《基于微器件的减摩擦防粘着纳米有机薄膜的制备方法.pdf》由会员分享,可在线阅读,更多相关《基于微器件的减摩擦防粘着纳米有机薄膜的制备方法.pdf(16页完整版)》请在专利查询网上搜索。
1、10申请公布号CN101935857A43申请公布日20110105CN101935857ACN101935857A21申请号201010270552622申请日20100902C25D9/02200601C10M133/40200601B81C1/0020060171申请人华南理工大学地址510640广东省广州市天河区五山381号72发明人康志新赖晓明刘应辉方刚邵明李元元74专利代理机构广州市华学知识产权代理有限公司44245代理人盛佩珍54发明名称基于微器件的减摩擦防粘着纳米有机薄膜的制备方法57摘要本发明公开了一种基于微器件的减摩擦防粘着纳米有机薄膜的制备方法。该方法以微/纳机电系统中使。
2、用的铝、铜、镁及其合金作为基底材料,不同的基底材料选择不同的水溶性三氮杂嗪类有机化合物盐与碱性支持电解盐相匹配,并采用三电极方式的恒电流、循环伏安、恒电位有机镀膜技术制备具有疏水、减摩擦、防粘着的纳米有机薄膜。本发明制备的纳米有机薄膜与蒸馏水的静态接触角可达110以上,摩擦系数可降低到005以下,最大粘附力可降低到103MN,有效降低了摩擦系数和粘附力,并薄膜厚度可控;本发明工艺简便、周期短、成本低,易于工业化生产。可广泛适用于微/纳机电系统中微器件的减摩擦、防粘着,改善其摩擦学特性。51INTCL19中华人民共和国国家知识产权局12发明专利申请权利要求书2页说明书10页附图3页CN10193。
3、5857A1/2页21基于微器件的减摩擦防粘着纳米有机薄膜的制备方法,其特征在于以微/纳机电系统中使用的铝、铜、镁及其合金作为基底材料,采用三电极方式的恒电流、循环伏安、恒电位有机镀膜技术制备纳米有机薄膜,具体包括以下步骤及工艺条件1配制镀膜电解质溶液选取水溶性三氮杂嗪类有机化合物盐0110MMOL/L、碱性支持电解盐00110MOL/L,配制成镀膜用电解质溶液;2镀膜处理将经丙酮超声清洗后的基底材料,直接以三电极方式放入上述电解质溶液中进行镀膜,镀膜采用恒电流法、循环伏安法或恒电位法;所述恒电流法镀膜,其工艺条件为电流密度为00510MA/CM2,镀膜时间为590MIN,镀膜温度为2030;。
4、所述循环伏安法镀膜,其工艺条件为循环扫描速率为150MV/S,循环次数为315次,镀膜温度为530;所述恒电位法镀膜,其工艺条件为电压0512VVSSCE,镀膜时间为560MIN,镀膜温度为520。2根据权利要求1所述的基于微器件的减摩擦防粘着纳米有机薄膜的制备方法,其特征在于所述电解质溶液使用的水溶性三氮杂嗪类有机化合物盐的单体,其具体结构如下结构中的R1为下列功能基团之一烷基类CH3,C2H5,C4H9,C6H13,C8H17,C10H21,C12H25,C4H9C2H5CHCH2C4F9CH2,C6F13CH2,C8F17CH2,C10F21CH2,C4F9CH2CH2,C6F13CH2。
5、CH2,C8F17CH2CH2,C10F21CH2CH2;烯基类CH2CHCH2,CH2CHCH28,CH2CHCH29,C8H17CHCHC8H16,C4F9CH2CHCH2,C6F13CH2CHCH2,C8F17CH2CHCH2,C10F21CH2CHCH2;芳基类C6H5,C6H5CH2,C6H5CH2CH2,CF3C6H4,C4F9C6H4,C6F13C6H4,C8F17C6H4,C10F21C6H4;其它H;结构中的R2为下列功能基团之一烷基类CH3,C2H5,C4H9,C6H13,C8H17,C10H21,C12H25,C4H9C2H5CHCH2,C4F9CH2,C6F13CH2,。
