第一排检测器负责检测车辆是
    否发生二次排队,为可变导向车道自适应控制或者信号配时策略的调整提供依据。第二排
    检测器的触发进一步严格约束了可变导向车道功能发生转变的触发条件,同时也为可变导
    向车道自适应控制的触发时刻的选择提供数据支持,详见图12所示。

    可变导向车道属性的触发逻辑

    对于第一排检测器可变导向车道属性的触发逻辑进行定性的说明:

    固定左转车道上的第一排检测器处于高占有率状态

    当可变导向车道的转向为左转时,固定左转车道上的第一排检测器为高占有率状
    态,可变导向车道检测器占有率情况一定也处于较高值,此时无法通过应用可变导线车道
    来提高信号控制交叉口的通行效率,对于交通管理者而言,可以考虑采用高流量配时方案
    来缓解进口车道拥堵的状态,如果高流量配时方案会极大地影响其他方向进出口车道流量
    的释放,那么该交叉口及处于拥堵状态,无法通过单点控制解决拥堵问题。

    当可变导向车道的转向为直行时,固定左转车道上的第一排检测器为高占有率,
    需要对可变导向车道检测器和固定直行车道上的第二排检测器的占有率情况进行检测,当
    可变导向车道检测器和固定车道上的第二排检测器处于低占有率状态时,考虑将可变导向
    车道属性由直行车道变为左转车道,提高左转车辆的通行能力,同样对于直行车辆的通行
    不会造成太大影响。当可变导向车道检测器和固定直行车道上的第二排检测器处于高占有
    率状态时,无法通过应用可变导向车道来提高信号控制交叉口的通行效率。

    固定左转车道上的第一排检测器处于低占有率状态

    当可变导向车道的转向为左转时,固定左转车道上的第一排检测器为低占有率状
    态,可变导向车道检测器的占有率情况一定也处于较低值,此时如果固定直行车道上的第
    二排检测器处于高占有率状态,考虑将可变导向车道由左转车道变为直行车道,如果固定
    直行车道上的第二排检测器处于低占有率状态,则进口车道处于低流量状态,不用采取其
    他的交通管理控制措施。

    当可变导向车道的转向为直行时,无论可变导向车道检测器和固定直行车道上的
    第二排检测器处于何种状态,可变导向车道的属性都不变化。

    固定直行车道上的第二排检测器处于高占有率状态

    当可变导向车道的转向为左转时,对固定左转车道上的第一排检测器和可变导向
    车道检测器的占有率情况进行检测,当固定左转车道上的第一排检测器和可变导向车道检
    测器处于低占有率状态时,将可变导向车道属性由左转车道变为直行车道,提高自行车辆
    通行能力。

    当可变导向车道的转向为直行时,固定直行车道上的第二排检测器为高占有率状
    态,可变导向车道检测器的占有率情况一定处于较高值,此时无法通过应用可变导向车道
    来提高信号控制交叉口的通行效率。

    固定直行车道上的第二排检测器处于低占有率状态

    当可变导向车道的转向为左转时,可变导向车道的属性不发生变化。

    当可变导向车道的转向为直行时,固定直行车道上的第二排检测器为低占有率状
    态,可变导向车道检测器占有率情况一定也处于较低值。

    综上所述,在流量条件满足触发条件的基础上,基于上游车辆平滑过渡到进口车
    道的可变导向车道控制流程详见图13所示。

    从图13可以看出,并不是根据第一排检测器高低占有率这种比较粗略的方式表明
    触发逻辑,而是在各转向流量已经满足触发条件下,给出第二排检测器也应满足一定条件
    时,才触发可变导向车道交通标志,改变可变导向车道转向功能,这样才能保证上游车辆得
    到明确的转向信息,不会发生错误换道,导致进口车道混乱的情况发生。

    可变导向车道转向功能发生变化在满足流量/占有率触发条件的基础上,综合考
    虑了相序条件、转向功能变化的不同、可变导向车道上游检测器的触发条件对进口车道上
    游车辆能否平滑过渡到进口车道都有较大影响。

    可变导向车道转向功能改变的时刻选择

    设置保护相位的信号控制交叉口可避免左转车流和直行车流间的相互冲突,但也
    存在着先释放左转车辆还是先释放直行车辆的选择,即相序问题。相位相序的设计不仅与
    交叉口的几何特性有关,还与交通特性等诸多因素有着密切的联系。实际应用中,不同的相
    序对应的可变导向车道转向功能发生改变的时刻,对可变导向车道上游车辆能否平滑过渡
    到进口车道有很大影响。

