用于在铸型中浇注的装置 【技术领域】
本发明涉及一种在以连续或半连续方式将金属液注入一个铸型的过程中利用至少一个稳定或周期性低频磁场来阻滞和分配注入结晶器中的初始熔体流以及控制熔体在铸坯未凝固部分中的流动的装置,所述结晶器包含在所述铸型中,所述铸型是冷却的并且其两端在浇注方向上是敞开的,所述铸坯形成在所述结晶器中。所述稳定或周期性低频磁场是由一个磁力制动器提供的。
背景技术
在以连续或半连续方式浇注金属或合金的过程中,例如在连续铸钢过程中,熔体被供入一个结晶器中,所述结晶器是一个铸型的一部分。在这种情况下,铸型主要包括用于使注入到铸型中的熔体形成铸坯的结晶器和设置在所述结晶器周围的水箱形梁。所述结晶器是冷却的并且其两端在浇注方向上是敞开地,所述结晶器通常包括冷却铜板,但也可由其它具有适当的热学、电学、机械和磁学性能的材料制成。水箱形梁的作用有二个,一方面加强和支承铜板,另一方面使所述铜板冷却并将一种诸如水的冷却液导入铸型中。水箱形梁和包含在结晶器中的铜板可以沿着一个垂直于浇注方向的轴线移动以改变铸坯的尺寸。在结晶器中,熔体被冷却并形成一个铸坯。当所述铸坯离开结晶器时,该铸坯具有一个围绕未凝固熔体液芯的凝固的自支撑表面层。如果以一种非控制方式使熔体流入结晶器,那么流入的熔体将会透入铸坯的未凝固部分。这样就难以使包含在熔体中的杂质颗粒得到分离。另外,自支撑表面层变薄,从而增加了熔体破坏在结晶器中形成的表面层的危险性。
根据瑞典专利公开说明书SE-PS 436251可以看出下列技术是已知的,即利用磁场产生装置和磁场传送装置形成一个或多个稳定或周期性低频磁场并将这些磁场作用在熔体流入通道中以阻滞和分配熔体的流动。所述磁场产生装置和磁场传送装置通常被称为磁力制动器并且主要用于连续铸钢,最好用于诸如板坯(即截面形状为矩形的大钢坯)和方坯(即截面形状为正方形的大钢坯)的初始钢坯的连铸。但是,这种装置和方法也可用于小钢坯的连铸,即截面形状为正方形的小钢坯,还可用于诸如铝和铜的板坯和挤压坯的有色合金熔体浇注以及以半连续方式浇注这些金属的合金。
使提供到结晶器中的熔体在结晶器中冷却和成形以形成铸坯,并且在所述铸坯离开结晶器之后继续对其进行冷却。所述结晶器的两端在浇注方向上是敞开的,并且包括多个结晶器壁,通常具有四块单独的铜板。在浇注过程中使所述铜板冷却。这些铜板都固定在一个水箱形梁上。所述水箱形梁的作用有两个,一方面加强和支承铜板,另一方面使铜板冷却并将一种诸如水的冷却液导入铸型中。所述水箱形梁和铜板可沿一个垂直于浇注方向的轴线移动以改变铸坯的尺寸。磁力制动器既可用于封闭式浇注(即利用一根铸管将熔体浇注入结晶器,并且该铸管上的任意数量和方向的开口伸到弯液面下方的熔体中)的过程中,也可用开放式浇注(即利用一个接触弯液面的自由式顶注口将熔体从一个容器、浇包或中间包中浇注到结晶器中)的过程中。
根据瑞典专利公开说明书SE 91 00 184-2所披露的,一个磁力制动器包括用于产生和传送一个能够作用在铸坯未凝固部分上的稳定或周期性低频磁场的装置。所述磁场产生装置是永磁体和/或电磁铁(即具有磁芯的通电线圈)。这些磁场产生装置在本申请中将被称为磁体。一个磁力制动器除了具有磁体和磁芯以外,还具有磁通量回路,所述磁通量回路使磁路闭合,在所述磁路中,将磁体设置成能够在结晶器附近获得一个或多个磁通量平衡的闭合磁路。