书签 分享 收藏 举报 版权申诉 / 135

组织穿透装置.pdf

  • 上传人:54
  • 文档编号:5603506
  • 上传时间:2019-02-21
  • 格式:PDF
  • 页数:135
  • 大小:38.35MB
  • 摘要
    申请专利号:

    CN201280030050.3

    申请日:

    2012.04.17

    公开号:

    CN103607950A

    公开日:

    2014.02.26

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效IPC(主分类):A61B 5/15申请日:20120417|||公开

    IPC分类号:

    A61B5/15; A61B5/151; A61B5/157

    主分类号:

    A61B5/15

    申请人:

    赛诺菲-安万特德国有限公司

    发明人:

    D.M.弗里曼; T.舒普; J.佩里; M.卡斯尔; R.库吉扎基; R.恩格勒特; D.奥尔登

    地址:

    德国法兰克福

    优先权:

    2011.04.18 US 13/088,569

    专利代理机构:

    北京市柳沈律师事务所 11105

    代理人:

    吴艳

    PDF完整版下载: PDF下载
    内容摘要

    一种体液测试装置具有至少一个穿透构件和构造成与该至少一个穿透构件相联接的穿透构件驱动器。多个被分析物传感器联接到辐条式盘基底。每个穿透构件能够穿过盘基底的辐条之间以允许移除使用过的穿透构件和插入新的穿透构件,而不用移除所述盘。一种可抛弃件容纳所述至少一个穿透构件和多个被分析物传感器。

    权利要求书

    权利要求书
    1.  一种体液测试装置,包括:
    至少一个穿透构件;
    穿透构件驱动器,所述穿透构件驱动器构造成联接到所述至少一个穿透构件;
    辐条式盘基底上的多个被分析物传感器,其中每个穿透构件能够穿过所述盘基底的辐条之间,以便移除使用过的穿透构件和插入新的穿透构件而不用移除所述盘;和
    可抛弃型壳体,所述可抛弃型壳体容纳所述至少一个穿透构件和所述多个被分析物传感器。

    2.  根据权利要求1所述的装置,其中所述多个传感器在盘上阵列布置。

    3.  根据权利要求3所述的装置,其中所述辐条式盘具有多个辐条,其中所述辐条中的至少一部分辐条被弯曲到平面外以便使用。

    4.  根据权利要求1所述的装置,其中每个传感器被个体地密封以抵挡湿气,并且其中在定位新的传感器以便使用时,所述盒壳体移除所述湿气密封。

    5.  根据权利要求1所述的装置,其中每个传感器被个体地密封以抵挡湿气,并且其中在定位新的传感器以便使用时,所述装置移除所述湿气密封。

    6.  根据权利要求1所述的装置,其中所述穿透构件被构造成无机械夹持或连接地联接到所述穿透构件驱动器。

    7.  根据权利要求1所述的装置,进一步包括:
    至少一个位置标记,所述位置标记构造成由位置传感器。

    8.  根据权利要求1所述的装置,其中所述穿透构件包括与所述可抛弃型壳体一起工作以限制所述穿透构件的运动范围的特征。

    9.  根据权利要求1所述的装置,进一步包括:
    无菌挡板,所述无菌挡板包括去湿特性。

    10.  用于单击注射葡萄糖装置的可抛弃件,包括:
    二次模制的穿透构件,其中所述二次模制件包括用于所述穿透构件的装置接口,并且所述二次模制件是用于所述穿透构件的装置接口;
    传感器;和
    可抛弃型件,所述可抛弃件用于管理所述刺血针和传感器的操纵、定位 和使用。

    11.  根据权利要求10所述的可抛弃件,其中所述二次模制件提供了用于所述穿透构件的无菌密封。

    12.  根据权利要求10所述的可抛弃件,进一步包括:
    所述可抛弃件的铰接元件,所述铰接元件构造成用于管理所述传感器相对于所述穿透构件的位置,以在不使用时允许所述传感器定位成相对于所述刺血针偏离轴线。

    13.  一种用于存储被分析物传感器的装置,包括:
    腔室;
    多个血糖传感器,所述多个血糖传感器位于所述腔室中;和
    推压传感器使之抵靠所述腔室的端部处的盖的装置。

