一种基于激光点云的路面识别方法及装置技术领域
本发明实施例涉及地理信息数据处理领域,尤其涉及一种基于激光点云的
路面识别方法及装置。
背景技术
电子地图中路面模型的准确构建,有利于服务商为用户提供更好的使用体
验。
目前,主要根据激光点云构建路面模型。使用激光传感器采集相关点云数
据时,从物体表面返回的激光只携带物体表面信息,因此,被植被、树木或路
标等覆盖的路面信息并未包含在采集到的点云数据中。植被、树木或路标等成
为路面激光点云数据的噪声,且由于没有有效区分噪声和有用路面点云数据的
方法,使这些噪声无法滤除,导致目前构建的路面模型的准确度较低。
发明内容
本发明提供一种基于激光点云的路面识别方法及装置,以提高路面模型的
准确度。
第一方面,本发明实施例提供了一种基于激光点云的路面识别方法,所述
方法包括:
根据激光传感器采集的激光点云识别候选路面点云;
构建直角坐标系网格,对投影到所述直角坐标系网格内的候选路面点云聚
类,获得可信路面点云;
根据所述可信路面点云以及设置有所述激光传感器的移动载体的行驶方向,
构建路面模型。
第二方面,本发明实施例还提供了一种基于激光点云的路面识别装置,所
述装置包括:
点云识别模块,用于根据激光传感器采集的激光点云识别候选路面点云;
网格构建模块,用于构建直角坐标系网格,对投影到所述直角坐标系网格
内的候选路面点云聚类,获得可信路面点云;
模型构建模块,用于根据所述可信路面点云以及设置有所述激光传感器的
移动载体的行驶方向,构建路面模型。
本发明实施例提供的技术方案,根据激光传感器采集的激光点云识别候选
路面点云,并通过对投影到直角坐标系网格内的候选路面点云聚类,获得可信
路面点云,最终根据所述可信路面点云以及设置有所述激光传感器的移动载体
的行驶方向,构建路面模型,有效滤除了路面激光点云中的噪声,提高了构建
的路面模型的准确性。
附图说明
图1是本发明实施例一提供的基于激光点云的路面识别方法的流程示意图;
图2是本发明实施例二提供的基于激光点云的路面识别方法的流程示意图;
图3是本发明实施例三提供的基于激光点云的路面识别方法的流程示意图;
图4是本发明实施例四提供的基于激光点云的路面识别方法的流程示意图;
图5是本发明实施例五提供的基于激光点云的路面识别装置结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此
处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需
要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部内
容。在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被
描述成作为流程图描绘的处理或方法。虽然流程图将各项操作(或步骤)描述
成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此
外,各项操作的顺序可以被重新安排。当其操作完成时所述处理可以被终止,
但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、
规程、子例程、子程序等等。
实施例一
图1是本发明实施例一提供的基于激光点云的路面识别方法的流程示意
图。本实施例可适用于根据激光传感器采集的激光点云构建准确路面模型的情
况。该方法可以由基于激光点云的路面识别装置执行,该装置可通过硬件和/或
软件的方式实现,并一般可集成于用于绘制地图道路的服务器中。
参见图1,本实施例提供的基于激光点云的路面识别方法具体可以包括如
下:
S110、根据激光传感器采集的激光点云识别候选路面点云。
激光传感器设置在移动载体上,每隔一定时间采集一次当前路面激光点云。
其中,移动载体可以是车辆。为避免遮挡,激光传感器设置在移动载体的顶部。
一般情况下,激光传感器是周期性采集数据的,周期长度可根据作业人员的需
求进行调整。由于道路表面树木、植被和路标等物体的存在,激光传感器采集
到的路面激光点云包含很多噪声,通过高度阀值以及激光点云与路面基准高度
差值的对比,可从激光传感器采集的激光点云中识别出候选路面点云,此时,
激光传感器采集的激光点云中明显噪声已基本去除。