所述闭合磁路包括磁体、磁芯和一个设置在所述磁芯附近的磁通量回路以及存在于结晶器中的具有熔体的铸坯。一个或多个磁体设置在结晶器的相对两侧。如果结晶器的截面形状为矩形,则通常沿所述结晶器的长边设置磁体。所述磁芯用于将由磁体所产生的磁场传送到结晶器和存在于结晶器中的铸坯。按照现有技术,磁体设置在水箱形梁的外侧,因此必须利用磁芯使磁场穿过所述水箱形梁以达到熔体处。根据现有技术,可以利用整体或由多个部分组成的导磁材料所制成的磁芯贯穿水箱形梁直至结晶器壁达到上述目的。在利用激磁的电磁铁产生磁场的情况下,磁体线圈围绕着磁芯并且设置在水箱形梁外侧。
在一个具有按照现有技术设置的磁力制动器的连续浇注设备中,由设置在水箱形梁外侧的磁体产生磁场并利用所述磁芯将所述磁场传送到结晶器中。所述磁芯的长度至少相当于水箱形梁的宽度,具有这样长度的磁芯会导致磁损耗。所述的磁损耗也就意味着必须将磁体做得更大。在使用通电的电磁铁时,这也就意味着,需要更高的电能来达到熔体中所要求达到的场强。在连续浇注过程中,重要的是,不使熔体附着在结晶器上。为此,在浇注过程中,利用一个振动台将在浇注方向的振动施加给结晶器,所述结晶器、水箱形梁和磁力制动器支承在所述振动台上。需要振动的质量越大,要求的能量越高。因此,人们希望能够使结晶器、水箱形梁和磁力制动器的质量和尺寸受到限制。根据涉及磁力制动器及其安装方法的现有技术,至少磁体和磁通量回路的大部分设置在水箱形梁的外侧。这样,就难以有效地显著减小磁力制动器的质量。因而,对于现有技术来说,不能达到有效地减少磁力制动器所要求的尺寸和质量的目的。
另外,通常用于支承结晶器和水箱形梁的框架结构必须进一步扩展以提供用于放置所述设置在水箱形梁外侧的磁力制动器部分所占的空间。
因此,本发明的一个目的在于,提供一种尺寸和质量小于现有技术的电磁制动器的磁力制动器以及在达到和满足磁力制动器的冶金要求的同时提供一种靠近一个能够减少设备总体尺寸和质量的铸型安装所述磁力制动器的方法。本发明的另一目的在于,减小包含在所述磁力制动器中的磁芯长度,从而使在具有电磁制动器的结晶器的振动过程中和在所述电磁制动器中的磁体激磁过程中所需要的能量显著减少。
发明概述
本发明涉及一种在以连续或半连续方式将金属液注入结晶器的过程中利用一个稳定或周期性低频磁场来阻滞和分配注入结晶器中的初始熔体流以及控制熔体在铸坯未凝固部分中的流动的装置,所述结晶器是冷却的并且其两端在浇注方向上是敞开的,所述铸坯形成在所述结晶器中。所述稳定或周期性低频磁场是由一个磁力制动器提供的。冷却的结晶器的两端在浇注方向上是敞开的,所述结晶器设有用于使流入结晶器的熔体冷却以及使所述熔体形成一个铸坯的装置。最好是,所述结晶器包括四块冷却铜板,利用设置在结晶器周围的水箱形梁使所述铜板形成一个冷却的结晶器。所述装置具有多个水箱形梁和一个磁力制动器。所述水箱形梁设置在结晶器的外侧并围绕着所述结晶器以支承和冷却结晶器并且将最好为水的冷却液提供给结晶器。所述磁力制动器用于产生至少一个作用在熔体流入通道中的稳定或周期性低频磁场以阻滞和分配注入结晶器中的初始熔体流并控制熔体在由熔体冷却而形成的铸坯未凝固部分中的二次流动。所述磁力制动器至少包括一个磁路。每个磁路至少包括一个磁体、一个磁芯、一个磁通量回路、结晶器以及存储于结晶器中的铸坯和/或熔体。所述磁体可以是一个永磁体或电磁铁(即具有一个由导磁材料制成的磁芯的通电线圈)。所述磁体产生所述稳定或周期性低频磁场。所述磁芯由一种导磁材料制成,它可以是整体的或由几个部分组成,所述磁芯能够将由磁体所产生的磁场传送到结晶器和存在于结晶器中的铸坯。在电磁制动器中(即磁体为电磁铁的磁力制动器),所述磁芯通常构成了芯的一部分。所述磁通量回路闭合了所述磁路。所述磁通路回路通常也被称为磁轭。
