书签 分享 收藏 举报 版权申诉 / 21

基于增量自步学习和区域色彩量化的金丝猴面部检测方法.pdf

  • 上传人:大师****2
  • 文档编号:5901056
  • 上传时间:2019-03-31
  • 格式:PDF
  • 页数:21
  • 大小:1.93MB
  • 摘要
    申请专利号:

    CN201611059354.9

    申请日:

    2016.11.25

    公开号:

    CN106709425A

    公开日:

    2017.05.24

    当前法律状态:

    实审

    有效性:

    审中

    法律详情:

    实质审查的生效IPC(主分类):G06K 9/00申请日:20161125|||公开

    IPC分类号:

    G06K9/00; G06K9/34; G06K9/62

    主分类号:

    G06K9/00

    申请人:

    西北大学

    发明人:

    许鹏飞; 郭松涛; 陈晓江; 袁晶; 何刚; 陈峰; 李保国; 房鼎益

    地址:

    710069 陕西省西安市太白北路229号

    优先权:

    专利代理机构:

    西安恒泰知识产权代理事务所 61216

    代理人:

    李婷

    PDF完整版下载: PDF下载
    内容摘要

    本发明公开了一种基于增量自步学习和区域色彩量化的金丝猴面部检测方法,区域色彩量化用以增大背景与猴身色彩特征之间的差异,以更准确地进行猴身区域的分割,减少检测的猴身疑似区域的面积和个数。然后,在检测出猴身之后的区域内,进行面部皮肤疑似区域检测;最后利用提出的增量自步学习进行面部的准确检测。

    权利要求书

    1.基于增量自步学习和区域色彩量化的金丝猴面部检测方法,其特征在于,包括以下
    步骤:
    步骤一,利用摄像机对多个场景中的金丝猴进行拍摄,得到多张包含有金丝猴的待检
    测RGB图像;针对每一张RGB图像均利用色彩空间转换方法将其转换为待检测HSV图像;重新
    利用摄像机对多个场景中的金丝猴进行拍摄,得到多张包含有金丝猴的RGB图像,提取多张
    金丝猴的面部皮肤样本图像和多张金丝猴的毛发样本图像;针对每一张面部皮肤样本图像
    和毛发样本图像,均利用色彩空间转换方法分别将其转换为面部皮肤样本HSV图像和毛发
    样本HSV图像;
    步骤二,针对每一张待检测HSV图像进行色彩量化,得到待检测的色彩量化后的单通道
    图像;针对每一张面部皮肤样本HSV图像和毛发样本HSV图像,进行色彩量化,得到所有面部
    皮肤样本图像的色彩量化后的单通道图像和所有毛发样本图像的色彩量化后的单通道图
    像;
    步骤三,针对所有面部皮肤样本图像的色彩量化后的单通道图像,利用数学统计的方
    法得到面部皮肤色彩量化范围,针对所有毛发样本图像的色彩量化后的单通道图像,利用
    数学统计的方法得到面部毛发色彩量化范围;
    步骤四,针对步骤二得到的每一张待检测的色彩量化后的单通道图像,利用步骤三得
    到的面部皮肤色彩量化范围和毛发色彩量化范围,进行图像分割,以得到疑似猴脸图像;
    步骤五,采用增量自步学习方法训练得到分类器模型;
    步骤六,针对步骤四得到的每一张疑似猴脸图像,进行图像尺寸归一化,得到归一化后
    的疑似猴脸图像;将归一化后的疑似猴脸图像均输入到步骤五得到的分类器模型内,输出
    疑似猴脸图像为猴脸图像还是非猴脸图像。
    2.如权利要求1所述的基于增量自步学习和区域色彩量化的金丝猴面部检测方法,其
    特征在于,所述步骤二中的针对每一张待检测HSV图像进行色彩量化,得到待检测的色彩量
    化后的单通道图像;所述色彩量化包括像素级色彩量化,所述的待检测的色彩量化后的单
    通道图像指的是像素级色彩量化后的单通道图像,具体包括以下步骤:



    其中,h(x,y)表示HSV图像的色调h通道上,在像素点(x,y)处的像素值;s(x,y)表示HSV
    图像的饱和度s通道上,在像素点(x,y)处的像素值;v(x,y)表示HSV图像的亮度v通道上,在
    像素点(x,y)处的像素值;H(x,y)表示色彩量化后的图像的色调H通道上,在像素点(x,y)处
    的像素值;S(x,y)表示色彩量化后的图像的饱和度S通道上,在像素点(x,y)处的像素值;V
    (x,y)表示色彩量化后的图像的亮度V通道上,在像素点(x,y)处的像素值;
    像素级色彩量化后的单通道图像用L表示,采用的公式如下:
    L(x,y)=α×H(x,y)+β×S(x,y)+γ×V(x,y)
    其中,α,β,γ分别表示3个通道色调H、饱和度S和亮度V的系数;L(x,y)表示像素级色彩
    量化后的单通道图像L在像素点(x,y)处的像素值。
    3.如权利要求2所述的基于增量自步学习和区域色彩量化的金丝猴面部检测方法,其
    特征在于,所述步骤二中的针对每一张待检测HSV图像进行色彩量化,得到待检测的色彩量
    化后的单通道图像,所述的色彩量化还包含区域色彩量化,待检测的色彩量化后的单通道
    图像指的是经过区域色彩量化后的单通道图像,具体包括以下步骤:
    针对像素级色彩量化后的单通道图像L进行如下处理,得到区域色彩量化后的单通道
    图像LQ:
    <mrow> <msub> <mi>L</mi> <mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mi>x</mi> <mo>-</mo> <mi>w</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mi>y</mi> <mo>-</mo> <mi>w</mi> </mrow> <mrow> <mi>i</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>w</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mi>y</mi> <mo>+</mo> <mi>w</mi> </mrow> </munderover> <mi>L</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>w</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mrow>
    其中,Q(x,y)表示以像素点(x,y)为中心的、大小为(2w+1)2的矩形区域;LQ(x,y)表示区域
    色彩量化后的单通道图像LQ在以(x,y)为中心形成的矩形区域对应的图像值。
    4.如权利要求2所述的基于增量自步学习和区域色彩量化的金丝猴面部检测方法,其
    特征在于,所述步骤四中的针对步骤二得到的每一张待检测的色彩量化后的单通道图像,
    利用步骤三得到的面部皮肤色彩量化范围和毛发色彩量化范围,进行图像分割,以得到疑
    似猴脸图像;具体包括以下步骤:
    针对步骤二得到的每一张像素级色彩量化后的单通道图像L,选取像素值在毛发色彩
    量化范围内的像素点,得到猴身区域图像;再在猴身区域图像中选取像素值在面部皮肤色
    彩量化范围内的像素点,形成疑似猴脸图像。
    5.如权利要求3所述的基于增量自步学习和区域色彩量化的金丝猴面部检测方法,其
    特征在于,所述步骤四中的针对步骤二得到的每一张色彩量化后的单通道图像,利用步骤
    三得到的面部皮肤色彩量化范围和毛发色彩量化范围,进行图像分割,以得到疑似猴脸图
    像;具体包括以下步骤:
    针对步骤二得到的区域色彩量化后的单通道图像LQ,选取图像值在毛发色彩量化范围
    内的矩形区域,得到猴身区域图像;再在猴身区域图像中选取图像值在面部皮肤色彩量化
    范围内的矩形区域,形成疑似猴脸图像。
    6.如权利要求1所述的基于增量自步学习和区域色彩量化的金丝猴面部检测方法,其
    特征在于,所述步骤五中的利用增量自步学习方法训练得到分类器模型,具体包括以下步
    骤:
    步骤5.1,建立样本库,样本库中包含大量猴脸图片样本和非猴脸图片样本;
    步骤5.2,判断是否为第一次训练,若是,i=0,i表示训练次数,则在样本库中根据经验
    人工选择数量为N简单样本,将其作为初始训练样本集合S(i),i=0,转到步骤5.3;若否,i>
    0,则根据前一次训练得到的分类器模型ISPL_MODEL(i-1)对当前样本库中剩余的样本进行预
    测,即当前样本库中剩余的样本分别输入到分类器模型ISPL_MODEL(i-1)中,分类器模型
    ISPL_MODEL(i-1)自动输出当前样本库中剩余的样本的难易程度的得分,选取其中N个得分较
    高的样本,加入当前的样本集合S(i-1)中,形成新的样本集合S(i);转到步骤5.3;
    步骤5.3,利用样本集合S(i)采用自步学习方法进行训练,得到分类器模型ISPL_MODEL
    (i);
    步骤5.4,判断样本库中的样本数是否为0,若是,则结束,得到训练好的分类器模型
    ISPL_MODEL,否则,返回步骤5.2。