S120、构建直角坐标系网格,对投影到所述直角坐标系网格内的候选路面
点云聚类,获得可信路面点云。
以设置有激光传感器的移动载体当前位置为原点,所述移动载体的当前行
驶方向为轴,构建直角坐标系网格。其中,移动载体的当前行驶方向可以根据
所述移动载体的当前位置与前一时刻所处位置的连线确定。构建的直角坐标系
网格范围覆盖所述候选路面点云,将所述候选路面点云投影到所述直角坐标系
网格内,并对所述候选路面点云的高度进行聚类,获取所占比例最大的高度范
围对应的候选路面点云,作为可信路面点云。例如,候选路面点云的高度分布
情况为:高度值在10-20cm范围内的候选路面点云所占比例为10%,高度值在
21-30cm范围内的候选路面点云所占比例为80%,高度值在31-40cm范围内的
候选路面点云所占比例为10%,则高度值在21-30cm范围内的候选路面点云即
为可信路面点云。具体的,高度范围的选取可根据实际应用需求进行调整。
S130、根据所述可信路面点云以及设置有所述激光传感器的移动载体的行
驶方向,构建路面模型。
获取可信路面点云中心位置处激光点云的高度作为路面高度,并以移动载
体所处的当前位置为原点,当前行驶方向为纵轴,确定直角坐标系网格,将所
述路面高度以及直角坐标系网格的坐标轴作为路面模型。
本实施例提供的技术方案,根据激光传感器采集的激光点云识别候选路面
点云,并通过对投影到直角坐标系网格内的候选路面点云聚类,获得可信路面
点云,最终根据所述可信路面点云以及设置有所述激光传感器的移动载体的行
驶方向,构建路面模型,有效滤除了路面激光点云中的噪声,提高了构建的路
面模型的准确性。
实施例二
本实施例在上述实施例一的基础上提供了一种基于激光点云的路面识别方
法。图2是本发明实施例二提供的基于激光点云的路面识别方法的流程示意图。
如图2所示,本实施例提供的基于激光点云的路面识别方法具体可以包括如下:
S210、根据激光传感器采集的激光点云,构建极坐标系网格。
对每一帧激光点云,以设置有激光传感器的移动载体当前位置为原点,分
别构建极坐标系网格,使所述极坐标系网格范围覆盖该帧激光点云。
S220、将所述极坐标系网格中激光点云的高度和平面位置坐标,作为所述
极坐标系网格的标记点。
每一帧激光点云可以包括激光点云组成的多条扫描线,如32条扫描线,极
坐标系网格包括多个网格结构,激光点云可以投影在对应的极坐标网格中。本
实施例所述极坐标系网格中激光点云的高度包括投影到网格结构内激光点云的
高度,具体的,所述每个网格结构内激光点云的高度可以为投影到每个网格结
构内的多个激光点云的平均高度。所述平面位置坐标可以为每个网格结构中心
位置处的平面坐标。因此,将投影到网格结构的多个激光点云的平均高度和网
格结构中心位置处的平面坐标作为网格结构的标记点。
S230、对所述极坐标系网格中每个角度的标记点做高斯回归,获得至少两
个路面曲线。
为提高处理结果的准确度,极坐标系网格中每个网格结构的面积越小越好,
考虑到实际操作的可实现程度,本实施例对此不做具体限制。当极坐标系网格
中每个网格结构的面积足够小时,各所述网格结构的标记点分布在极坐标系网
格原点周围的每个角度上,分别对每个角度对应的标记点做高斯回归,即可获
得多条路面曲线。
S240、根据高度阀值以及投影到所述至少两个路面曲线上的激光点云相对
于对应路面曲线的高度,识别所述候选路面点云。
将激光点云投影到路面曲线上,并且以所述至少两个路面曲线作为高度基
准确定投影到路面曲线上的激光点云的相对高度,避免了由于高度基准选取不
合适带来的激光点云过度过滤问题。具体的,在激光点云相对于路面曲线的高
度小于高度阀值时,确定所述激光点云为候选路面点云。其中,所述高度阀值
可以为20cm。
S250、构建直角坐标系网格,对投影到所述直角坐标系网格内的候选路面
点云聚类,获得可信路面点云。
S260、根据所述可信路面点云以及设置有所述激光传感器的移动载体的行
驶方向,构建路面模型。
本实施例提供的技术方案,根据极坐标系网格中的标记点确定至少两条路
面曲线,并根据高度阀值与投影到所述路面曲线上的激光点云相对于对应路面
曲线的高度之间的关系,识别所述候选路面点云,通过对所述候选路面点云聚
类,获得可信路面点云,最终根据所述可信路面点云以及设置有所述激光传感