6、C8F17CH2,C10F21CH2,C4F9CH2CH2,C6F13CH2CH2,C8F17CH2CH2,C10F21CH2CH2;烯基类CH2CHCH2,CH2CHCH28,CH2CHCH29,C8H17CHCHC8H16,C4F9CH2CHCH2,C6F13CH2CHCH2,C8F17CH2CHCH2,C10F21CH2CHCH2;芳基类C6H5,C6H5CH2,C6H5CH2CH2,CF3C6H4,C4F9C6H4,C6F13C6H4,C8F17C6H4,C10F21C6H4;其它H;结构中的M1和M2均为下列原子之一氢、钠、钾。3根据权利要求1所述的基于微器件的减摩擦防粘着纳米有机薄。
7、膜的制备方法,其特征在于所述碱性支持电解盐是指碳酸氢钠、氢氧化钾、亚硝酸钠或硼酸钠。4根据权利要求1或2或3所述的基于微器件的减摩擦防粘着纳米有机薄膜的制备方权利要求书CN101935857A2/2页3法,其特征在于不同的基底材料选择不同的水溶性三氮杂嗪类有机化合物盐与碱性支持电解盐相匹配,相应的匹配关系如下1当金属衬底材料为铝及其合金时,选用的水溶性三氮杂嗪类有机化合物盐单体结构中,R1为H、R2为烯基类,碱性支持电解盐为硼酸钠;R1为烯基类、R2为烯基类,碱性支持电解盐为亚硝酸钠;2当金属衬底材料为铜及其合金时,选用的水溶性三氮杂嗪类有机化合物盐单体结构中,R1为烯基类、R2为烷基类,碱性。
8、支持电解盐为碳酸氢钠;R1为烯基类、R2为芳基类,碱性支持电解盐为氢氧化钾或硼酸钠;3当金属衬底材料为镁及其合金时,选用的水溶性三氮杂嗪类有机化合物盐单体结构中,R1为烷基类、R2为芳基类,碱性支持电解盐为氢氧化钾;R1为烷基类、R2为H,碱性支持电解盐为碳酸氢钠。权利要求书CN101935857A1/10页4基于微器件的减摩擦防粘着纳米有机薄膜的制备方法技术领域0001本发明涉及纳米有机薄膜材料及其制备技术领域,具体是指一种适用于微器件的减摩擦防粘着纳米有机薄膜的制备方法。背景技术0002随着科学技术的日益更新,工业产品沿着系统及产品小型化、智能化、集成化的方向发展,微/纳机电系统MEMSM。
9、ICROELECTROMECHANICALSYSTEMS/NEMSNANOELECTROMECHANICALSYSTEMS开辟了一个新的技术领域和产业。微/纳机电系统中的微传感器、微执行器、微型构件、真空微电子器件等在航空、航天、汽车、生物医学、环境监控、军事等众多领域中都有着十分广阔的应用前景。然而,作为微/纳机电系统中关键的摩擦学问题,如粘着引发的器件破坏、系统失效等问题尚未得到解决。在MEMS/NEMS所应用的材料中,金属如铝、铜、镍等导电性良好的材料常被用作MEMS/NEMS器件基体表面上的镀层金属、集成电路及其它微器件,镁及其合金也由于比强度高、高散热性、抗电磁干扰性好和减震性好等特。
10、点非常适合于电子元件和精密仪器行业,在MEMS/NEMS中具有广阔的应用前景,但这些金属材料均由于表面容易氧化呈亲水性会吸附空气中的水分导致粘结,以致其在摩擦接触的场合性能不佳,使摩擦学性能迅速恶化,并且微细尺度下,传统的润滑手段往往难以解决其运行中遇到的摩擦学问题。因此,对材料表面进行功能化处理以解决其摩擦学问题显得尤为重要。0003近年来疏水纳米有机薄膜材料不仅在腐蚀防护、微流体系统和生物相容性等方面有着潜在的应用价值,而且由于材料表面的摩擦学问题与其浸润性有着重要关系,所以疏水纳米有机薄膜材料在当今迅猛发展的微电子制造业中微器件的摩擦学、润滑及脱模等也有广阔的应用前景。例如中国发明专利公。