    14.  根据权利要求13所述的装置,其中推压所述传感器的所述装置是弹簧。

    15.  根据权利要求13所述的装置,进一步包括:
    在所述盖的密封面中的凹槽,所述凹槽仅接收一个血糖传感器。

    16.  根据权利要求13所述的装置,进一步包括:
    密封,所述密封保持所述腔室内的隔离环境,以允许去湿从而保护所述传感器。

    说明书

    说明书组织穿透装置
    背景技术
    穿刺装置在医疗护理产品行业中已知用于刺破皮肤以产生用于分析的血液。血样的生化分析是用于确定临床信息的诊断工具。许多医疗点测试使用全血来执行,最常见的是监测糖尿病患者的血糖水平。这一方法的其它用途包括基于前凝血酶时间测量进行的氧和凝血分析。典型地,用于这类分析的血滴通过如下方式获得:在指尖制成小的切口,形成小的伤口,由此在皮肤表面上产生小的血滴。
    早期的穿刺方法包括用针头或者剃刀刺破或者切开皮肤。当今的方法利用穿刺装置,穿刺装置包含有多个弹簧、凸轮和质量致动器以驱动刺血针。这些包括用以驱动刺血针的悬臂弹簧、膈膜、盘簧以及重力悬锤。典型地,装置被预先加载或者用户对装置加载。装置被保持靠着皮肤,并且用户或者来自用户皮肤的压力机械地触发刺血针的冲击式起动。刺血针的向前移动和皮肤贯穿深度由机械限动器和/或阻尼以及用以使刺血针退回的弹簧或者凸轮确定。除皮肤的振荡激励之外,这些装置可能因驱动器冲击起动挡块的端部引起的反冲而多次撞击,并且仅允许关于皮肤厚度变化进行粗调。在穿刺装置的不同用户之间,不同的皮肤厚度可能就疼痛感知、血量以及获得血的成功率方面产生不同结果。
    成功率大体包括:可以通过一个穿刺动作产生血样,该血样的体积足以执行所需的分析检验。血可以自发地出现在皮肤表面上,或者可以从伤口“挤出”。挤出大体上包括按压指头侧部或者伤口附近,以将血压出到表面。穿刺动作产生的血微滴必须到达皮肤表面以可用于测试。对于单步穿刺和血样采集方法,自发血微滴形成是必要的。然后,可将测试带与穿刺过程对接,用于代谢物测试。
    当使用现有方法时,血通常从切开的血管流出,但然后被封闭在皮肤表面之下而形成血肿。在其它示例中,伤口被形成,但没有血从伤口流出。在任一示例中,穿刺过程不能同样品采集和测试步骤相结合当今机械式起动系统引起的自发血微滴产生随起动类型而变化,但平均起来,大约50%的刺 血针撞击会是自发的。需要其它方式的挤出来产生血。如果每两次撞击中的一次撞击不产生自发血样,则机械式起动不太可能提供用于整合的样品采集和测试的手段。
    许多(依赖胰岛素的)糖尿病患者被要求每天自我测试血糖水平五到六次。减少测试所需的步骤数目将提高测试规范的适应性。其中测试带整合有穿刺和样品产生的单步测试步骤将实现简化的测试规范。提高的适应性与因糖尿病引起的并发症的长期管理直接相关,这些并发症包括因血液中葡萄糖水平的较大变化导致的视网膜病变、神经病、肾衰竭以及末梢脉管变性。因此,通过频繁测试紧密地控制血浆葡萄糖对于疾病管理是强制性的。
    必须使用穿刺装备来获得并且分析血样的患者频繁遭遇的另一问题在于,正常操作所述穿刺和样品测试装备需要的手动作敏捷性和手眼协调的量特别地因视网膜病变和神经病而对年长糖尿病患者变得困难。对于那些患者,操作现有的刺血针和样品测试装备能够是一种挑战。一旦产生血微滴,该微滴则必然被引导到小测试带等等的接收通道中。如果样品到带上的布置不成功,则需要重复整个步骤(包括再穿刺皮肤)以获得新的血微滴。
    需要的是这样一种装置,其能够可靠地、反复地并且无痛的产生自发血样。另外,要求不需要高度的手动作敏捷性或手眼协调的对样品执行分析检验的方法。将样品产生(穿刺)与样品测试(样品到测试带)的整合将形成简单的单步测试步骤,从而通过增大自测试规范的适应性而提供更好的疾病管理。
    发明内容
    因此,本发明的目的在于提供可靠地、反复地并且无痛地产生自发血样的装置和方法。
    本发明的另一目的在于提供一种不需要高度的手动作敏捷性或手眼协调性的对样品执行分析检验的方法。
    本发明的另一目的是提供一种装置,该装置用于将样品产生(穿刺)与样品测试(样品到测试带)整合以形成简单的单步测试程序,从而通过增大自测试规范的适应性而提供更好的疾病管理。
    本发明的这些及其他目的通过这样的体液测试装置实现,该体液测试装置具有至少一个穿透构件和构造成与该至少一个穿透构件相联的穿透构件 驱动器。多个被分析物传感器联接到辐条式盘基底。每个穿透构件能够穿过盘基底的辐条之间以允许移除使用过的穿透构件和插入新的穿透构件,而不用移除所述盘。可抛弃件容纳所述至少一个穿透构件和多个被分析物传感器。