器的移动载体的行驶方向,构建路面模型,借助路面曲线增强了根据高度滤除
噪声的效果,提高了构建的路面模型的准确性。
实施例三
本实施例在上述实施例的基础上提供了一种基于激光点云的路面识别方
法。图3是本发明实施例三提供的基于激光点云的路面识别方法的流程示意图。
如图3所示,本实施例提供的基于激光点云的路面识别方法具体可以包括如下:
S310、根据激光传感器采集的激光点云识别候选路面点云。
S320、构建所述直角坐标系网格,对投影到所述直角坐标系网格内的候选
路面点云进行聚类,得到所述直角坐标系网格的主体高度。
以设置有激光传感器的移动载体当前位置为原点,所述移动载体的当前行
驶方向为纵轴,建立直角坐标系网格。对投影到直角坐标系网格的网格结构中
的候选路面点云进行聚类,获取投影到网格结构中的主候选路面点云,并计算
主候选路面点云的高度平均值,将高度平均值作为直角坐标系网格中对应的网
格结构的主体高度。
S330、对所述直角坐标系网格的主体高度进行聚类,得到所述可信路面点
云。
对所述直角坐标系网格中网格结构的主体高度进行聚类,获取所述主体高
度中所占比例最大的高度范围对应的网格结构,将投影到所述网格结构中的候
选路面点云,作为可信路面点云。
进一步的,对所述直角坐标系网格的主体高度进行聚类,得到所述可信路
面点云,可以包括:
对所述直角坐标系网格的主体高度进行聚类;
根据面积阀值和对主体高度的聚类结果,得到第一可信路面点云;
根据主体高度差阀值以及所述第一可信路面点云与除所述第一可信路面点
云外的候选路面点云之间的主体高度差,得到第二可信路面点云。
对所述直角坐标系网格中网格结构的主体高度进行聚类,获取所述主体高
度中所占比例最大的高度范围对应的网格结构,将投影到所述网格结构中的候
选路面点云,作为待操作候选路面点云。计算各连续所述待操作候选路面点云
的面积,判断所述面积大于面积阀值时,确定所述面积对应的连续待操作候选
路面点云为第一可信路面点云,其中,所述面积阀值可以为16平方米。
为避免可信路面点云的遗漏,对所述第一可信路面点云周围的候选路面点
云做进一步的筛选。在除所述第一可信路面点云外的候选路面点云对应的网格
结构的主体高度与所述第一可信路面点云对应的网格结构的主体高度之差小于
主体高度差阀值时,确定所述第一可信路面点云和除所述第一可信路面点云外
的候选路面点云为第二候选路面点云,其中,所述主体高度差阀值可以为40cm。
S340、根据所述可信路面点云以及设置有所述激光传感器的移动载体的行
驶方向,构建路面模型。
本实施例提供的技术方案,根据激光传感器采集的激光点云识别候选路面
点云,并通过对所述候选路面点云以及直角坐标系网格主体高度的两次聚类,
获得可信路面点云,最终根据所述可信路面点云以及设置有所述激光传感器的
移动载体的行驶方向,构建路面模型,有效滤除路面激光点云中的噪声,提高
了构建路面模型的准确性。
实施例四
本实施例在上述实施例的基础上提供了一种基于激光点云的路面识别方
法。图4是本发明实施例四提供的基于激光点云的路面识别方法的流程示意图。
如图4所示,本实施例提供的基于激光点云的路面识别方法具体可以包括如下:
S410、根据激光传感器采集的激光点云识别候选路面点云。
S420、构建直角坐标系网格,对投影到所述直角坐标系网格内的候选路面
点云聚类,获得可信路面点云。
S430、将所述可信路面点云划分为至少两个点云分片。
为提高构建出路面模型的精确度,本实施例将所述可信路面点云进行分片,
划分为至少两个点云分片,对每个分片分别建模。
进一步的,所述将所述可信路面点云划分为至少两个点云分片之前,还可
以包括:
提取所述可信路面点云的边界。
提取所述边界的方法包括但不限于神经网络法,得到可信路面点云的边界
能够便于确定可信路面点云的分布范围,进而基于该分布范围对点云进行分片。
S440、根据所述至少两个点云分片的中心点和设置有激光传感器的移动载
体的行使方向,分别构建所述至少两个点云分片的局部道路网格模型。
划分好的点云分片中,每个点云分片包括多个激光点云,获取处于每个分
片中心位置处的激光点云,结合当前位置处所述移动载体的行驶方向,分别构
建每个点云分片对应的局部道路网络模型。
S450、将投影到所述局部道路网格模型中的可信路面点云的路面高度以及
