硅化合物、多层布线装置及其制造方法 本申请基于2007年8月10日提交的在先日本专利申请NO.2007-209505,并要求其优先权,在此通过引用的方式将该申请的全部内容并入本文。
【技术领域】
本发明涉及多层布线装置及其绝缘膜结构。
背景技术
众所周知,绝缘膜寄生电容的增加会降低信号的传输速度,然而,当半导体装置的线间距离超过1μm时,线延迟对整个装置的影响是很小的。
然而,当线间距离为1μm或以下时,对装置速度的影响会较大,以及当形成的电路的线间距离为0.1μm或以下时,线间的寄生电容将对装置速度造成很大的影响。
具体而言,归因于集成半导体装置的集成化和元件密度的增加,以及尤其是对多层化半导体元件需求的增加,装置的集成化使线间距离变窄,线间寄生电容的增加使线延迟的问题变得更严重。如下述式(3)所示,线延迟(T)受电阻(R)和线间电容(C)影响。
T∝CR (3)
式(1)中ε(电容率)与C之间的关系如式(4)所示。
C=ε0εrS/d (4)
(其中S是电极面积,ε0是真空下的电容率,εr是绝缘膜的电容率和d是线间距离)。
因此,缩减线延迟的一个有效方法是降低绝缘膜的电容率。
目前,半导体装置和其它多层布线装置的多层布线结构中使用的绝缘膜主要为低电容率涂覆的绝缘膜(low-permittivity coated insulating film)和扩散屏障绝缘膜,以及通过等离子体CVD形成的蚀刻终止层。
无机膜如二氧化硅(SiO2)、氮化硅(SiN)和磷硅酸盐玻璃(PSG),或有机聚合物如聚酰亚胺等已经常用作该绝缘材料。然而,最常用于半导体装置的CVD-SiO2膜的相对电容率约为4。SiOF膜(作为低电容率CVD膜的开发对象)的相对电容率为约3.3~3.5,但是由于其吸湿性高,其相对电容率随时间增加。另一最新研发的低电容率成膜材料通过向低电容率成膜材料加入加热下挥发或分解的有机树脂等而制得,然后在成膜期间进行加热制得多孔膜,然而,由于其具有多孔,其机械性一般很弱。而且,目前,孔径非常大(10nm或以上),如果为了降低电容率而提高多孔性,由于吸湿,电容率很可能会增加,且膜强度会下降。
为了解决上述问题,曾研究成膜后通过紫外线、等离子体或电子束将绝缘膜硬化和强化的方法,然而在这些方法中,由于Si-C键断裂(消去有机基团(主要为CH3基团)),绝缘膜的电容率和厚度损失容易增加,因此仍需要合适的解决方法。当增加多孔绝缘膜的多孔性以降低电容率时,该膜的吸湿性增加,且Si-C键断裂导致绝缘膜电容率的增加变得更为明显。
为了抑制这些损害,并改善膜强度同时不牺牲电容率(日本专利申请号2004-356618(权利要求)和日本专利申请号2005-235850(权利要求)),研究了一种方法,其在多孔绝缘膜上形成高密度绝缘膜,然后将其上方曝光在UV、等离子体或电子束下,获得了一定的成功,然而,对于作为装置的应用仍需要付出更大的努力。
发明概述
本发明的一个实施方式提供了一种硅化合物,其由式1表示的聚碳硅烷、式2表示的聚硅氮烷或它们的混合物组成,其中R1~R3中的至少部分被其它基团取代,其在210nm或以下的UV吸收率高于未取代的硅化合物。
[C3]
其中,在式1中,R1和R2可以相同或不同,每一个表示为氢原子或任选取代的烷基、烯基、环烷基或芳基,n是10~1000的数值;在式2中,R1、R2和R3可以相同或不同,每一个表示为氢原子或任选取代的烷基、烯基、环烷基或芳基,但取代基R1、R2和R3中的至少一个为氢原子,n是用于获得数均分子量为100~50,000的硅氮烷聚合物所需的重覆单元数目;式1和式2中的符号彼此独立。