11、开号为CN1978600,公开了一种具有纳米厚度的润滑薄膜的制备方法,它首先在基底材料表面进行硅烷偶联剂处理,后在其表面采用旋涂法和浸渍提拉法制备一层掺杂离子液体的十八烷酸钾,最后进行热处理,得到的复合纳米有机薄膜具有低的摩擦系数和较好的摩擦学性能;张俊彦等摩擦学学报2007,273199203采用自组装方法在羟基化硅基底表面制备得到了硬脂酸/环氧硅烷双层纳米有机薄膜,自组装双层纳米有机薄膜对水的接触角为96,能够有效降低基底的摩擦系数,摩擦系数稳定在012左右,同时表现出优异承载抗磨性能。通过对材料表面进行功能化处理得到疏水纳米有机薄膜,从而能够提高微器件的摩擦学性能,但可以发现以上两种方法。
12、工艺过程较为复杂,又由于旋涂工艺和自组装法得到的纳米有机薄膜主要是依靠物理吸附或范德华力结合,纳米有机薄膜的使用寿命受到限制,而且与国内外众多有关疏水纳米有机薄膜材料研究及报道涉及到的制备方法一样,都需要特定的设备、苛刻的条件、复杂的处理工序和较长的周期,难以用于大面积疏水纳米有机薄膜材料的制备,限制了其规模生产及应用。说明书CN101935857A2/10页5发明内容0004本发明的目的在于克服上述现有技术的不足之处,为解决微器件领域中的微纳摩擦学、粘着等问题提供一种工艺简便、并能够有效降低基底表面摩擦系数的减摩擦防粘着纳米有机薄膜的制备方法。0005本发明的目的是通过以下技术方案实现的00。
13、06一种基于微器件的减摩擦防粘着纳米有机薄膜的制备方法,其特征在于以微/纳机电系统MEMS/NEMS中使用的铝、铜、镁及其合金作为基底材料,采用三电极方式的恒电流、循环伏安、恒电位有机镀膜技术制备纳米有机薄膜,具体包括以下步骤及工艺条件00071配制镀膜电解质溶液0008选取水溶性三氮杂嗪类有机化合物盐0110MMOL/L、碱性支持电解盐00110MOL/L,配制成镀膜用电解质溶液;00092镀膜处理0010将经丙酮超声清洗后的基底材料,直接以三电极方式放入上述电解质溶液中进行镀膜,镀膜采用恒电流法、循环伏安法或恒电位法;0011所述恒电流法镀膜,其工艺条件为电流密度为00510MA/CM2,。
14、镀膜时间为590MIN,镀膜温度为2030;0012所述循环伏安法镀膜,其工艺条件为循环扫描速率为150MV/S,循环次数为315次,镀膜温度为530;0013所述恒电位法镀膜,其工艺条件为电压0512VVSSCE,镀膜时间为560MIN,镀膜温度为520。0014所述电解质溶液使用的水溶性三氮杂嗪类有机化合物盐的单体,其具体结构如下00150016结构中的R1为下列功能基团之一0017烷基类CH3,C2H5,C4H9,C6H13,C8H17,C10H21,C12H25,C4H9C2H5CHCH2C4F9CH2,C6F13CH2,C8F17CH2,C10F21CH2,C4F9CH2CH2,C6。
15、F13CH2CH2,C8F17CH2CH2,C10F21CH2CH2;烯基类CH2CHCH2,CH2CHCH28,CH2CHCH29,C8H17CHCHC8H16,C4F9CH2CHCH2,C6F13CH2CHCH2,C8F17CH2CHCH2,C10F21CH2CHCH2;芳基类C6H5,C6H5CH2,C6H5CH2CH2,CF3C6H4,C4F9C6H4,C6F13C6H4,C8F17C6H4,C10F21C6H4;其它H;0018结构中的R2为下列功能基团之一0019烷基类CH3,C2H5,C4H9,C6H13,C8H17,C10H21,C12H25,C4H9C2H5CHCH2,C4F。
16、9CH2,C6F13CH2,C8F17CH2,C10F21CH2,C4F9CH2CH2,C6F13CH2CH2,C8F17CH2CH2,C10F21CH2CH2;烯基类CH2CHCH2,CH2CHCH28,CH2CHCH29,C8H17CHCHC8H16,C4F9CH2CHCH2,C6F13CH2CHCH2,C8F17CH2CHCH2,C10F21CH2CHCH2;芳基类C6H5,C6H5CH2,C6H5CH2CH2,CF3C6H4,C4F9C6H4,C6F13C6H4,C8F17C6H4,C10F21C6H4;其它H;0020结构中的M1和M2均为下列原子之一氢、钠、钾。说明书CN10193。