    说明书

    基于增量自步学习和区域色彩量化的金丝猴面部检测方法

    技术领域

    本发明涉及一种基于增量自步学习和区域色彩量化的金丝猴面部检测方法。

    背景技术

    面部特征在动物个体识别研究中已有较多的研究成果,这些成果较多采用人脸检
    测与识别的方法来解决动物面部检测与识别过程中存在的问题,其中有关于猴类(主要是
    针对猕猴)面部特征的提取与定位算法。但这些方法只是利用传统的图像分割方法,在一定
    的条件下的图像中简单实现猴类面部区域的粗糙定位,不具有较高的精确性和通用性。而
    基于面部特征的动物个体识别方法基本都是直接(或稍加改进)地应用现有的人脸检测与
    识别的方法。现有技术中,在将现有的人脸检测和识别方法直接应用于动物面部检测与识
    别中存在诸多问题。

    在野外获取的金丝猴图像的场景大小不一,而不同场景下所含有的背景的复杂情
    况多变。在小场景情况下,金丝猴猴身能够具有较多的信息量,此外,其毛发部分的色彩与
    背景之间存在一定的差异。而在大场景情况下,背景信息占据图像的较大部分信息量,传统
    的基于像素级的色彩量化方法不再适用,主要原因是背景中含有较多的与猴身毛发色彩接
    近的像素点,经过色彩量化分割后的猴身疑似区域太多,不利于面部疑似区域的快速检测。

    发明内容

    针对上述现有技术中存在的问题或缺陷,本发明的目的在于,提供一种基于增量
    自步学习和区域色彩量化的金丝猴面部检测方法,其能够实现金丝猴面部的准确检测。

    为了实现上述目的,本发明采用如下技术方案:

    基于增量自步学习和区域色彩量化的金丝猴面部检测方法,包括以下步骤:

    步骤一,利用摄像机对多个场景中的金丝猴进行拍摄,得到多张包含有金丝猴的
    待检测RGB图像;针对每一张RGB图像均利用色彩空间转换方法将其转换为待检测HSV图像;
    重新利用摄像机对多个场景中的金丝猴进行拍摄,得到多张包含有金丝猴的RGB图像,提取
    多张金丝猴的面部皮肤样本图像和多张金丝猴的毛发样本图像;针对每一张面部皮肤样本
    图像和毛发样本图像,均利用色彩空间转换方法分别将其转换为面部皮肤样本HSV图像和
    毛发样本HSV图像;

    步骤二,针对每一张待检测HSV图像进行色彩量化,得到待检测的色彩量化后的单
    通道图像;针对每一张面部皮肤样本HSV图像和毛发样本HSV图像,进行色彩量化,得到所有
    面部皮肤样本图像的色彩量化后的单通道图像和所有毛发样本图像的色彩量化后的单通
    道图像;

    步骤三,针对所有面部皮肤样本图像的色彩量化后的单通道图像,利用数学统计
    的方法得到面部皮肤色彩量化范围,针对所有毛发样本图像的色彩量化后的单通道图像,
    利用数学统计的方法得到面部毛发色彩量化范围;

    步骤四,针对步骤二得到的每一张待检测的色彩量化后的单通道图像,利用步骤
    三得到的面部皮肤色彩量化范围和毛发色彩量化范围,进行图像分割,以得到疑似猴脸图
    像;

    步骤五,采用增量自步学习方法训练得到分类器模型;

    步骤六,针对步骤四得到的每一张疑似猴脸图像,进行图像尺寸归一化,得到归一
    化后的疑似猴脸图像;将归一化后的疑似猴脸图像均输入到步骤五得到的分类器模型内,
    输出疑似猴脸图像为猴脸图像还是非猴脸图像。

    具体地,所述步骤二中的针对每一张待检测HSV图像进行色彩量化,得到待检测的
    色彩量化后的单通道图像;所述色彩量化包括像素级色彩量化,所述的待检测的色彩量化
    后的单通道图像指的是像素级色彩量化后的单通道图像,具体包括以下步骤:




    其中,h(x,y)表示HSV图像的色调h通道上,在像素点(x,y)处的像素值;s(x,y)表
    示HSV图像的饱和度s通道上,在像素点(x,y)处的像素值;v(x,y)表示HSV图像的亮度v通道
    上,在像素点(x,y)处的像素值;H(x,y)表示色彩量化后的图像的色调H通道上,在像素点
    (x,y)处的像素值;S(x,y)表示色彩量化后的图像的饱和度S通道上,在像素点(x,y)处的像
    素值;V(x,y)表示色彩量化后的图像的亮度V通道上,在像素点(x,y)处的像素值;