【附图说明】
图1A、1B和1C是制造半导体装置的工艺的示意图;
图2A和2B是制造半导体装置的工艺的示意图;
图3A和3B是制造半导体装置的工艺的示意图;
图4A和4B是制造半导体装置的工艺的示意图;
图5A和5B是制造半导体装置的工艺的示意图;
图6是制造半导体装置的工艺的示意图;
图7是制造半导体装置地工艺的示意图;
图8是制造半导体装置的工艺的示意图;和
图9是高压汞灯(UVL-7000H4-N,Ushio Inc.)的发射光谱。
【发明内容】
以下通过附图、表格和实施例等对实施方式进行详细说明。这些附图、表格和实施例等以及说明仅用于举例说明本发明,而本发明的范围并不限制于此。本发明的范围当然能够包括其它实施方式,只要它们的目的相同。
半导体装置和其它多层布线装置的绝缘膜一般在成膜后用紫外线进行固化,使其更坚固。然而,紫外线会导致Si-C键断裂使电容率增加。如果使用紫外线滤光器限定某一特定波段的UV以抑制上述问题,UV曝光会减弱,机械强度也得不到改善。对于多孔绝缘膜(其被视为实现低电容率的最可行的方案)而言,由于其具有多孔,其机械性弱,因此这个问题尤其严重。
Si-C键断裂具体为Si与连接的有机基团(尤其是CH3基团)之间的断裂。
为了解决上述问题,实施方式中示出的UV固化技术在多孔绝缘膜前体上使用特定的硅化合物(吸收波长为210nm的紫外线)作为滤光器,由此在UV源和多孔绝缘膜前体之间形成硅化合物层(需要时,其可以被预固化以制得预固化层),由此只有波长较长的UV(>210nm)可选择性到达多孔绝缘膜前体,由此避免Si-C键断裂,并促使硅烷醇的脱水缩合反应,这些都是由于吸湿导致电容率增加的原因。
如果将硅化合物层固化,还可控制水分向多孔绝缘膜的渗入。这样可改善膜强度同时维持低电容率,使得能够形成高度可靠的高速电路基板。由于本实施方式的特定的硅化合物层或将该硅化合物层预固化而获得的层有效地吸收波长为210nm或以下的紫外线,而没有无谓地吸收波长大于210nm的UV,与常规的UV滤光器比较,曝光没有被减弱或只是略微减弱。
此特定的硅化合物由式1表示的聚碳硅烷、式2表示的聚硅氮烷或它们的混合物组成,其中硅化合物中的R1~R3至少部分被其它基团取代,其在210nm或以下的UV吸收率高于未取代的硅化合物。
其中,在式1中,R1和R2可以相同或不同,每一个表示为氢原子或任选取代的烷基、烯基、环烷基或芳基,n是10~1000的数值;在式2中,R1、R2和R3可以相同或不同,每一个表示为氢原子或任选取代的烷基、烯基、环烷基或芳基,但取代基R1、R2和R3中的至少一个为氢原子,n是用于获得数均分子量为100~50,000的硅氮烷聚合物所需的重覆单元数目;式1和式2中的符号彼此独立。
作为在210nm或以下的UV吸收率高于未取代的硅化合物或“由式1或式2表示的没有其他取代基的硅化合物”的硅化合物的条件可通过在UV曝光下比较210nm或以下的所有波长组成(wavelength components)的吸收率而确定。在一些情况下,还可以通过比较对特定峰值波长的吸收率而确定。在实施方式中,通常条件满足通过任一种方法进行的测量就够了,然而,特别优选条件满足第一个方法的测量,且更特别优选满足两个方法测量的条件。