17、5857A3/10页60021所述碱性支持电解盐是指碳酸氢钠、氢氧化钾、亚硝酸钠或硼酸钠。0022所述不同的基底材料选择不同的水溶性三氮杂嗪类有机化合物盐与碱性支持电解盐相匹配,相应的匹配关系如下00231当金属衬底材料为铝及其合金时,选用的水溶性三氮杂嗪类有机化合物盐单体结构中,R1为H、R2为烯基类,碱性支持电解盐为硼酸钠;R1为烯基类、R2为烯基类,碱性支持电解盐为亚硝酸钠;00242当金属衬底材料为铜及其合金时,选用的水溶性三氮杂嗪类有机化合物盐单体结构中,R1为烯基类、R2为烷基类,碱性支持电解盐为碳酸氢钠;R1为烯基类、R2为芳基类,碱性支持电解盐为氢氧化钾或硼酸钠;00253当金。
18、属衬底材料为镁及其合金时,选用的水溶性三氮杂嗪类有机化合物盐单体结构中,R1为烷基类、R2为芳基类,碱性支持电解盐为氢氧化钾;R1为烷基类、R2为H,碱性支持电解盐为碳酸氢钠。0026本发明与现有技术相比,具有如下突出的优点和效果00271、本发明的制备方法在金属表面制造出具有低摩擦系数的疏水纳米有机薄膜,可适用于金属表面的减摩、防粘着,同时成功解决了因微/纳机电系统中关键的摩擦学问题而造成的诸如粘着引发的器件破坏、系统失效,微构件的表面改性和微器件的磨损、润滑等技术难题,拓宽金属材料在微/纳机电系统等关键领域的应用。00282、本发明的制备方法中采用含特殊功能基团的三氮杂嗪硫醇类有机化合物,。
19、该类有机化合物单体中所含的功能基团首先会与铝、铜、镁及其合金发生化学键结合;然后有机单体之间通过电化学聚合反应聚合成膜,从而使该膜层与基体结合紧密,有机薄膜生长致密,最终得到具有疏水、减摩、低粘附力特性、致密的有机纳米有机薄膜,极大提高了微器件及微构件的使用寿命,可用于微/纳机电系统中微器件的减摩、防粘着,改善其摩擦学特性。00293、在采用恒电流法或恒电位法镀膜时,通过选择合适的电流密度或电压、膜层会随着镀膜时间的延长而不断增厚;在循环伏安法时,选择合适的电流密度和电压,膜层会随着循环次数的增加而增厚;因此根据不同的实际需求调节工艺参数,可以实现有机膜层厚度在10100NM范围内可控。003。
20、04、本发明的制备方法工艺简单、便于操作、效率高、制备周期短、设备要求低,成本低。00315、本发明涉及的镀液不含有对环境和人类身体健康有毒有害成分的特点,无毒无害无环境污染,属于环保型配方。附图说明0032图1为经本发明实施例一处理后的MB8镁合金表面呈疏水状态的蒸馏水静态接触角图片。0033图2为未经处理的MB8镁合金的表面的蒸馏水静态接触角图片。0034图3为经本发明实施例一处理前后的MB8镁合金基体的表面薄膜的摩擦系数随滑动距离变化的关系曲线图。0035图4为未经处理的工业纯铝基体表面与水的粘附力随拉伸时间变化的关系曲线说明书CN101935857A4/10页7图。0036图5为经本发。
21、明实施例二处理后的工业纯铝基体表面薄膜与水的粘附力随拉伸时间变化的关系曲线图。0037图6为经本发明实施例三处理后的铜合金基体和表面薄膜的摩擦系数随滑动距离变化的关系曲线图。具体实施方式0038下面通过实施例对本发明作进一步说明。0039实施例一0040本实施例选择尺寸为50302MM的MB8镁合金材料为基底材料,采用循环伏安法在MB8镁合金材料表面制备具有疏水、减摩、防粘着特性的纳米有机薄膜。先用360、800、1200、1500、2000砂纸对MB8镁合金工件进行打磨,并放于丙酮溶液中超声波清洗15MIN,以除去油污,取出冷风吹干待用。0041纳米有机薄膜的制备包括以下步骤及工艺条件004。