    实际应用中,由于路口的控制全部由管辖片区的交通警察根据经验来改变导向交
    通标志牌的指向,变换可变导向车道方向时所选取的时间点在一个周期内的时刻也不尽相
    同。在对进口车道平滑度分析时将交通冲突定义为:进口车道上影响区两辆或者以上车辆
    在运行或静止过程中,双方感知到危险的存在,若不采取任何有效措施则必然会有事故产
    生,而一旦采取措施即能完全避免事故发生。这种从交通参与者感知到危险存在持续到事
    故被有效制止的过程记为一次交通冲突。

    不同城市的信号控制交叉口相序有所不同,通常是先释放直行车辆、后释放左转
    车辆和先释放左转车辆、后释放直行车辆两种策略。

    可变导向车道清空时间设计

    设置双停车线及预信号控制,通过预信号设置为红灯,欲进入可变导向车道的车
    辆在第二排停车线后等待。主信号对可变导向车道设置为红灯,从而达到清空可变导向车
    道车辆的目的。本发明中提出不设置第二条停车线和预信号、而是通过合理选择车道转向
    功能变化的时刻,利用原有信号灯提供绿灯实现可变车道的清空目的,借助进口车道其他
    转向的绿灯相位时间完成可变导向车道上车辆的清空。

    清空时间主要是让可变导向车道上已有车辆能够顺利地通过交叉口,不影响可变
    导向车道转向变换后,可变导向标志牌指示方向上游车辆的运行。为了减少其他转向车辆
    的延误,清空时间的基本要求是满足可变导向车道转向功能发生改变前的所有车道内车辆
    在绿灯时间内全部驶离信号控制交叉口,即对晴空时间最小时长提出了要求。

    当清空时长过短,容易出现可变导向车道上部分直行车辆不能在清空时段内驶出
    交叉口,而可变导向车道上游车辆由于接收到可变导向交通标志牌的转向信息,如转向信
    息为右转(或直行),进入可变导向车道进行排队,这就出现可变导向车道上排队车辆转向
    不一致,容易造成进口车道混乱。

    可变导向车道转向功能变化前提是变换前指示方向上的车辆较少,而变换后指示
    方向上车辆过多,经常出现过饱和现象。由于相同行驶方向的各条车道排队长度近似相等,
    当清空时间能够满足可变导向车道上车辆通行需求,也近似认为满足其他同方向车道通行
    需求。

    步骤400:设置并联动控制潮汐拥堵交叉口可变导向车道。

    在步骤400中,通过信号配时、交叉口进口可变导向车道、路段变向交通组织的协
    调管理与控制,充分利用现有的城市道路空间资源,适应不同时段交叉口进口车流转向不
    均衡、路段潮汐方向不对称等动态交通需求特性的变化要求。同时,当路段和交叉口各车道
    的总体交通需求持续超过有限空间供给能力时,必然会产生交通拥堵和车辆排队现象,并
    且可能从一个交叉口蔓延至整条路段活多个交叉口,严重时会造成区域性交通阻塞问题。
    此时,如何将拥堵空间范围尽可能减小,降低车辆排队与其它交叉口、路段的影响就成为道
    路交通时空资源协调优化控制的重要目标。从道路功能及结构设计不合理、交叉口信号配
    时设计无法满足变化的交通流量的要求两个方面的原因入手,进行协同联动控制;从交通
    拥堵产生点处防止交通拥堵的恶性扩散,从而避免产生区域性的交通拥堵,以达到改善和
    缓解交通拥堵的目的。

    交叉口交通流的潮汐拥堵特性的变换如何与交叉口可变导向车道空间资源进行
    灵活设置相协调,是需要解决的根本问题。基于十字交叉口不同潮汐交通类型或组合类型
    下转向车流的拥堵表现形式,提出可变导向车道的设置条件与原则,在不同潮汐交通类型
    或组合类型下交叉口可变导向车道的设置方法与上下游交叉口可变导向车道的衔接方式。

    交叉口潮汐拥堵表现形式

    交叉口潮汐交通类型主要有:左转潮汐拥堵,直行潮汐拥堵,左转与直行潮汐拥堵
    三类。

    单条道路存在潮汐交通现象的交叉口潮汐拥堵形式

    当交叉口的潮汐交通由直行潮汐交通决定时,定义直行车流为关键车流;当交叉
    口的潮汐交通由左转潮汐交通决定时,定义左转车流为关键车流;当交叉口的潮汐交通由
    左转与直行潮汐交通共同决定时,定义左转与直行车流为关键车流。