    像素级色彩量化后的单通道图像用L表示,采用的公式如下:

    L(x,y)=α×H(x,y)+β×S(x,y)+γ×V(x,y)

    其中,α,β,γ分别表示3个通道色调H、饱和度S和亮度V的系数;L(x,y)表示像素级
    色彩量化后的单通道图像L在像素点(x,y)处的像素值。

    具体地,所述步骤二中的针对每一张待检测HSV图像进行色彩量化,得到待检测的
    色彩量化后的单通道图像,所述的色彩量化还包含区域色彩量化,待检测的色彩量化后的
    单通道图像指的是经过区域色彩量化后的单通道图像,具体包括以下步骤:

    针对像素级色彩量化后的单通道图像L进行如下处理,得到区域色彩量化后的单
    通道图像LQ:


    其中,Q(x,y)表示以像素点(x,y)为中心的、大小为(2w+1)2的矩形区域;LQ(x,y)表
    示区域色彩量化后的单通道图像LQ在以(x,y)为中心形成的矩形区域对应的图像值。

    具体地,所述步骤四中的针对步骤二得到的每一张待检测的色彩量化后的单通道
    图像,利用步骤三得到的面部皮肤色彩量化范围和毛发色彩量化范围,进行图像分割,以得
    到疑似猴脸图像;具体包括以下步骤:

    针对步骤二得到的每一张像素级色彩量化后的单通道图像L,选取像素值在毛发
    色彩量化范围内的像素点,得到猴身区域图像;再在猴身区域图像中选取像素值在面部皮
    肤色彩量化范围内的像素点,形成疑似猴脸图像。

    具体地,所述步骤四中的针对步骤二得到的每一张色彩量化后的单通道图像,利
    用步骤三得到的面部皮肤色彩量化范围和毛发色彩量化范围,进行图像分割,以得到疑似
    猴脸图像;具体包括以下步骤:

    针对步骤二得到的区域色彩量化后的单通道图像LQ,选取图像值在毛发色彩量化
    范围内的矩形区域,得到猴身区域图像;再在猴身区域图像中选取图像值在面部皮肤色彩
    量化范围内的矩形区域,形成疑似猴脸图像。

    具体地,所述步骤五中的利用增量自步学习方法训练得到分类器模型,具体包括
    以下步骤:

    步骤5.1,建立样本库,样本库中包含大量猴脸图片样本和非猴脸图片样本;

    步骤5.2,判断是否为第一次训练,若是,i=0,i表示训练次数,则在样本库中根据
    经验人工选择数量为N简单样本,将其作为初始训练样本集合S(i),i=0,转到步骤5.3;若
    否,i>0,则根据前一次训练得到的分类器模型ISPL_MODEL(i-1)对当前样本库中剩余的样本
    进行预测,即当前样本库中剩余的样本分别输入到分类器模型ISPL_MODEL(i-1)中,分类器模
    型ISPL_MODEL(i-1)自动输出当前样本库中剩余的样本的难易程度的得分,选取其中N个得分
    较高的样本,加入当前的样本集合S(i-1)中,形成新的样本集合S(i);转到步骤5.3;

    步骤5.3,利用样本集合S(i)采用自步学习方法进行训练,得到分类器模型ISPL_
    MODEL(i);

    步骤5.4,判断样本库中的样本数是否为0,若是,则结束,得到训练好的分类器模
    型ISPL_MODEL,否则,返回步骤5.2。

    与现有技术相比,本发明具有以下技术效果:本发明提出基于区域色彩量化的猴
    身检测方法,区域色彩量化用以增大背景与猴身色彩特征之间的差异,以更准确地进行猴
    身区域的分割,减少检测的猴身疑似区域的面积和个数。然后,在检测出猴身之后的区域
    内,进行面部皮肤疑似区域检测。最后利用提出的增量自步学习方法进行面部的准确检测。

    附图说明

    图1是本发明的方法流程图;

    图2是不同年龄阶段的金丝猴的面部皮肤区域图;

    图3是金丝猴的面部皮肤区域色彩分布的条带图;

    图4是金丝猴毛发样本图;

    图5是金丝猴毛发的色彩条带图;

    图6是小场景下的金丝猴图像;

    图7是小场景下经过像素级色彩量化后的金丝猴图像;

    图8是金丝猴毛发色彩量化分布值曲线图;

    图9是金丝猴面部皮肤色彩量化分布值曲线图;