所述局部道路网格模型的坐标系,作为构建的路面模型。
其中,所述路面高度为局部道路网络模型的路面高度,可以为投影到对应
局部道路网络模型中的可信路面点云的平均高度。所述局部道路网格模型的坐
标系可以包括以对应点云分片中心点作为原点,以当前位置处设置有激光传感
器的移动载体的行驶方向为纵轴。结合对应每个点云分片构建的局部道路网络
模型的路面高度以及坐标系信息,构建路面模型,如,将构建的投影到局部道
路网络模型内的可信路面点云的高度,局部道路网格坐标系的原点与坐标轴存
储到二进制文件中,就得到了持久化的路面模型。
本实施例提供的技术方案,根据激光传感器采集的激光点云识别候选路面
点云,并通过对投影到直角坐标系网格内的候选路面点云聚类,获得可信路面
点云,将所述可信路面点云划分为至少两个点云分片,并据此构建对应的局部
道路网络模型,最终根据路面高度以及局部道路网络模型坐标系确定路面模型,
有效滤除路面激光点云中的噪声,并通过对可信路面点云分片进一步提高了构
建路面模型的准确性。
实施例五
图5是本发明实施例五提供的基于激光点云的路面识别装置结构示意图。
参见图5,该基于激光点云的路面识别装置的具体结构如下:
点云识别模块510,用于根据激光传感器采集的激光点云识别候选路面点
云;
网格构建模块520,用于构建直角坐标系网格,对投影到所述直角坐标系
网格内的候选路面点云聚类,获得可信路面点云;
模型构建模块530,用于根据所述可信路面点云以及设置有所述激光传感
器的移动载体的行驶方向,构建路面模型。
在本实施例中,所述点云识别模块510可以包括:
坐标构建单元,用于根据激光传感器采集的激光点云,构建极坐标系网格;
标记确定单元,用于将所述极坐标系网格中激光点云的高度和平面位置坐
标,作为所述极坐标系网格的标记点;
曲线获得单元,用于对所述极坐标系网格中每个角度的标记点做高斯回归,
获得至少两个路面曲线;
路面识别单元,用于根据高度阀值以及投影到所述至少两个路面曲线上的
激光点云相对于对应路面曲线的高度,识别所述候选路面点云。
在本实施例中,所述网格构建模块520可以包括:
高度确定单元,用于构建所述直角坐标系网格,对投影到所述直角坐标系
网格内的候选路面点云进行聚类,得到所述直角坐标系网格的主体高度;
高度聚类单元,用于对所述直角坐标系网格的主体高度进行聚类,得到所
述可信路面点云。
在本实施例中,所述高度聚类单元具体可以用于:
对所述直角坐标系网格的主体高度进行聚类;
根据面积阀值和对主体高度的聚类结果,得到第一可信路面点云;
根据主体高度差阀值以及所述第一可信路面点云与除所述第一可信路面点
云外的候选路面点云之间的主体高度差,得到第二可信路面点云。
在本实施例中,所述模型构建模块530可以包括:
点云划分单元,用于将所述可信路面点云划分为至少两个点云分片;
模型标记单元,用于根据所述至少两个点云分片的中心点和设置有激光传
感器的移动载体的行使方向,分别构建所述至少两个点云分片的局部道路网格
模型;
模型确定单元,用于将投影到所述局部道路网格模型中的可信路面点云的
路面高度以及所述局部道路网格模型的坐标系,作为构建的路面模型。
在本实施例中,所述模型构建模块530还可以包括:
边界提取单元,用于提取所述可信路面点云的边界。
本实施例提供的基于激光点云的路面识别装置,与本发明任意实施例所提
供的基于激光点云的路面识别方法属于同一发明构思,可执行本发明任意实施
例所提供的基于激光点云的路面识别方法,具备相应的功能模块和有益效果。
未在本实施例中详尽描述的技术细节,可参见本发明任意实施例提供的基于激
光点云的路面识别方法。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员
会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进
行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽
然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以
上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,
而本发明的范围由所附的权利要求范围决定。