22、21配制镀膜电解质溶液00430044选取含有上述所示含有R1为烷基和R2为芳基功能基团的水溶性三氮杂嗪类有机化合物盐8MMOL/L、碱性支持电解盐为02MOL/L氢氧化钾,由蒸馏水配制成有机镀膜用电解质溶液;00452镀膜处理0046将丙酮超声清洗处理后的镁合金样品,直接以三电极方式放入配制好的电解质溶液中进行有机镀膜;采用循环伏安法有机镀膜,循环扫描速率为20MV/S,循环次数为3次,镀膜温度为25;镀膜结束取出后,样品用蒸馏水、无水乙醇依次清洗,然后冷风吹干,即获得具有疏水、减摩、防粘着的有机薄膜。通过椭圆偏振光谱仪测试,制备的薄膜厚度为607NM。0047对处理后的MB8表面进行蒸馏水。
23、接触角性能测试。测试结果如图1所示,经处理后的MB8表面具有疏水功能特性,蒸馏水滴在MB8表面的接触角达到138401,而未经处理的基底材料MB8镁合金的表面的蒸馏水静态接触角仅为685如图2所示。对镀膜前后的表面进行微载荷下的摩擦系数表征测试仪器为瑞士CSM公司的NANOSCRATCHTESTER纳米划痕测试仪,加载载荷为100MN,划痕过程中针尖移动速率为3MM/MIN,下同,图3为经本发明实施例一处理前后的MB8镁合金基体的摩擦系数随滑动距离变化的关系曲线图图3中横坐标为滑动距离,纵坐标为摩擦系数。如图3所示,经镀膜处理后其摩擦系数由0127降低到0078。粘附力测试测试仪器为美国CET。
24、R公司UMT多功能摩擦磨损测试仪,下同表明,最大粘附力从253MN降低到108MN,摩擦系数和粘附力均得到有效降低,对基体能够有效起到减摩、防粘着效果。说明书CN101935857A5/10页80048实施例二0049本实施例选择尺寸为503003MM的工业纯铝材料为基底材料,采用恒电流法在工业纯铝材料表面制备具有疏水、减摩、防粘着特性的纳米有机薄膜。先用1500、2000砂纸对纯铝样品进行打磨,并放于丙酮溶液中超声波清洗15MIN,以除去油污,取出冷风吹干待用;0050纳米有机薄膜的制备包括以下步骤及工艺条件00511配制镀膜电解质溶液00520053选取含有上述所示含有R1为其它类和R2为。
25、烯基功能基团的水溶性三氮杂嗪类有机化合物盐5MMOL/L、碱性支持电解盐为015MOL/L硼酸钠,由蒸馏水配制成有机镀膜用电解质溶液;00542镀膜处理0055将丙酮超声清洗处理后的纯铝样品,直接以三电极方式放入配制好的电解质溶液中进行有机镀膜;采用恒电流法有机镀膜,电流密度为020MA/CM2,镀膜时间为60MIN,镀膜温度为30;镀膜结束取出后,样品用蒸馏水、无水乙醇依次清洗,然后冷风吹干,即获得具有疏水、减摩、防粘着的有机薄膜。通过椭圆偏振光谱仪测试,制备的薄膜厚度为283NM。0056对处理后的纯铝表面进行蒸馏水接触角性能测试。测试结果表明,经处理后的纯铝样品表面具有疏水功能特性,蒸馏。
26、水滴在纯铝样品表面的接触角达到128901,而未镀膜处理的纯铝样品的蒸馏水接触角仅为702。对镀膜前后的表面进行微载荷下的摩擦系数表征和粘附力测试,测试仪器和实验参数同实施例一,图4为未经处理的工业纯铝基体表面与水的粘附力随拉伸时间变化的关系曲线图图4中横坐标为拉伸时间,纵坐标为粘附力,图5为工业纯铝基体经本发明实施例二处理后的表面薄膜与水的粘附力随拉伸时间变化的关系曲线图图5中横坐标为拉伸时间,纵坐标为粘附力。由图4和图5可知,经镀膜处理后其摩擦系数由镀膜前的0134降低到0065,最大粘附力从镀膜前的270MN降低到镀膜后的150MN,摩擦系数和粘附力均得到有效降低,对基体能够有效起到减摩。