    图10是小场景下的经过像素级色彩量化后分割得到的猴身区域图像;

    图11是小场景下的经过像素级色彩量化后分割得到的面部疑似区域图像;

    图12是小场景下的经过像素级色彩量化后的面部疑似区域定位图像;

    图13是大场景下的金丝猴图像;

    图14是大场景下的经过像素级色彩量化后分割得到的猴身区域图像;

    图15是大场景下的经过区域色彩量化后分割得到的猴身区域图像;

    图16是大场景下的经过区域色彩量化后分割得到的面部疑似区域;

    图17是大场景下的经过区域色彩量化后的面部疑似区域定位图像;

    图18是基于区域色彩量化的金丝猴面部疑似区域检测结果图;其中,(a1)表示原
    始图像a,(a2)表示原始图像a色彩量化结果图,(a3)表示原始图像a猴身分割结果图,(a4)表
    示原始图像a面部皮肤分割结果图;(a5)表示原始图像a面部皮肤区域定位图;

    (b1)表示原始图像b,(b2)表示原始图像b色彩量化结果图,(b3)表示原始图像b猴
    身分割结果图,(b4)表示原始图像b面部皮肤分割结果图;(b5)表示原始图像b面部皮肤区域
    定位图;

    (c1)表示原始图像c,(c2)表示原始图像c色彩量化结果图,(c3)表示原始图像c猴
    身分割结果图,(c4)表示原始图像c面部皮肤分割结果图;(c5)表示原始图像c面部皮肤区域
    定位图;

    图19是采用不同方法进行猴脸检测的结果图;其中,(a1)表示采用ISPCL针对原始
    图像a的猴脸检测结果图,(a2)表示采用ISPCL针对原始图像b的猴脸检测结果图,(a3)表示
    采用ISPCL针对原始图像c的猴脸检测结果图;(b1)表示采用SPCL针对原始图像a的猴脸检
    测结果图,(b2)表示采用SPCL针对原始图像b的猴脸检测结果图,(b3)表示采用SPCL针对原
    始图像c的猴脸检测结果图;(c1)表示采用SVM针对原始图像a的猴脸检测结果图,(c2)表示
    采用SVM针对原始图像b的猴脸检测结果图,(c3)表示采用SVM针对原始图像c的猴脸检测结
    果图;

    图20是ISPCL,SPCL与SVM的F值比较图;

    图21是ISPCL,SPCL与SVM的检测准确率(Accuracy)比较图。

    下面结合附图和具体实施方式对本发明的方法作进一步详细地解释和说明。

    具体实施方式

    金丝猴的面部与人脸具有一定的相似之处,其中之一就是其面部也具有一定面积
    的皮肤区域,并且皮肤具有金丝猴所独特的色彩—淡蓝色,随着年龄的增加,蓝色的深浅度
    逐渐变淡。为此,本发明采集不同年龄阶段的金丝猴的面部皮肤部分,如图2所示,并对其色
    彩特征进行分析,图3为面部区域色彩分别的条带图。

    但是要想仅仅通过面部皮肤区域的色彩特征进行面部检测,难度较大。主要原因
    在于:金丝猴的面部不像人脸面部具有较大面积的皮肤区域,金丝猴的面部除了皮肤区域
    之外,还有较多的毛发区域,导致其皮肤区域较小。在整个金丝猴的身体部分,其面部皮肤
    与毛发之间色彩存在一定的差异,此外,金丝猴的毛发也具有一定的色彩特征。在不同年龄
    阶段、金丝猴身体不同的区域,其毛发的色彩都不尽相同。为此,本发明采集了不同年龄阶
    段,不同区域的猴毛部分,包括头部、四肢外侧、腹部和背部的猴毛,如图4所示,并对其色彩
    特征进行分析,图5为其毛发区域色彩分布的条带图。

    传统的脸部检测方法中可以直接利用颜色条带进行肤色区域的检测,这种方法计
    算量大,并且难以确定面部皮肤色彩具体在哪一个区域。此外,在金丝猴图像中,其背景以
    及金丝猴毛发中都含有较多的像素也存在于颜色条带中,导致检测结果准确性较差。

    根据提取的皮肤样本和毛色样本及其相应的颜色条带,可以看出:皮肤色彩较多
    的像素显现淡蓝色(深浅不一),毛发较多的像素显现棕色(深浅不一),但是他们各自的色
    调特征变化不大,变化的是深浅度。