作为更具体的评价方法,优选硅化合物在180~210nm UV峰下的UV吸收率1和硅化合物在210~350nm UV峰下的UV吸收率2的比率(UV吸收率1/UV吸收率2)大于等于2.5。因此,能够客观地评价取代的硅化合物的影响,以及能够容易地从各种化合物中选择合适的取代的硅化合物。评价标准所用的UV类型可以随意决定,然而由于数字上的差别取决于所用的UV,还是最好使用同一UV源对不同的化合物进行比较性评价。下述适用于本实施方式的UV源类型可作为此UV源。
由于前述的未取代的硅化合物几乎在210nm或以下不吸收UV,210nm或以下的UV吸收率的增加在很多情况下所指的是获得了在210nm或以下吸收UV的功能。也就是说,“在210nm或以下UV吸收率高于未取代的硅化合物的硅化合物”在许多情况下意指与未取代的硅化合物不同的,能够吸收210nm或以下的UV的硅化合物。
发现如果将该取代的硅化合物层或其预固化层设置在UV源和多孔绝缘膜前体层之间,只有波长超过210nm的UV能够选择性地到达多孔绝缘膜前体,从而抑制前体中Si-C键断裂,并促使硅烷醇的脱水缩合反应,而不用顾及Si-C键断裂。这样,可提高膜强度,同时维持低电容率,且能够形成高度可靠的高速电路板。固化该取代的硅化合物而制得的层是耐透湿的,其有效用于保护多孔绝缘膜。
如上所述,术语“预固化”意指在需要时,例如通过加热去除共存溶剂或引入交联结构,以改善作为膜的取代的硅化合物层的稳定性。此操作一般称为固化,然而为了将其与随后通过紫外线曝光进行的固化工序区分,将上述操作称为预固化。如果方便,取代的硅化合物可以在UV下进行曝光而不进行预固化,然而如果更便于操作等,取代的硅化合物也可以在形成预固化层后进行UV曝光。在这种意义上说来,上述操作为“在需要时”进行。
如上所述,术语“R1~R3中的至少部分被其它基团取代”意指当仅使用由式1表示的聚碳硅烷时,式1中R1~R2中的至少部分被其它基团取代,或当仅使用由式2表示的聚硅氮烷时,式2中R1~R3中的至少部分被其它基团取代,或当使用由式1表示的聚碳硅烷和由式2表示的聚硅氮烷的混合物时,式1中的R1~R2和式2中的R1~R3中的至少部分被其它基团取代。对于待取代的其它基团没有特别限定为一种,可以使用多于一种的基团。“至少部分”意指选自R1~R3中的其中一个基团(即,R1、R2和R3)被取代,但并非必然。取代的程度可根据在210nm或以下的所需吸收率适当地选择。
前述对实施方式中的未取代的硅化合物或换句话说对没有被其它基团取代的硅化合物设定的限定值(即对式1中的R1、R2和n,式2中的R1~R3和n的限定)是根据可用度和易操作度而决定的特性。例如,如果n低于限定值,粘度会过低,然而如果n大于限定值,粘度会过高使得难以形成膜。
所述“其它基团”可以是当取代时,形成210nm或以下具有UV吸收率高于未取代的硅化合物的取代的硅化合物的任何基团,其可通过反复试验来确定。
发现所述“其它基团”优选由苄基、羰基、羧基、烯丙酰基、重氮基、叠氮基(azide)、肉桂酰基、丙烯酸酯基(acrylate group)、亚肉桂基(cinnamylidene)、氰基亚肉桂基(cyanocinnamylidene)、呋喃基戊二烯基(furylpentadiene group)和p-亚苯基二丙烯酸酯基(p-phenylenediacrylategroup)组成的组。