由于水箱形梁包括导磁材料制成的部分并且所述由导磁材料制成的那部分水箱形梁包含在磁通量回路和/或磁芯中,同时所述磁体设置在水箱形梁的一个凹槽中,所述磁体和磁通量回路以这样的方式整体地形成在水箱形梁中,即所述磁体和磁通量回路整体地设置在水箱形梁的后壁中,因此能够达到上述的发明目的。
所述磁通量回路和磁芯属于磁力制动器的一部分。本发明不需要外部设置的磁轭。根据本发明装置所具有的结构优点和紧凑设计,所述一个磁体/多个磁体整体设置在水箱形梁的内侧,并且由于部分水箱形梁构成了一个磁通量回路的一部分,因此能够获得这样一种磁力制动器,即完全取消了现有技术中所涉及的设置在水箱形梁外侧的磁力制动器部分。因此,根据这种紧凑的设计结构,使磁力制动器的尺寸和质量得到明显地减少。磁芯的长度也明显地缩短,并利用由导磁材料制成的一部分水箱形梁取代外部设置的单独磁轭。
一种包括与水箱形梁整体形成的结构紧凑的磁力制动器的装置与现有技术中的磁力制动器相比在紧凑安装方面具有比较明显的优点。按照现有技术所涉及的磁力制动器的大部分设置在水箱形梁外侧,其中至少包括磁体和一个磁通量回路,在某些情况下还包括一部分磁芯,并且需要利用一个长磁芯使之与结晶器相连。而本发明所涉及的与水箱形梁整体形成的结构紧凑的磁力制动器则具有有效减少磁力制动器的质量和尺寸的优点。这样,可使所述制动器和结晶器的总质量和尺寸得到显著地减少。从而,减小了浇注控制所要求的结晶器振动所需要的能量,并且降低了对铸型和磁力制动器周围的支承框架的要求。在有框架设置在铸型周围的这种结构的铸型中,这就意味着降低了框架上的载荷和应力。
根据本发明的一个实施例,即对于磁力制动器与水箱形梁整体形成的紧凑设计来说,不需要一个用于使磁力制动器冷却的单独冷却系统,而是利用使铸型和形成在结晶器中的铸坯冷却的冷却装置对磁力制动器进行冷却处理。最好利用在水箱形梁中流动的用于冷却铸型的冷却水对磁力制动器进行冷却处理。取消了用于磁力制动器的单独冷却系统能够进一步减小具有一个磁力制动器的铸型总质量。
在本发明所涉及的与水箱形梁整体形成的结构紧凑的磁力制动器中的磁芯长度与现有技术的磁力制动器中的磁芯长度相比显著减少。磁芯长度的显著减少会降低磁芯中的磁损耗,从而用于在铸坯中产生具有所需场强的磁场所要求的磁力更小。在使用通电的电磁铁时,这就意味着,与现有技术的磁力制动器相比,达到在熔体中所要求的磁场强度所需要的电能减少。
在某些利用电磁制动器作为磁力制动器的实施例中,所述磁体是一个通直流电或通低频交流电的电磁铁。电磁铁具有一个围绕导磁材料制成的磁芯的通直流电的线圈。在通电过程中,线圈在磁芯中产生了一个磁场。如上所述,所述磁芯构成了包含在所述磁力制动器中的磁芯的一部分或与之相连,因而,在磁芯中所产生的磁场经过磁芯被传送到结晶器和存在于结晶器的铸坯。对于本发明所涉及的与水箱形梁整体形成的一个电磁制动器,由一种导磁材料制成的一部分水箱形梁包含在所述磁通量回路中。为了达到结构紧凑的优点,将激磁线圈设置在水箱形梁的一个凹槽中或者将其设置在水箱形梁与结晶器之间。