    根据上述分析,为了充分利用金丝猴身体毛发及其脸部皮肤的色彩特征,并能够
    快速计算相应的区域,本发明的基于增量自步学习和区域色彩量化的金丝猴面部检测方
    法,参见图1,包括以下步骤:

    步骤一,利用摄像机对多个场景中的金丝猴进行拍摄,得到多张包含有金丝猴的
    RGB图像;针对每一张RGB图像均利用色彩空间转换方法将其转换为HSV图像;重新利用摄像
    机对多个场景中的金丝猴进行拍摄,得到多张包含有金丝猴的RGB图像,提取多张金丝猴的
    面部皮肤样本图像和多张金丝猴的毛发样本图像,针对每一张面部皮肤样本图像和毛发样
    本图像,均利用色彩空间转换方法分别将其转换为面部皮肤样本HSV图像和毛发样本HSV图
    像;HSV图像包含有3个通道,分别为色调h、饱和度s和亮度v;

    步骤二,针对每一张HSV图像进行色彩量化,得到待检测的色彩量化后的单通道图
    像。具体实现方法如下:

    若金丝猴所处场景是较小场景(较小场景指的是在拍摄得到的包含有金丝猴的
    RGB图像中,金丝猴所占比例较大),则实现方法如下:




    色彩量化后的单通道图像同样包含3个通道,分别为色调H、饱和度S和亮度V;其
    中,h(x,y)表示HSV图像的色调h通道上,在像素点(x,y)处的像素值;s(x,y)表示HSV图像的
    饱和度s通道上,在像素点(x,y)处的像素值;v(x,y)表示HSV图像的亮度v通道上,在像素点
    (x,y)处的像素值;H(x,y)表示色彩量化后的图像的色调H通道上,在像素点(x,y)处的像素
    值;S(x,y)表示色彩量化后的图像的饱和度S通道上,在像素点(x,y)处的像素值;V(x,y)表
    示色彩量化后的图像的亮度V通道上,在像素点(x,y)处的像素值。

    为了快速计算猴身和猴脸的色彩特征,将得到的三个矢量H(x,y)、S(x,y)和V(x,
    y)相叠加合成一维矢量,得到色彩量化后的单通道图像L:

    L(x,y)=α×H(x,y)+β×S(x,y)+γ×V(x,y) (4)

    其中,α,β,γ分别表示3个通道色调H、饱和度S和亮度V的系数,三者的比值为7:2:
    1;L(x,y)表示色彩量化后的单通道图像L在像素点(x,y)处的像素值。上述色彩量化方法称
    为像素级色彩量化方法。

    参见图6为小场景下的金丝猴图像,图7为小场景下经过像素级色彩量化后的图
    像,由图6和图7可以看出,原始图像经过色彩量化后,不同颜色区域能够较好地进行分割区
    分开,并且猴身、猴脸与背景之间存在较大差异,本发明的色彩量化方法,不仅简化了基于
    色彩量化的图像分割问题,同时大大降低了计算量。

    当金丝猴处于大场景中时(大场景即在拍摄到的包含有金丝猴的RGB图像中,金丝
    猴所占比例较小),采用上述像素级色彩量化的方法难以有效地得到猴脸疑似区域,其原因
    在于,背景中可能存在较多的与猴身和猴脸面部皮肤色彩相似的像素。参见图13和图14,图
    13的原始图像中存在大量背景像素与金丝猴毛发色彩相似,经过上述像素级色彩量化方法
    处理后的图14中残留大量的背景像素。因此,对应大场景下的金丝猴图像,本发明在得到像
    素级色彩量化后的单通道图像L后,进一步进行区域色彩量化,得到区域色彩量化后的单通
    道图像LQ,采用的公式如下:


    其中,Q(x,y)表示以像素点(x,y)为中心的、大小为(2w+1)2的矩形区域;LQ(x,y)表
    示区域色彩量化后的单通道图像LQ在以(x,y)为中心形成的矩形区域对应的图像值。

    针对每一张面部皮肤样本HSV图像和毛发样本HSV图像,利用上述色彩量化方法,
    得到所有面部皮肤样本图像的色彩量化后的单通道图像L1和所有毛发样本图像的色彩量
    化后的单通道图像L2。

    步骤三,若金丝猴所处的场景是小场景,则针对图像L1中的每个像素点的像素值
    L1(x,y)和图像L2中的每个像素点的像素值L2(x,y),分别利用数学统计的方法对不同像素
    值进行统计记录并标明每个像素值出现的频率次数,较大的频率次数对应的像素值的范围
    即为面部皮肤色彩量化范围和毛发色彩量化范围。统计结果图如图8和图9所示,根据统计
    结果可以看出,面部皮肤色彩量化范围为350~360,面部毛发色彩量化范围为70~80;