    直行潮汐拥堵

    当交叉口潮汐交通现象由直行车流为关键车流决定时,由于早高峰时段车流显著
    增大,拥堵表现形式为直行车流拥堵,其他进口车道直行与左转车流均不拥堵。

    左转潮汐拥堵

    当交叉口潮汐交通现象由左转潮汐交通决定时,由于早晚高峰时段车流显著增
    大,拥堵形式表现为左转车流拥堵,其他进口车道直行与左转车流均不拥堵。

    左转与直行潮汐拥堵

    当交叉口潮汐现象由做左转与执行潮汐交通共同决定时,由于早晚高峰时段车流
    显著增大,拥堵表现为直行与左转车流拥堵,其他进口车道直行与左转车流均不拥堵。

    相交道路均存在潮汐交通现象的交叉口潮汐拥堵形式

    当相交道路均存在潮汐交通现象时,早高峰时段不同潮汐交通组合类型下转向车
    流的拥堵形式有以下四类:

    1)直行潮汐+直行潮汐;

    2)直行潮汐+左转潮汐;

    3)左转潮汐+直行潮汐;

    4)左转潮汐+左转潮汐。

    潮汐交通统计时段的聚类分析

    潮汐交通的基本特性有:方向不对称性(流量流向特性)和周期性出现(时段特
    性)。在分析交叉口潮汐交通特性中,需要根据交通流量和流向分布进行统计时段的划分,
    采用K-means聚类算法判断交通流是否具有周期性变化规律。

    聚类算法通常用到两类数据:数据矩阵和差异矩阵。K-means聚类算法是基于差异
    矩阵进行聚类分析的,当数据以数据矩阵的形式给出时,应该首先将数据矩阵转换为差异
    矩阵。

    1)数据矩阵是对象--属性结构,设数据样本集X,有n个对象,p个属性,聚类的样本
    集为n×p的数据矩阵:

    2)差异矩阵是对象—对象结构,存放所有n个对象彼此之间的差异,通常采用n×n
    矩阵表示:

    式中:d(i,j)—对象i和对象j之间的差异。该数值越接近0,表示对象i和对象j彼
    此越相似;该数值越接近1,表示对象i和对象j彼此越不相似。

    数据样本集X分成k个族,每个族是相应数据样本的集合,相似样本在同一族中,相
    异样本在不同族中。族C1=(1,2,…,k)中样本的数量为ni,Ci=(1,2,…,k)是x的子集,满
    足:C1∪C2∪…∪Ck=x且Ci∩Cj=φ,i≠j。

    族的质心为样本的均值,不一定是族中的实际点。族Ci样本的均值为:


    式中:mi—族Ci样本的均值;

    ni—族Ci样本的数量。

    两对象之间的差异程度通过计算对象之间的距离来确定,常用的距离计算公式为
    欧氏距离:


    式中,i=(xi1,xi2,…,xip),j=(xj1,xj2,…,xjp),分别表示一个p维数据对象。

    K-means聚类算法以均方差作为准则函数:

    式中:E--数据集中所有对象的均方差之和;

    k--族的数量;

    x--给定的数据对象,多维;

    mi--族Ci的平均值,多维。

    该聚类准则旨在使所获得的k个族具有以下特点;各族本身尽可能紧凑,各族间尽
    可能分开。

    给定数据样本集X,,根据数据点间相似程度将数据集合分成k族│C1,C2,…,Ck│的
    过程定义为聚类,相似样本在同一族中,相异样本在不同族中。

    K-means聚类算法的核心思想是把n个数据对象划分为k族,使每个聚类中的数据
    点到该聚类中心的平方和最小。算法输入为族的个数k及包含n个对象的数据集;算法输出
    为k个族,K-means聚类算法的工作流程详见图14所示,其算法处理过程如下:

    1)从n个对象中任意选取k个对象作为初始聚类中心;

    2)分别计算每个对象到各个聚类中心的距离,把对象分配到距离最近的聚类中;

    3)所有对象分配完成后,重新计算k个聚类的中心;

    4)计算准则函数;

    5)直到准则函数不再发生明显变化,否则重复第2)至4)步骤。

    交叉口可变车道设置基本条件:

    交叉口可变导向车道的设置需要考虑一定的客观条件,通常包括道路条件和交通
    条件。在满足一定的道路渠化、交通状态下,才能考虑设置可变车道。借鉴路段可变车道的
    设置条件,城市交叉口可变车道设置的基本条件有以下几点:

    道路条件

    交叉口可变车道设置的道路条件为:

    1)交叉口进口不适合扩建或加宽;

    2)出口车道的车道数量不少于2条;

    3)设置可变车道的交叉口进口车道不存在中央分隔带或路面电车轨道。

    交通条件

    交叉口可变车道设置的交通条件为:

    1)与交叉口衔接的上下游路段存在明显的潮汐交通现象;

    2)交叉口进口车道某一转向车流存在潮汐交通现象,并产生拥堵;

    3)交叉口进口车道重交通流转向在使用可变车道,出口车到在去掉可变车道后,
    出口车到的通行能力满足交通需求;

    4)设置可变车道的道路终端有充分的交通处理能力,不会形成新的交通瓶颈,并
    方便车辆进出可变车道。

    面相交叉口潮汐交通拥堵表现形式的可变车道设置

    交叉口潮汐交通类型不同、关键车流不同、相交道路是否均存在潮汐交通等,均会
    影响交叉口可变车道的设置方式。

    单条道路存在潮汐交通拥堵时的交叉口可变车道设置

    当单条道路存在潮汐交通拥堵现象时,早高峰时段进口车道为重交通流进口车
    道,直行潮汐交通、左转潮汐交通、左转与直行潮汐交通三种类型中可变导向车道的主要形
    式为:

    1)直行潮汐拥堵;

    2)左转潮汐拥堵;

    3)左转与直行潮汐拥堵。

    相交道路均存在潮汐交通时,交叉口可变导向车道设置所遵循的原则与单条道路
    存在潮汐交通时交叉口可变导向车道设置原则一致。由于相交道路进口车道均有可能设置
    可变车道,为满足可变导向车道设置原则,可能存在道路资源争夺的现象。

    早高峰时段相交道路均存在潮汐交通现象时的可变车道设置为:

    1)直行潮汐+直行潮汐;

    2)直行潮汐+左转潮汐/左转潮汐+直行潮汐;

    3)左转潮汐+左转潮汐。

    交叉口在设置可变导向车道的前提下,重新调整信号配时方案是进一步缓解交叉
    口重交通流进口车道关键车流拥堵的必要手段。基于潮汐需求特性和可变导向车道空间设
    置方案,分析可变导向车道的控制策略和信号配时方案的设计方法。

    交叉口可变导向车道控制目标及原则

    1)控制目标

    交叉口可变导向车道的控制目标是通过车道空间属性和信号配时的协同优化,最
    大限度地缓解交叉口重交通流进口车道关键车流的潮汐拥堵问题。

    2)控制原则

    交叉口可变导向车道的控制原则是在不影响或最小化影响其他进口车道转向车
    流通行的前提下,保证重交通流进口车道关键车流及时顺利通过交叉口,消除或缓解关键
    车流饱和状态。

    交叉口可变导向车道控制逻辑

    1)通过分析交叉口重交通流进口车道关键车流及潮汐交通现象,判断是否需要实
    行可变车道,确定实行可变车道的方法,在实行可变导向车道后,需要重新分配流量比,选
    择合适的信号配时设计方法,得到新的配时方案。

    2)在初步确定信号配时方案后,对交叉口的控制效果进行评价。如果对交叉口重
    交通流进口车道关键车流的拥堵情况有明显改善,且不影响其他进口车道转向车流的通
    行,则说明设置可变导向车道可以有效解决交叉口潮汐拥堵;如果重交通流进口车道关键
    车流的拥堵情况有一定改善但仍然拥堵,则说明设置可变导向车道缓解交叉口潮汐拥堵效
    果有限,需要进一步从需求管理等其他方面采取措施。

    交叉口可变车道信号配时设计

    交叉口可变导向车道的信号配时设计分为低饱和状态和高饱和状态两种信号配
    时设计,主要依据设置可变导向车道后重交通流进口车道关键车流是否饱和来划分。

    低饱和状态是指交叉口设置可变导向车道后,重交通流进口车道关键车流的饱和
    程度和拥堵程度缓解,定义为非饱和状态。高饱和状态是指交叉口设置可变导向车道后,重
    交通流进口车道关键车流的饱和程度和拥堵程度缓解。