为了影响磁场在熔体中的分布、方向和场强,最好设置与结晶器壁和磁芯相连的板。这些板整体地或部分地由导磁材料构成,并且被称之为极板,用于影响磁场在结晶器和存在于结晶器中的铸坯和/或熔体中的分布,方向和场强。在某些实施例中,极板完全由导磁材料制成并且沿磁芯轴向上的横截面通常穿过浇注方向,所述浇注方向偏离于磁芯的横截面。在另一些实施例中,所述极板设有由导磁材料制成的部分和由非磁性材料制成的部分,磁性材料部分构成了用于控制磁场在结晶器和存在于结晶器中的铸坯和/或熔体中的分布、方向和场强的磁窗。在所述磁体设置在水箱形梁的凹槽中的实施例中,将所述极板设置成其中一个侧边以可拆卸的方式与水箱形梁相连,相对的一个侧边与铜板相连。最好利用螺栓使一个极板与一块铜板以可拆卸的方式相连。这些实施例中的磁体是以这样的方式设置在水箱形梁中的,即当卸下一个极板时能够露出位于内侧的磁体。按照某些实施例,还可通过将磁性部分加入通常由诸如铜的非磁性材料制成的结晶器中来影响磁场在结晶器和存在于结晶器中的铸坯和/或熔体中的分布和强度。
根据本发明的另一实施例,包含在本发明的被设计成与水箱形梁整体形成的一个磁力制动器中的磁芯在其轴向上分段设置。该磁芯具有轴向设置的磁性材料部分和轴向设置的非磁性材料部分,这些磁芯部分的至少一些是以可拆卸的方式设置的以通过改变这些部分的形状来改变磁芯中的磁场分布和场强,从而能够控制磁场在结晶器和存在于结晶器中的铸坯和/或熔体中的分布、方向和场强。对于一个电磁制动器,也可将设置在线圈中的磁芯分段。
本发明对于利用多个磁体产生至少作用于结晶器内两个位置处的稳定或周期性低频磁场的磁力制动器特别有利,这是因为在这种情况下在现有技术的磁力制动器中的磁体数量和磁芯中磁性材料的量增多,这需要具有大质量的铸型和电磁制动器,并需要在磁体和结晶器之间具有大量磁损耗的大磁芯长度。根据相同原因,本发明所涉及的与水箱形梁整体形成的结构紧凑的磁力制动器还可扩展成有利的安装,即具有多个磁体的磁力制动器可产生两个或多个作用在结晶器中的穿过浇注方向的同一位置处的稳定或周期性低频磁场。
利用本发明的装置在封闭式浇注过程中产生作用在结晶器内两个位置处的稳定或周期性低频磁场是特别有利的。所述封闭式浇注指的是利用一根具有一个或多个位于熔体上表面(弯液面)下方的开口的铸管将熔体注入结晶器中的浇注方法。根据诸如铸坯尺寸、浇注速度以及由于各种原因而提供给铸管中初始熔体流的气体流等其它参数,可以在相对于弯液面和铸管开口的不同位置处设置这些磁场以便在铸型中形成熔体的二次流动,最好使所述二次熔体流循环流动,以保证进入钢水中的杂质颗粒得到良好的分离并在铸坯中提供良好的热环境以达到所要求的结构。下面参照图3和图4对于磁体不同位置的使用在实施例中进行了详细的描述。
附图简述
下面将参照附图利用优选实施例对本发明进行详细的描述。
图1是本发明装置的一个实施例的纵向截面示意图。
图2是本发明装置的另一个实施例的纵向截面示意图,其中的磁体能够产生作用于两个位置处的稳定或周期性低频磁场。
图3和图4表示按照使用本发明装置的两个实施例所获得的二次流动,所述装置能够提供作用在结晶器中两个位置处的磁场。
优选实施例描述