27、、防粘着效果。0057实施例三0058本实施例选择尺寸为50302MM的H80铜合金材料为基底材料,采用恒电位法在H80铜合金材料表面制备具有疏水、减摩、防粘着特性的纳米有机薄膜。先用360、800、1200、1500、2000砂纸对铜合金样品进行打磨,并放于丙酮溶液中超声波清洗15MIN,以除去油污,取出冷风吹干待用;0059纳米有机薄膜的制备包括以下步骤及工艺条件00601配制镀膜电解质溶液0061说明书CN101935857A6/10页90062选取含有上述所示含有R1为烯基和R2为烷基功能基团的水溶性三氮杂嗪类有机化合物盐3MMOL/L、碱性支持电解盐为1MOL/L碳酸氢钠,由蒸馏水配。
28、制成有机镀膜用电解质溶液;00632镀膜处理0064将丙酮超声清洗处理后的铜合金样品,直接以三电极方式放入配制好的电解质溶液中进行有机镀膜;采用恒电位法有机镀膜,电位为06V,镀膜时间为15MIN,镀膜温度为10;镀膜结束取出后,样品用蒸馏水、无水乙醇依次清洗,然后冷风吹干,即获得具有疏水、减摩、防粘着的有机薄膜。通过椭圆偏振光谱仪测试,制备的薄膜厚度为248NM。0065对处理后的铜合金样品进行蒸馏水接触角性能测试。测试结果表明,经处理后的纯铝样品表面具有疏水功能特性,蒸馏水滴在纯铝样品表面的接触角达到126201,而未镀膜处理的纯铝样品的蒸馏水接触角仅为718;对镀膜前后的表面进行微载荷下。
29、的摩擦系数表征,测试仪器和实验参数同实施例一,图6为铜合金基体和经本发明实施例三处理后的表面薄膜的摩擦系数随滑动距离变化的关系曲线图。图6表明经镀膜处理后其摩擦系数由0153降低到0079图6中横坐标为滑动距离,纵坐标为摩擦系数;粘附力测试表明最大粘附力从225MN降低到128MN,摩擦系数和粘附力均得到有效降低,对基体能够有效起到减摩、防粘着效果。0066实施例四0067本实施例选择尺寸为50304MM的AZ91D镁合金材料为基底材料,采用恒电流法在AZ91D镁合金材料表面制备具有疏水、减摩、防粘着特性的纳米有机薄膜。先用360、800、1200、1500、2000砂纸对镁合金工件进行打磨,。
30、并放于丙酮溶液中超声波清洗15MIN,以除去油污,取出冷风吹干待用;0068纳米有机薄膜的制备包括以下步骤及工艺条件00691配制镀膜电解质溶液00700071选取含有上述所示含有R1为烷基类和R2为其它类功能基团的水溶性三氮杂嗪类有机化合物盐06MMOL/L、碱性支持电解盐为05MOL/L碳酸氢钠,由蒸馏水配制成有机镀膜用电解质溶液;00722镀膜处理0073将丙酮超声清洗处理后的镁合金样品,直接以三电极方式放入配制好的电解质溶液中进行有机镀膜;采用恒电流法有机镀膜,电流密度为25MA/CM2,镀膜时间为25MIN,镀膜温度为20;镀膜结束取出后,样品用蒸馏水、无水乙醇依次清洗,然后冷风吹干。
31、,即获得说明书CN101935857A7/10页10具有疏水、减摩、防粘着的有机薄膜。通过椭圆偏振光谱仪测试,制备的薄膜厚度为579NM。0074对处理后的AZ91D镁合金表面进行蒸馏水接触角性能测试。测试结果表明,经处理后的AZ91D镁合金表面具有疏水功能特性,蒸馏水滴在AZ91D镁合金表面的接触角达到121701;对镀膜前后的表面进行微载荷下的摩擦系数表征和粘附力测试,测试仪器和实验参数同实施例一,结果为经镀膜处理后其摩擦系数由0138降低到0056,最大粘附力从292MN降低到132MN,摩擦系数和粘附力均得到明显降低,对基体能够有效起到减摩、防粘着效果。0075实施例五0076本实施例。
32、选择尺寸为503005MM的7075铝合金材料为基底材料,采用恒电位法在7075铝合金材料表面制备具有疏水、减摩、防粘着特性的纳米有机薄膜。先用1500、2000砂纸对7075铝合金样品进行打磨,并放于丙酮溶液中超声波清洗15MIN,以除去油污,取出冷风吹干待用;0077纳米有机薄膜的制备包括以下步骤及工艺条件00781配制镀膜电解质溶液00790080选取含有上述所示含有R1和R2均为烯基功能基团的水溶性三氮杂嗪类有机化合物盐10MMOL/L、碱性支持电解盐为3MOL/L亚硝酸钠,由蒸馏水配制成有机镀膜用电解质溶液;00812镀膜处理0082将丙酮超声清洗处理后的铝合金样品,直接以三电极方式。