对于用这些基团进行取代的方法没有特别限制,可以使用已知的方法。可首先制备未取代的硅化合物,然后用所述“其它基团”取代取代基,或可在原料中或在中间反应阶段引入所述“其它基团”。前者的一个实例为如下所述使用格氏试剂的方法。
制备由取代的硅化合物构成的层时,如果该取代的硅化合物具有足够的流动性,可以将化合物制成膜。如果化合物不是流体或者没有足够的流动性,可以使用溶剂,其能够通过加热等适当地除去。可以使用任何合适的方法如涂布等形成膜。所述膜一般是非多孔的。
对于所用的UV类型没有特别限制。为了全面提供210nm或以下的波长组成的吸收效果,可以使用具有宽波谱(200~800nm)的UV源。该UV源很多时被称作宽带光源。该波长为200~800nm的光源的实例一般包括高压泵灯、无臭氧高压泵灯、金属卤化物灯、氙灯和氘灯。这些光源的优点是其提供的强度大于Xe准分子激光等。另一优点是210nm或以下具有较少的波长组成。
对于UV曝光处理的曝光条件没有特别限制,其能够根据不同的情况适当地进行选择。对于曝光环境也没有特别限制,只要UV曝光是在真空或减压或常压下进行即可,然而考虑到效率,优选在真空下进行曝光。为了在紫外线曝光期间调节或改变压力,可供应惰性气体如氮气或氩气。
在254nm下,曝光表面的紫外线强度优选为1mW/cm2或以上,从而使固化能够迅速完成,促使硅烷醇基团的脱水缩合反应(其为吸水导致电容率增加的原因),同时抑制Si-C键断裂。在此情况下,不同的测量仪器测量的强度会稍有不同。在本实施方式中,使用了光谱辐射计(USD-40D,Ushio Inc.)。
就环境温度而言,曝光期间在50℃~470℃的温度下加热是有效的。其促使固化,并有助改善膜强度以及强化与下面的绝缘膜的粘结性。这也是除去多余溶剂的一个简单的方法。
如此,温度不需要始终如一的,温度可以直线或曲线或阶段性地变化。可将此温度确定为取代的硅化合物层或其预固化层的表面温度。
取代的硅化合物可在多层布线装置的制造方法中应用,其中在基板上或上方形成多孔绝缘膜前体层、取代的硅化合物层,如有需要,该硅化合物层可被固化,通过该取代的硅化合物层或预固化层,多孔绝缘膜前体在UV下曝光。在本文中,多孔绝缘膜前体意指通过UV曝光进行固化前的前体。多孔绝缘膜前体在此阶段一般为多孔的,但也不排除在此阶段其为非多孔的。
可首先形成多孔绝缘膜前体层或取代的硅化合物层,且在某些情况下可在两者之间设置另一层。大多数情况下,通过使UV直接与取代的硅化合物接触进行UV曝光,但也不排除在UV源和取代的硅化合物层之间还设有另一层。
更具体而言,一个方法是在基板上或上方形成一层多孔绝缘膜前体,然后形成一层取代的硅化合物,将所述硅化合物层固化(如有需要),通过该取代的硅化合物层或其预固化层,将多孔绝缘膜前体在UV下进行曝光。这样,由于多孔绝缘膜前体和取代的硅化合物彼此直接接触,必须首先将多孔绝缘膜前体稍微固化,从而使多孔绝缘膜前体和取代的硅化合物不混合在一起。可以通过任何方法进行固化,然而,出于实用的角度考虑,优选通过加热进行固化。所述固化也可称为预固化。
不考虑其已知的名称,在本文中,绝缘膜意指多层布线装置中使用的具有绝缘特性的膜或层。其通常用作绝缘之用,然而也可应用在其它主要或次要用途中。它们通常称为绝缘膜、绝缘层、层间膜、层间绝缘膜和层间绝缘层等。
在本文中,多孔绝缘膜意指类似的具有多孔的膜。在本文中,指定了多孔绝缘膜,因为多孔绝缘膜有效提供低电容率,且由于多孔性意指低机械强度,也就是实施方式的效果可发展成特定的优势。