图1和图2表示本发明的具有结晶器和设置在结晶器周围的水箱形梁以及与所述水箱形梁整体形成的磁力制动器的铸型。图1和图2中所示的结晶器是一种用于浇注所谓板坯形式的铸坯1的所谓板坯结晶器,通过一根铸管2将初始熔体流供给所述结晶器,该结晶器具有两个较大的铜板31,32,这两块铜板构成了截面形状为矩形的结晶器的两个长边。根据这两个实施例,该结晶器还具有两个构成结晶器短边(未示出)的较小铜板。图1和图2中的铜板31,32分别与极板41,42相连。根据这两个实施例,极板41,42具有由磁性材料制成的部分41a,42a和由非磁性材料制成的部分41b,42b,所述极板41,42主要用于加强铜板31,32。根据磁性部分41a,42a的外形来调整作用在结晶器和存在于结晶器中的铸坯1和/或熔体中的磁场分布,方向和磁场强度。在图1和图2所示的两个实施例中,极板41、42分别与水箱形梁51a,51b,52a,52b相接触。多个固定螺栓61a,61b,62a,62b从水箱形梁51a,51b,52a,52b的后壁510,520穿过水箱形梁51a,51b,52a,52b和极板41,42进入铜板31,32中。固定螺栓61a,61b,62a,62b的螺纹(未示出)与铜板31,32中的螺纹(未示出)相配合用以固定。通过固定螺栓61a,61b,62a,62b使极板41,42和铜板31,32相互固定并与水箱形梁51a,51b,52a,52b固定在一起。铜板31,32中设有冷却通道(未示出)。通过极板41、42中的上下流动通道(未示出)使所述冷却通道与水箱形梁51a,51b,52a,52b中的上下水箱形状的腔室515a,525a和515b,525b相通。另外,上部腔室515a,525a与下部腔室515b,525b以一种未示出的方式相通。这样,在每个铸型半模中形成了冷却水路。在浇注过程中,水被泵入所述冷却水路中以便冷却铜板和间接地使熔体冷却。图1和图2中所示的磁力制动器都是电磁制动器,所述电磁制动器能产生穿过浇注方向的磁场以阻滞和分配通过铸管注入结晶器中的熔体流并且控制出现在结晶器中的熔体二次流动。所述一个或多个磁场是稳定或周期性低频磁场。图1所示的装置中所具有的一个电磁制动器包括设置在结晶器相对两侧的电磁铁,所述电磁铁由具有由导磁材料制成的磁芯的激磁线圈71,72,710,720、730,740构成。图1中所示的磁芯包含在由导磁材料制成的磁芯81,82,810,820,830,840中,该磁芯81,82,810,820,830,840包括设置在线圈中的部分,磁芯和一个前部件与极板41,42相接触以便将由磁体产生的磁场传送到极板41,42并将所述磁场进一步传送到结晶器和设置在结晶器中的熔体中。为了构成一个磁通量平衡的磁路,所述电磁制动器还具有一个磁通量回路通常也被称为磁轭。图1和图2中所示的磁力制动器具有一个磁通量回路,所述磁通量回路包括由一种磁性材料制成并且整体形成在水箱形梁中的部分510、520、530、540。在图1中,水箱形梁51、52的导磁材料部分由后壁510、500形成,并且这个部分可与磁芯81,82进行良好的磁性接触。如图1中可以看出,磁力制动器没有一部分伸出到水箱形梁51、52的任一外限制表面的外侧。包含在磁力制动器中的线圈71、72设置在线圈空间91、92中。所述线圈空间91、92以水箱形梁51、52中的凹槽形式设置。利用极板41、42使设置在水箱形梁中的凹槽或线圈空间91、92封闭。