    ①低饱和状态下的信号配时设计

    低饱和状态下,原饱和的重交通流进口车道关键车流在增加可变导向车道后变为
    非饱和状态,而原非饱和的轻交通流进口车道在减少车道数量后仍未非饱和状态。与之对
    应的信号控制方法可采用相等饱和度原则进行配时,控制目标选择为非饱和状态。与之对
    应的信号控制方法可采用相等饱和度原则进行配时,控制目标选择交叉口总延误最小。

    ②高饱和状态下的信号配时设计

    高饱和状态下,尽管交叉口设置了可变车道,但是无论何种信号配时方案下,原高
    饱和的重交通流进口车道关键车流饱和程度无法大幅度降低。此时的信号控制方法为:

    1)根据交叉口信号周期时长上限或流量比确定信号周期;

    2)对于非饱和相位,选取饱和度的上限值反推有效绿灯时间;

    3)对于饱和或过饱和的关键车流,其绿灯时间根据等饱和度原则分配剩余的有效
    绿灯时间。非饱和相位的饱和度上限值不应大于0.9;饱和或过饱和的关键车流,尽最大能
    力分配更多的绿灯时间,减轻其饱和度。

    ③当一个关键车流(或一个相位)处于高饱和状态时,相关信号配时参数确定方法
    为:


    A.信号周期时长:

    式中:C—信号周期时长s;

    L—信号总损失时间s;

    Cmax—交叉口信号周期上限s;

    Y—最大流量比之和。

    B.信号总损失时间:

    式中:Ls—启动损失时间s;

    A—黄灯时间s;

    I—绿灯间隔时间s;

    k—一个周期内的绿灯间隔数。

    C.最大流量比之和:

    式中:n—一个周期的相位数;

    i—1,2,…,n;

    yi—第i相位的最大流量比。

    D.相位最大流量比:

    式中:mi—第i相位下的车道组数;

    yi1,yi2,…,yimi—第i相位下个车道组的流量比。

    E.非饱和相位的有效绿灯时间:

    式中:gew—非饱和相位的有效绿灯时间;

    w—非饱和相位;

    yw—非饱和相位的最大流量比;

    xpw—非饱和相位的饱和度上限,不大于0.9。

    F.关键车流的有效绿灯时间:ger=C-L-∑gew;

    式中:ger—关键车流所在相位的有效绿灯时间s;

    r—关键车流。

    G.若关键车流包含多个分相位,则分相位的有效绿灯时间:

    式中:get—分相位t的有效绿灯时间s;

    t—关键车流中包含的分相位;

    yi—分相位t的最大流量比;

    yr—关键车流所在相位的最大流量比。

    ④当两个关键车流(或两个相位)处于高饱和状态时,信号配时参数确定方法为:


    A.信号周期时长:

    B.信号总损失时间:

    C.最大流量比之和:

    D.相位最大流量比:

    E.非饱和相位的有效绿灯时间:

    F.关键车流的有效绿灯时间:


    式中:r,u—关键车流;

    ger—关键车流r所在相位的有效绿灯时间s;

    geu—关键车流u所在相位的有效绿灯时间s;

    yr—关键车流r所在相位的最大流量比;

    yu—关键车流u所在相位的最大流量比。

    G.若关键车流包含多个分相位,分相位的有效绿灯时间:


    式中:t—关键车流r中包含的分相位;

    z—关键车流u中包含的分相位;

    get—分相位t的有效绿灯时间s;

    gez—分相位z的有效绿灯时间s;

    yt—分相位t的最大流量比;

    yz—分相位z的最大流量比。

    交叉口可变车道设置流程

    当交叉口存在潮汐交通现象时,应该考虑设置可变导向车道。交叉口可变导向车
    道的设置流程详见图15所示。

    以下为深圳市实时监测路网潮汐交通流的可变导向车道管控方法仿真评价。以深
    圳中心城区路网过饱和交叉口可变导向车道动态交通控制优化设计采用仿真应用试验,可
    有效地对关键路径与相关交叉口动态交通控制优化模型与算法整体有效性进行评价。