对于多孔绝缘膜前体进行UV曝光后获得的多孔绝缘膜没有特别限制,只要膜中具有孔即可。该膜的实例包括通过气相淀积形成的掺杂碳的SiO2膜、具有通过向该掺杂碳的SiO2膜加入热降解的化合物而形成的带孔的多孔掺杂碳的SiO2膜,以及通过旋涂形成的多孔硅石和有机多孔膜。其中,考虑到对孔的控制和对密度的控制,通过旋涂形成的有机硅石是优选的。
通过旋涂形成的多孔硅石的实例包括通过向聚合物加入热降解的有机化合物等后进行加热获得孔的多孔硅石,所述聚合物通过以下物质进行水解和缩聚反应而制得:四烷氧基硅烷、三烷氧基硅烷、甲基三烷氧基硅烷、乙基三烷氧基硅烷、丙基三烷氧基硅烷、苯基三烷氧基硅烷、乙烯基三烷氧基硅烷、烯丙基三烷氧基硅烷、缩水甘油基三烷氧基硅烷、二烷氧基硅烷、二甲基二烷氧基硅烷、二乙基二烷氧基硅烷、二丙基二烷氧基硅烷、二苯基二烷氧基硅烷、二乙烯基二烷氧基硅烷、二烯丙基二烷氧基硅烷、二缩水甘油基二烷氧基硅烷、苯基甲基二烷氧基硅烷、苯基乙基二烷氧基硅烷、苯基丙基三烷氧基硅烷、苯基乙烯基二烷氧基硅烷、苯基烯丙基二烷氧基硅烷、苯基缩水甘油基二烷氧基硅烷、甲基乙烯基二烷氧基硅烷、乙基乙烯基二烷氧基硅烷或丙基乙烯基二烷氧基硅烷等。
使用涂覆式硅石团簇前体(coatable silica cluster precursor,含有硅石团簇的绝缘材料)形成的多孔硅石也是优选的,这是因为其具有细小的孔径和均一的孔。涂覆式硅石团簇前体的实例是Catalysts & Chemicals Ind.Co.,Ltd的纳米团簇硅石(Nanoclustering Silica,NCS),其能够涂覆在物件上,暴露于热或紫外线中同时进行加热而获得相对电容率约2.5的多孔硅石。优选使用四级烷基胺(quaternary alkylamine)作为催化剂形成硅石团簇前体。
在制备多孔绝缘膜时,有时使用溶剂。该溶剂一般在制备多孔绝缘膜前体的阶段通过加热等除去。
取代的硅化合物层或其预固化层在UV下曝光所获得的层可专有地作为吸收UV之用。这样,取代的硅化合物可用作紫外线吸收剂,紫外线吸收剂通常是指吸收紫外线的物质。
然而,上述的层还有其它用途,这是由于其具有绝缘特性,或能够提供硬表面。具体而言,其通常能够作为前述的绝缘膜,或作为蚀刻终止刻终止膜或其它终止膜。由于其能够作为终止膜,取代的硅化合物层或其预固化层一般可称为硬掩模。
由此制得的多层布线装置具有低电容率,且可靠性高,并能够有助提高尤其是半导体装置等的响应速度。
【具体实施方式】
实施例
下面将对实施例和比较例进行详细说明,但本发明并不限制于此。
实施例1~6
(1)参照图1~8说明实施例
术语任选取代的硅化合物层、其预固化层和多孔前体层如上述所定义,但为了简化说明,将省略这些术语,其中术语“层间绝缘膜”包括任选取代的硅化合物层或其预固化层,而术语“多层绝缘膜”则包括多孔前体层。以下将省略对形成预固化层或多孔前体层的方法的描述。
以下为UV曝光的条件:
(UV曝光条件)
使用具有图9所示的发射光谱的高压泵灯(UVL-7000H4-N,UshioInc.)进行UV固化。利用光谱辐射计(USR-40D,Ushio Inc.)测量UV光的强度和光谱分布。
利用光谱辐射计(USR-40D,Ushio Inc.)测定254nm下的UV强度为2.8mW/cm2。UV曝光期间硅化合物膜和相应的比较例的硅化合物的表面温度为350℃~400℃。