当卸下极板41、42时,线圈空间91、92被打开;因而可以露出线圈71、72以便于更换或维修。在不使用极板的实施例中,利用铜板31、32封闭所述线圈空间91,92。在本发明装置的某些实施例中,如图2中所示,线圈71、72设置在水箱形梁51、52与结晶器铜板31、32之间。根据图1中所示的实施例,磁芯81、82整体地固定在水箱形梁的后壁510、520上,所述后壁作为磁力制动器中的磁轭。在另外一些实施例中,磁芯81、82被设置成多个独立部件,这些部件插入设置在水箱形梁51、52中的多个空腔中。于是要求磁芯81、82与构成磁力制动器中磁轭的水箱形梁部分510、520保持良好的磁性接触。当然,也可采用这样的实施例,即其中的磁芯81、82与水箱形梁51、52整体地固定,但是并未与磁轭510、520形成同一部件。图2表示了一个实施例,其中的线圈710、720、730、740和磁芯810、820、830、840位于浇注方向上的两个相邻的位置处。根据图2中所示的磁力制动器,磁芯810、820、830、840与设置在结晶器相应侧的该磁芯810、820和830、840之间的磁通量回路相连。这些磁通量回路包括由磁性材料制成的水箱形梁部分530、540。图2中所示的磁力制动器设有线圈710、720、730、740,所述线圈以与图1中所示的同样方式设置在水箱形梁51、52的凹槽中。采用图2中所示的磁力制动器特别有利于在封闭式浇注过程中产生作用在结晶器内两个位置处的稳定或周期性低频磁场。所述封闭式浇注指的是利用一根具有一个或多个位于熔体上表面11(即弯液面)下方的开口21的铸管将熔体注入结晶器中的浇注方法。根据诸如铸坯尺寸、浇注速度以及由于各种原因而提供给铸管中初始熔体流中的气体流等其它参数,可以在相对于弯液面11和铸管开口21的不同位置处设置这些磁场以在铸型中形成熔体的二次流动,最好使所述二次熔体流循环和稳定的流动,以保证进入钢水中的杂质颗粒得到良好的分离并在铸坯中提供良好的热环境以达到所要求的结构。
根据能够作用在浇注方向上相邻两个位置处的磁力制动器的第一种使用方法,设置磁体以产生作用在弯液面处的一个位置或作用在弯液面和铸管开口之间的一个位置处的第一磁场A,所述磁体还能产生作用在铸管开口下游的一个位置处的至少一个磁场B。磁体的设置能够在上述两个位置之间的铸坯上部提供一个循环流动的二次熔体C1和C2。此时的二次熔体流的特征在于,初始熔体流P被阻滞并被分解成多个二次熔体流,所述二次熔体流在熔体中所产生的磁力和电磁的共同作用下在两个所述位置之间的区域中形成循环流动的二次熔体流C1和C2,所述两个位置之间的区域即为结晶器的上部。根据其它浇注参数,在铸管开口下游的二次熔体流的流动方向是向着铸坯的中心,或者在某些情况下也可以循环流动。对于这种设置,在铸管开口下游循环流动的二次熔体流C3和C4不如在结晶器上部循环流动的二次熔体流C1和C2稳定。根据图2所示的磁力制动器的第二种使用方法,在封闭式浇注过程中,磁体能够产生至少一个作用在铸管开口21处位置D的第一磁场,并且所述磁场还作用在铸管开口下游的位置E处。利用这样的设置,结晶位置D,E之间区域中的稳定二次熔体流G1和G2可以使初始熔体流P受到良好的阻滞,所述位置D、E之间的区域即为铸管开口21下游的结晶器下部。此时,利用在结晶器上部(即第一位置D上方)的较少的稳定二次熔体流g3和g4补充稳定的二次熔体流G1和G2。