33、放入配制好的电解质溶液中进行有机镀膜;采用恒电位法有机镀膜,电压为10V,镀膜时间为8MIN,镀膜温度为20;镀膜结束取出后,样品用蒸馏水、无水乙醇依次清洗,然后冷风吹干,即获得具有疏水、减摩、防粘着的有机薄膜。通过椭圆偏振光谱仪测试,制备的薄膜厚度为316NM。0083对处理后的铝合金表面进行蒸馏水接触角性能测试。测试结果表明,经处理后的铝合金样品表面具有疏水功能特性,蒸馏水滴在铝合金样品表面的接触角达到118601;对镀膜前后的表面进行微载荷下的摩擦系数表征和粘附力测试,测试仪器和实验参数同实施例一,结果为经镀膜处理后其摩擦系数由0115降低到0052,最大粘附力从247MN降低到136M。
34、N,摩擦系数和粘附力均得到有效降低,对基体能够有效起到减摩、防粘着效果。0084实施例六0085本实施例选择尺寸为503015MM的纯铜为基底材料,采用循环伏安法在纯铜材料表面制备具有疏水、减摩、防粘着特性的纳米有机薄膜。先用800、1200、1500、2000砂纸对纯铜样品进行打磨,并放于丙酮溶液中超声波清洗15MIN,以除去油污,取出冷风吹干待用;0086纳米有机薄膜的制备包括以下步骤及工艺条件说明书CN101935857A8/10页1100871配制镀膜电解质溶液00880089选取含有上述所示含有R1为烯基和R2为芳基功能基团的水溶性三氮杂嗪类有机化合物盐6MMOL/L、碱性支持电解盐。
35、为03MOL/L硼酸钠,由蒸馏水配制成有机镀膜用电解质溶液;00902镀膜处理0091将丙酮超声清洗处理后的纯铜样品,直接以三电极方式放入配制好的电解质溶液中进行有机镀膜;采用循环伏安法有机镀膜,循环扫描速率为5MV/S,循环次数为5次,镀膜温度为5;镀膜结束取出后,样品用蒸馏水、无水乙醇依次清洗,然后冷风吹干,即获得具有疏水、减摩、防粘着的有机薄膜。通过椭圆偏振光谱仪测试,制备的薄膜厚度为783NM。0092对处理后的纯铜样品进行蒸馏水接触角性能测试。测试结果表明,经处理后的纯铜样品表面具有疏水功能特性,蒸馏水滴在纯铜样品表面的接触角达到134001;对镀膜前后的表面进行微载荷下的摩擦系数表。
36、征和粘附力测试,测试仪器和实验参数同实施例一,结果为经镀膜处理后其摩擦系数由0131降低到0069,最大粘附力从275MN降低到115MN,摩擦系数和粘附力均得到有效降低,对基体能够有效起到减摩、防粘着效果。0093实施例七0094本实施例选择尺寸为50303MM的ZK60镁合金材料为基底材料,采用恒电位法在ZK60镁合金材料表面制备具有疏水、减摩、防粘着特性的纳米有机薄膜。先用360、800、1200、1500、2000砂纸对ZK60镁合金工件进行打磨,并放于丙酮溶液中超声波清洗15MIN,以除去油污,取出冷风吹干待用;0095纳米有机薄膜的制备包括以下步骤及工艺条件00961配制镀膜电解质。
37、溶液00970098选取含有上述所示含有R1为烷基类和R2为其它类功能基团的水溶性三氮杂嗪类有机化合物盐1MMOL/L、碱性支持电解盐为8MOL/L碳酸氢钠,由蒸馏水配制成有机镀膜用电解质溶液;00992镀膜处理0100将丙酮超声清洗处理后的镁合金样品,直接以三电极方式放入配制好的电解质溶液中进行有机镀膜;采用恒电位法有机镀膜,电位为08V,镀膜时间为45MIN,镀膜温度为5;镀膜结束取出后,样品用蒸馏水、无水乙醇依次清洗,然后冷风吹干,即获得具有疏水、减摩、防粘着的有机薄膜。通过椭圆偏振光谱仪测试,制备的薄膜厚度为704NM。说明书CN101935857A9/10页120101对处理后的ZK。