分开检验的结果显示实施例中使用的所有硅化合物在210nm或以下的UV吸收率高于比较例中使用的硅化合物,且实施例中使用的所有硅化合物的(UV吸收率1)/(UV吸收率2)≥2.5(实施例7,表2)。
在某些情况下,180~210nm之间和210~350nm之间出现多个UV峰。在这些情况下,将这些峰的整体的吸收率作比较。
(2)首先,如图1A、图1B和图1C所示,通过LOCOS(区域性硅氧化)在半导体基板10上形成元件分隔膜12。元件区14由元件分隔膜12界定。半导体基板10使用了硅基板。
(3)接下来,在元件区14上形成栅极18,两者间设有栅绝缘膜16。然后在栅极18侧面形成侧壁绝缘膜20。随后,利用侧壁绝缘膜20和栅极18作为掩模向半导体基板10引入掺杂物杂质,由此在导体基板10中栅极18的两个侧面上形成源/漏扩散层22。这样,形成具有栅极18和源/漏扩散层22的晶体管24(见图1A)。
(4)接着,通过CVD使用四乙氧基硅烷(TEOS)在整个表面形成由氧化硅膜构成的层间绝缘膜26。
(5)然后,在层间绝缘膜26上形成厚50nm的终止膜28。使用由等离子体CVD制得的SiN膜作为终止膜28的材料。在下述工序中通过CMP对钨膜等进行抛光时终止膜28作为终止层之用。在下述工序中在层间绝缘膜38上形成凹槽46时终止膜28也作为蚀刻终止层之用。
(6)通过光刻法(photolithography)形成延伸至源/漏扩散层22的接触孔30(见图1B)。
(7)其后,通过溅射在整个表面形成由TiN膜形成的厚50nm的粘结层32。粘结层32确保下述的导体塞与底层(underlayer)的粘附。
(8)然后,通过CVD在整个表面形成厚1μm的钨膜。
(9)通过CMP对粘结层32和钨膜进行抛光,露出终止膜28的表面。这样,使含有钨的导体塞34包埋在接触孔中(图1C)。
(10)接着,如图2A所示,通过CVD形成厚30nm的层间绝缘膜36(SiC:O:H膜(SiC以外还含有O和H的膜))。
(11)然后,如图2A所示,在整个表面形成多孔层间绝缘膜38。形成由多孔硅石(多孔硅石膜)构成的层间绝缘膜作为多孔层间绝缘膜38。多孔层间绝缘膜38的膜厚度为160nm。
(12)接下来,如图2B所示,在其上形成有多孔层间绝缘膜38的半导体基板10的整个表面上涂覆硅化合物,所述硅化合物具有在表1所示的条件下获得的取代基,由此形成层间绝缘膜40。该厚度为30nm。
(13)然后,在层间绝缘膜40上方进行UV曝光,由此固化多孔层间绝缘膜。
(14)通过旋涂在整个表面形成光刻胶膜42。
(15)通过光刻法在光刻胶膜42中形成开口44。开口44用于形成第一布线层(第一金属布线层)50。在光刻胶膜42中形成开口44,使获得100nm线宽和100nm线距。
(16)然后,利用光刻胶膜42作为掩模,对绝缘层40、层间绝缘膜38和绝缘膜36进行蚀刻。使用以CF4气体和CHF3气体作为原料的氟等离子体进行蚀刻。在此工序中,终止膜28用作蚀刻终止层。如此,在绝缘膜40、层间绝缘膜38和绝缘膜36中形成包埋布线用的凹槽46(见图3A)。导体塞34的上表面暴露于凹槽46中。然后剥离光刻胶膜42。
(17)通过溅射在整个表面形成厚10nm的由TaN构成的屏障膜(未示出)。屏障膜的作用是防止在下述布线中的Cu扩散到绝缘膜。接着,通过溅射在整个表面形成厚10nm的Cu籽膜(未示出)。所述籽膜在通过电镀形成Cu布线时用作电极。如此,形成了由屏障膜和籽膜构成的层叠膜48(layered film 48)。