    若金丝猴所处的场景为大场景,则针对图像L1中的每个矩形区域的图像值L1(x,
    y)和图像L2中的每个矩形区域的像素值L2(x,y),分别利用数学统计的方法对不同图像值
    进行统计记录并标明每个图像值出现的频率次数,较大的频率次数对应的图像值的范围即
    为面部皮肤色彩量化范围和毛发色彩量化范围。

    步骤四,若金丝猴所处场景是小场景,则针对步骤二得到的每一张像素级色彩量
    化后的单通道图像L,选取像素值在毛发色彩量化范围内的像素点,得到猴身区域图像;再
    在猴身区域图像中选取像素值在面部皮肤色彩量化范围内的像素点,形成疑似猴脸图像。
    参见图10~图12。

    若金丝猴所处场景是大场景,则针对步骤二得到的经过区域色彩量化后的单通道
    图像LQ,选取图像值在毛发色彩量化范围内的矩形区域,得到猴身区域图像;再在猴身区域
    图像中选取图像值在面部皮肤色彩量化范围内的矩形区域,形成疑似猴脸图像。参见图15
    ~图17。

    上述选取疑似猴脸图像的方法,减少了无关信息的干扰,给之后的面部检测工作
    减少一定的负担,能够在一定程度上提高检测结果的正确率。

    步骤五,利用增量自步学习方法(ISPCL)训练得到分类器模型;具体方法如下:

    步骤5.1,建立样本库,样本库中包含大量猴脸图片样本和非猴脸图片样本;

    步骤5.2,判断是否为第一次训练,若是(i=0),i表示训练次数,则在样本库中根
    据经验人工选择数量为N简单样本,将其作为初始训练样本集合S(i),i=0,转到步骤5.3;若
    否(i>0),则根据前一次训练得到的分类器模型ISPL_MODEL(i-1)对当前样本库中剩余的样
    本进行预测,即当前样本库中剩余的样本分别输入到分类器模型ISPL_MODEL(i-1)中,分类器
    模型ISPL_MODEL(i-l)自动输出当前样本库中剩余的样本的难易程度的得分,选取其中N个得
    分较高的样本,加入当前的样本集合S(i-1)中,形成新的样本集合S(i);转到步骤5.3;

    步骤5.3,利用样本集合S(i)采用自步学习(SPCL)方法进行训练,得到分类器模型
    ISPL_MODEL(i);

    步骤5.4,判断样本库中的样本数是否为0,若是,则结束,得到训练好的分类器模
    型ISPL_MODEL,否则,返回步骤5.2。

    步骤六,针对步骤四得到的每一张疑似猴脸图像,进行图像尺寸归一化,以缩小面
    部检测的搜索范围,得到归一化后的疑似猴脸图像;将归一化后的疑似猴脸图像均输入到
    步骤五得到的分类器模型ISPL_MODEL内,输出该疑似猴脸图像为猴脸图像还是非猴脸图
    像。

    上述步骤中的简单样本指的是样本中的猴脸显示较为清楚,样本的难易程度包括
    图片中猴脸为正面、侧面或者猴脸前存在遮挡,若猴脸为正面,该样本的得分较高,侧面的
    情况次之,猴脸前存在遮挡其得分最低。

    实验与分析

    为验证本发明提出的方法的有效性。本发明使用在陕西省安康市宁陕县皇冠自然
    保护区获取的不同大小场景的金丝猴图像作为测试图像。在这些图像中含有不同家族、不
    同年龄阶段、不同性别的金丝猴,并且每幅图像中背景差异较大。首先利用3幅图像进行猴
    脸检测,以验证提出的区域色彩量化和ISPCL算法的有效性,并根据实验结果给出主观评
    价。与本发明方法进行对比的现有算法主要有SVM和SPCL两种算法。实验中,金丝猴面部特
    征采用Gabor小波特征。

    进一步,为验证本发明提出的ISPCL性能的优越性,利用皇冠保护区的33只金丝猴
    共计5012张猴脸样本(包括不同性别,不同年龄阶段,不同视角的猴脸样本)以及5463张非
    猴脸样本(主要来自背景区域样本和金丝猴身体的毛发样本)进行实验。并用检测准确率
    (Accuracy)和F值两个指标对各算法的性能进行客观评价。