38、60镁合金表面进行蒸馏水接触角性能测试。测试结果表明,经处理后的ZK60镁合金表面具有疏水功能特性,蒸馏水滴在ZK60镁合金表面的接触角达到115401;对镀膜前后的表面进行微载荷下的摩擦系数表征和粘附力测试,测试仪器和实验参数同实施例一,结果为经镀膜处理后其摩擦系数由0141降低到0082,最大粘附力从268MN降低到143MN,摩擦系数和粘附力均得到有效降低,对基体能够有效起到减摩、防粘着效果。0102实施例八0103本实施例选择尺寸为503008MM的6063铝合金材料为基底材料,采用恒电流法在6063铝合金材料表面制备具有疏水、减摩、防粘着特性的纳米有机薄膜。先用1500、2000砂纸。
39、对铝合金样品进行打磨,并放于丙酮溶液中超声波清洗15MIN,以除去油污,取出冷风吹干待用;0104纳米有机薄膜的制备包括以下步骤及工艺条件01051配制镀膜电解质溶液01060107选取含有上述所示含有R1和R2均为烯基功能基团的水溶性三氮杂嗪类有机化合物盐015MMOL/L、碱性支持电解盐为5MOL/L亚硝酸钠,由蒸馏水配制成有机镀膜用电解质溶液;01082镀膜处理0109将丙酮超声清洗处理后的铝合金样品,直接以三电极方式放入配制好的电解质溶液中进行有机镀膜;采用循环伏安法有机镀膜,循环扫描速率为40MV/S,循环次数为12次,镀膜温度为15;镀膜结束取出后,样品用蒸馏水、无水乙醇依次清洗,。
40、然后冷风吹干,即获得具有疏水、减摩、防粘着的有机薄膜。通过椭圆偏振光谱仪测试,制备的薄膜厚度为935NM。0110对处理后的铝合金表面进行蒸馏水接触角性能测试。测试结果表明,经处理后的铝合金样品表面具有疏水功能特性,蒸馏水滴在铝合金样品表面的接触角达到141301;对镀膜前后的表面进行微载荷下的摩擦系数表征和粘附力测试,测试仪器和实验参数同实施例一,结果为经镀膜处理后其摩擦系数由0123降低到0048,最大粘附力从264MN降低到103MN,摩擦系数和粘附力均得到有效降低,对基体能够有效起到减摩、防粘着效果。0111实施例九0112本实施例选择尺寸为503015MM的QSN43铜合金材料为基底。
41、材料,采用恒电流法在QSN43铜合金材料表面制备具有疏水、减摩、防粘着特性的纳米有机薄膜。先用800、1200、1500、2000砂纸对铜合金样品进行打磨,并放于丙酮溶液中超声波清洗15MIN,以除去油污,取出冷风吹干待用;0113纳米有机薄膜的制备包括以下步骤及工艺条件说明书CN101935857A10/10页1301141配制镀膜电解质溶液01150116选取含有上述所示含有R1为烯基类和R2为芳基类功能基团的水溶性三氮杂嗪类有机化合物盐4MMOL/L、碱性支持电解盐为08MOL/L氢氧化钾,由蒸馏水配制成有机镀膜用电解质溶液;01172镀膜处理0118将丙酮超声清洗处理后的铜合金样品,直。
42、接以三电极方式放入配制好的电解质溶液中进行有机镀膜;采用恒电流法有机镀膜,电流密度为8MA/CM2,镀膜时间为10MIN,镀膜温度为25;镀膜结束取出后,样品用蒸馏水、无水乙醇依次清洗,然后冷风吹干,即获得具有疏水、减摩、防粘着的有机薄膜。通过椭圆偏振光谱仪测试,制备的薄膜厚度为418NM。0119对处理后的铜合金样品进行蒸馏水接触角性能测试。测试结果表明,经处理后的铜合金样品表面具有疏水功能特性,蒸馏水滴在铜合金样品表面的接触角达到123601;对镀膜前后的表面进行微载荷下的摩擦系数表征和粘附力测试,测试仪器和实验参数同实施例一,结果为经镀膜处理后其摩擦系数由0128降低到0072,最大粘附力从257MN降低到130MN,摩擦系数和粘附力均得到有效降低,对基体能够起到减摩、防粘着效果。说明书CN101935857A1/3页14图1图2说明书附图CN101935857A2/3页15图3图4图5说明书附图CN101935857A3/3页16图6说明书附图。