(18)然后,通过电镀形成厚600nm的Cu膜50。
(19)通过CMP对Cu膜50和层叠膜48进行抛光,使露出绝缘膜的表面。这样,使由Cu构成的布线50包埋在凹槽中。此制造布线50的工序称为单镶嵌(single damascene)。
(20)如图3B所示,通过CVD形成厚30nm的层间绝缘膜52(SiC:O:H膜)。
(21)如图4A所示,在整个表面形成多孔层间绝缘膜54。形成多孔层间绝缘膜54的方法类似于上述形成多孔层间绝缘膜38的方法。多孔层间绝缘膜54的膜厚度为180nm。
(22)如图4B所示,在其上形成有多孔层间绝缘膜54的半导体基板10的整个表面上涂覆硅化合物,所述硅化合物具有在表1所示的条件下获得的取代基,由此形成层间绝缘膜56。形成层间绝缘膜56的方法类似于上述形成层间绝缘膜40的方法。本膜厚度为30nm。
(23)然后,在层间绝缘膜56上方进行UV曝光,由此固化多孔层间绝缘膜。
(24)如图5A所示,形成多孔层间绝缘膜58。形成多孔层间绝缘膜58的方法类似于上述形成多孔层间绝缘膜38的方法。多孔层间绝缘膜58的膜厚度为160nm。
(25)如图5B所示,在其上形成有多孔层间绝缘膜58的半导体基板10的整个表面上涂覆硅化合物,所述硅化合物具有在表1所示的条件下获得的取代基,由此形成层间绝缘膜60。形成层间绝缘膜60的方法类似于上述形成层间绝缘膜40的方法。本膜厚度为30nm。
(26)然后,在层间绝缘膜60上方进行UV曝光,由此固化多孔层间绝缘膜。
(27)通过旋涂在整个表面形成光刻胶膜62。
(28)如图6所示,通过光刻法在光刻胶膜62中形成开口64。开口64用于形成延伸至布线50的接触孔66。
(29)然后,利用光刻胶膜62作为掩模,对绝缘层60、层间绝缘膜58、绝缘膜56、层间绝缘膜54和绝缘膜52进行蚀刻。使用以CF4气体和CHF3气体作为原料的氟等离子体进行蚀刻。通过适当地改变蚀刻气体的组成比例以及改变蚀刻期间的压力等能够将绝缘层60、层间绝缘膜58、绝缘膜56、层间绝缘膜54和绝缘膜52蚀刻。由此,形成延伸至布线50的接触孔66。然后剥离光刻胶膜62。
(30)通过旋涂在整个表面形成光刻胶膜68。
(31)然后,如图7所示,通过光刻法在光刻胶膜68中形成开口70。开口70用于形成第二布线层(第二金属布线层)76a。
(32)然后,利用光刻胶膜68作为掩模,对绝缘层60、层间绝缘膜58和绝缘膜56进行蚀刻。使用以CF4气体和CHF3气体作为原料的氟等离子体进行蚀刻。如此,在绝缘膜60、层间绝缘膜58和绝缘膜56中形成包埋布线76a用的凹槽72。凹槽72与接触孔66连接。
(33)然后,通过溅射在整个表面形成膜厚度为10nm的由TaN构成的屏障膜(未示出)。屏障膜的作用是防止在布线76a和导体塞76b中的Cu的扩散(将在下面描述)。接着,通过溅射在整个表面形成膜厚度为10nm的由Cu构成的籽膜(未示出)。所述籽膜在通过电镀形成Cu布线76a和Cu导体塞76b时用作电极。如此,形成了由屏障膜和籽膜构成的层叠膜74。
(34)然后,通过电镀形成厚1400nm的Cu膜76。