    深圳市于2014年9月28日早高峰开始,在城市南北方向主干道新洲路上,正式开始
    实施“潮汐车道”智能控制方式:在早高峰时段,将新洲路车流量较小的南往北方向的最内
    侧一条车道(最靠近中央分隔带的一条车道)调整为北往南方向通行。这是深圳第一条“潮
    汐车道”试点。新洲路早高峰时段“潮汐交通”现象较为显著,北往南方向的交通流量大,极
    易出现交通拥堵现象,而南往北方向车流量相对较小。因此,每个工作日的早高峰时段(07:
    30-09:30),在新洲路(新洲路/莲花路口至新洲/红荔路口)实施“潮汐车道”。实施“潮汐车
    道”以后,经检测新洲/红荔路口北往东左转车辆的通行效率可提高约30%-40%,整个路口
    的通行能力可提高约15%。

    深圳中心城区路网南北向的重要主干道新洲路,位于福田中心城区,南起福荣路,
    北至梅华路,是承担梅林、景田、中心城区、新洲等沿线片区的对外交通的一条关键路段;该
    路段沿线主要经过4个立交交叉口:北环立交、深南立交、福民立交以及滨河立交与2个平面
    交叉口:莲花路、红荔路。中心城区路网与交叉口群优化的关键路段是新洲路南北纵向主干
    路,详见图16所示,图16是深圳中心城区路网与新洲路关键路段交叉口静态模型。

    新洲路2个平面交叉口:莲花路、红荔路的路段出入口多为“四变三、三变二”车道;
    新洲路4个立交交叉口:北环立交、深南立交、福民立交以及滨河立交出入匝道车流严重影
    响内侧主线车流;新洲路主线坡度较大,驾驶员视角遮挡,不易发现出入口;新洲路上与红
    荔路北进口直行绿灯时间过长,导致南进口车辆积累较大:a.周期长度C=225s;b.绿间隔
    时长为5s;c.为了保证北进口车辆排队不溢出,另外增加了北进口直左相位绿灯时间。新洲
    路相关交叉口动态交通控制现状问题分析举例详见图17所示。

    新洲路交通控制现状问题主要表现在:

    1)交通规划设计方面:新洲路双向均存在车道不平衡路段,即分流后车道数低于
    分流前车道数,导致车辆交织加剧,进而造成交通拥堵,排队向后蔓延;立交出入匝道间距
    较短,车流交织严重,严重影响相邻主线车流的正常运行。

    2)信号配时方面:红荔路交叉口由北向南直行绿灯时间过长(t=114s、C=225s),
    导致由南向北周期内车辆积累较为严重,形成红荔路交叉口南进口道车辆排队延伸至深南
    立交;而北出口道至梅华路车流密度较低,路段流量不均衡。

    3)交通运营管理方面:平面道路与立交道路相互衔接,出入匝道位于衔接处的上
    下坡,导致驾驶员视距不良、视野性较差;道路地面缺乏诱导性标志标线。

    针对新洲路与莲花路、新洲路与红荔路信号控制交叉口可变导向车道进行动态交
    通控制优化设计,实现新洲路与莲花路、新洲路与红荔路交叉口北进口排队不溢出;降低新
    洲路与莲花路、新洲路与红荔路交叉口南进口排队。

    1)建立绿波协调控制:根据新洲路实地踏勘调研结果和相关交叉口的配时数据,
    将高峰时行程车速定为40km/h,系统周期为194s;绿波方案分为:由北向南、双向两种。

    2)道路设计改善:

    第一,车道平衡,城市道路出入口设置应该保持主线基本车道的连续性,同时在出
    入口分、合流处维持车道数的平衡;

    第二,减小交织区车辆影响范围,在道路断面许可的范围内,将主、辅路完全隔离,
    主路只准直行,将交织集中在展宽后的辅路上,以改善交织秩序,保证直行车辆的顺畅。

    3)仿真定量评价:通过比较仿真输出流量与真实调查断面数据,误差为10.76%,
    符合仿真建模流量条件。

    4)优化设计仿真对比分析,延误部分:绿波起始点莲花路交叉口的延误基本不变,
    而红荔路南进口的延误明显降低;总行程时间部分:通过绿波协调控制以及道路设计改善,
    使得新洲路早高峰双向的行程时间都有缩短;排队长度部分:通过绿波协调改善,红荔路南
    北进口道直行车辆排队均得到改善。

    对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。
    对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的
    一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明
    将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一
    致的最宽的范围。

    关 键  词:
    一种 路网 潮汐 通流 可变 导向 车道 控制 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:一种路网潮汐交通流可变导向车道控制方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-5986916.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1