    (1)对本发明提出的区域色彩量化方法的有效性进行验证

    首先我们利用3幅具有不同尺寸、不同场景的金丝猴图像进行金丝猴面部疑似区
    域检测的实验。在图18中的(a1)和图18中的(b1)中,由于图像场景较小,其中含有较少的背
    景像素,而金丝猴猴身区域占据图像较多的信息。因此我们对这些图像进行像素级的色彩
    量化,即w=0。量化后的结果图如图18中的(a2)和图18中的(b2)所示。然后根据步骤二中的
    猴毛色彩量化的L(x,y)值对猴身区域进行分割提取,分割后的结果图如图18中的(a3)和图
    18中的(b3)所示。而对于场景较大的图像(如图18中的(c1)),则适当增大w的值,即有像素级
    的色彩量化转变为具有一定区域大小的区域色彩量化,在本实验中w=2,量化后的结果图
    如图18中的(c2)所示。然后采用相同的方法即可分割出图像中的金丝猴的身体区域,分割
    后的结果图如图18中的(c3)所示。从实验结果可以看出,根据不同场景大小,相适应地取w
    的值以对图像进行色彩量化,进而进行猴身分割,能够较为准确地确定金丝猴身体部分在
    图像中的位置,只残留少量的背景信息,较大程度上缩小了后期面部皮肤区域的检测搜索
    范围。

    进一步,在分割出的猴身区域,依据金丝猴面部皮肤的L(x,y)值主要集中在350~
    360之间的特点,分割出面部皮肤的疑似区域,分割结果如图18中的(a4),(b4)和(c4)所示,
    猴脸皮肤区域在图像中的定位如图18中的(a5),(b5)和(c5)。从实验结果图可以看出,图像
    中大部分猴脸皮肤疑似区域都能够被正确地分割,但同时结果图也含有少量的背景区域或
    者猴身的毛发区域。

    (2)对本发明提出的ISPCL方法的有效性进行验证

    分割得到金丝猴疑似面部区域后,在原始图像中,将分割后区域的范围扩展为原
    有尺寸的2倍。然后,将这些扩展后的区域都全部送入训练后的ISPCL中进行测试,以检测出
    真实的猴脸,检测的结果图,如图19所示。从实验结果可以看出:在分割结果中的背景或猴
    身毛发区域都能被准确地判别为非猴脸区域;而不同情况下的猴脸疑似区域在检测结果
    上,不同算法性能有所不同。其中,SPCL具有较好的检测性能,能够检测出具有一定角度变
    化的金丝猴面部图像,但对于面部偏角较大、具有部分遮挡或者面部分辨率较低的面部图
    像,SPCL也不能正确地检测。相对而言,ISPCL具有更好的检测性能,能够对具有部分遮挡以
    及相对更大面部角度变化的金丝猴面部图像进行正确地检测,但对于侧面角度接近90度左
    右以及分辨率较低的面部图像也难以准确检测。在三种算法中,SVM的性能最差。SVM对于猴
    脸角度变化,遮挡等情况比较敏感。

    (3)ISPCL性能的客观评价

    进一步,为验证ISPCL性能的优越性,本实验利用5012张猴脸样本以及5463张非猴
    脸样本进行实验。并在Accuracy和F值方面对各算法的性能进行客观评价。实验中,各算法
    选择50%的猴脸样本作为训练正样本,50%的非猴脸样本作为训练负样本;剩余样本作为
    测试样本。实验中训练样本采用随机选择的方法,并进行10次实验,分别计算出测试结果的
    Accuracy,F值等指标。

    F值是综合这二者指标的评估指标,用于综合反映整体的指标。F值即为正确率和
    召回率的调和平均值。本实验中F值的计算公式如下:


    其中,P表示检测精确率,TP表示正样本被正确检测的数量;FP表示样
    本为负样本,却被错误检测为正样本的数量;R表示召回率,其中FN表示样本
    为正样本,却被错误检测为负样本的数量。F综合了P和R的结果,当F较高时则能说明实验方
    法比较有效。

    从实验结果可以看出,ISPCL和SPCL相对于传统的SVM,在F值和Accuracy方面具有
    明显的优势,如图20和图21所示。而相对于SPCL和ISPCL在整体性能上有所提升。

    关 键  词:
    基于 增量 学习 区域 色彩 量化 金丝猴 面部 检测 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:基于增量自步学习和区域色彩量化的金丝猴面部检测方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-5901056.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1