(35)然后,通过CMP对Cu膜76和层叠膜74进行抛光,使露出绝缘膜60的表面。这样,使由Cu构成的导体塞76b包埋在接触孔66中,使由Cu构成的布线76a包埋在凹槽72中。导体塞76b和布线76a制成一个整体。导体塞76b和布线76a同时形成的制造工序称为“双镶嵌(dualdamascene)”。
(36)接着,如图8所示,通过CVD形成厚30nm的层间绝缘膜78。
(37)其后,通过重复上述步骤形成第三布线层(第三金属布线层)。
(38)按照这种方法使用表1的取代的硅化合物(即实施例1~6)形成半导体装置,对于由此获得的半导体装置,形成布线和导体塞使得以串联的方式电连接100万个导体塞,并通过测量其产率等进行评价。结果在表1和2中示出,产率为89.5~93.1%。
(39)计算出布线间的有效相对电容率为2.6~2.7。有效相对电容率意指对不仅被多孔层间绝缘膜包围,还有被其它绝缘膜包围的布线测定的相对电容率。尽管多孔层间绝缘膜的相对电容率低,但由于布线还被电容率相对较高的绝缘膜包围,其有效相对电容率值高于多孔层间绝缘膜的相对电容率。
(40)在200℃下将布线放置3000小时后,测量其电阻,观察到其电阻没有增加。
(41)当使用X-射线光电子能谱(XPS)测量UV曝光后的多孔绝缘膜的C浓度时,发现C浓度没有减少,在所有情况下该浓度均为11~12原子%或与UV曝光前的浓度相等。
(42)表1示出膜强度数据。从表1得知,尽管相对电容率低,但能够获得良好的膜强度。然而,现有技术中也曾尝试获得如此低的电容率,但是其膜强度却大大降低。
比较例1和比较例2
如实施例1~6的方式制造半导体装置,不同的是使用表1示出的未取代的硅化合物而不是取代的硅化合物。
在比较例1和比较例2中,使用表1示出的未取代的硅化合物形成半导体装置,由此形成布线和导体塞使以串联的方式电连接100万个导体塞时,测得的产率为59.2~63.2%,而计算出的布线间的有效相对电容率为3.1~3.2。在200℃下将布线放置3000小时后,测量其电阻,确定其电阻增加。在所有情况中,实施例1获得的结果更好,这是由于取代的硅化合物具有截去210nm或以下的紫外线的作用。也就是说,通过截去210nm或以下的紫外线,能够控制由于多孔绝缘膜中Si-C键断裂导致的吸湿。
通过XPS测量多孔绝缘膜的C浓度时,确定C浓度减少,下降至6~7原子%。相比而言,认为实施例1观察到C浓度没有减少的原因在于没有发生由于Si-C键断裂而导致的甲基等的损失。
表1
表2
在表1中,未取代的硅化合物(聚碳硅烷)中的R1和R2为H,n是213。未取代的硅化合物(聚硅氮烷)中的R1~R3为H,n是264。
相对于R1和R2或R1~R3中的氢原子数目,实施例1和4中的苄基百分比为27%,实施例2和5中的羰基百分比为15%,实施例3和6中的羧基百分比为21%。
实施例7
本实施方式的硅化合物膜或比较用的膜在石英基板上形成,用真空紫外线分光计(SGV-157,Shimadzu)测量180~350nm的UV吸收光谱,由此确定在本实施方式的硅化合物膜中,硅化合物在180~210nm UV峰下的UV吸收率1和硅化合物在210~350nm UV峰下的UV吸收率2的比率(UV吸收率1/UV吸收率2)不少于2.5。结果在表2示出。以相同方式测量210nm或以下的UV吸收率。
实施例8
具有苄基且210nm或以下的UV吸收率高于未取代的聚碳硅烷的聚碳硅烷可通过以下工序制得:将式1表示的聚碳硅烷中的R1和R2(其中R1和R2为H)卤化,然后将化合物与含有苄基的格氏试剂进行反应。