    在本发明的另一实施例中,用于单击葡萄糖装置的可抛弃件具有二次模制的穿透构件。所述二次模制件包括用于穿透构件的装置接口,并且二次模制件是用于穿透构件的装置接口。传感器被包括作为可抛弃件,用于管理刺血针和传感器的操纵、定位和使用。
    附图说明
    图1、2、3是弹簧驱动、凸轮驱动和可控力驱动器的实施例的刺血针速度对位置的曲线图。
    图4示出了呈具有螺线管型构造的平坦电动刺血针驱动器形式的可控力驱动器的实施例。
    图5示出了呈使用绕线螺线管型构造的柱状电动刺血针驱动器形式的可控力驱动器的实施例。
    图6示出了由谐振的弹簧/质量系统驱动的刺血针的位移-时间曲线。
    图7示出了由谐振的弹簧/质量系统驱动的刺血针驱动器的速度-时间曲线。
    图8示出了可控力驱动器的实施例的位移-时间曲线。
    图9示出了可控力驱动器的实施例的速度-时间曲线。
    图10示出了在刺破血管之后部分地退回的刺血针针头,血示出为在伤口段中跟随针头。
    图11示出了血跟随刺血针针头到达皮肤表面,同时保持打开的伤口段。
    图12是示出受控的反馈回路的简图。
    图13是刺血针的推进和退回期间的力-时间曲线图,示出了穿刺周期的一些特征段。
    图14示出了刺血针末端,示出了能够影响穿刺疼痛、血量和成功率的特征。
    图15示出了刺血针末端的实施例。
    图16是示出刺血针随时间的位移的曲线图。
    图17是示出流速分布的实施例的曲线图,该流速分布包括刺血针随时间的速度,包括刺血针退回期间的减小的速度。
    图18示出了在形成用螺旋状物张开的切口之前、期间和之后的刺血针的实施例的顶端。
    图19示出了用弹性体张开的手指伤口段实施例。
    图20是具有本发明特征的组织穿透装置的透视图。
    图21是图20的组织穿透装置的局部纵截面的投影图。
    图22是替代实施例的局部投影图。
    图23是沿图21的线23-23截取的图21的组织穿透装置的横向横截面图。
    图24是沿图21的线24-24截取的图21的组织穿透装置的横向横截面图。
    图25是沿图21的线25-25截取的图21的组织穿透装置的横向横截面图。
    图26是沿图21的线26-26截取的图21的组织穿透装置的横向横截面图。
    图27是图21的组织穿透装置的驱动联接器的侧视图。
    图28是图21的组织穿透装置的驱动联接器的正视图,其中为例示的目的未示出刺血针。
    图29A、29B、29C示出了例示刺血针控制法的流程图。
    图30是患者手指和向手指皮肤移动的刺血针末端的简图。
    图31是患者手指和与患者手指皮肤接触的刺血针末端的简图。
    图32是压低患者手指皮肤的刺血针末端的简图。
    图33是进一步压低患者手指皮肤的刺血针末端的简图。
    图34是穿透患者手指皮肤的刺血针末端的简图。
    图35是穿透患者手指皮肤至预定深度的刺血针末端的简图。
    图36是从患者手指皮肤退出的刺血针末端的简图。
    图37、38、39、40、41示出了可以测量皮肤弹性反冲的组织穿透方法。
    图42是穿刺周期的位置及速度-时间的图解表示。
    图43示出了其中布置有刺血针的皮肤层的截面图。
    图44是穿刺周期的速度-位置的图解表示。
    图45是穿刺周期的速度-时间的图解表示。
    图46是驱动器线圈组件和位置传感器的替代实施例的局部纵截面的投影图。
    图47是具有本发明特征的扁平绕线圈驱动器的透视图。
    图48是图47的扁平绕线圈驱动器的分解图。
    图49是具有本发明特征的渐缩形驱动器线圈组件的局部纵截面的投影图。
    图50是沿图49中的线50-50截取的图49中的渐缩形线圈驱动器组件的横向横截面图。
    图51示出了容纳刺血针和储样器的取样模块的实施例。
    图52示出了包括驱动器和腔室的壳体,其中能够装入图51所示的模块。
    图53示出了组织穿透取样装置,其中模块被装入到壳体中。
    图54示出了刺血针构造的替代实施例。
    图55示出了样品输入口、储样器和仿形人机工程的手指接触区的实施例。
    图56示出了穿刺动作期间的组织穿透取样装置。
    图57示出了热样品传感器,该热样品传感器在流体可能流过的表面附近以及可能暴露于流过该表面的流体的已取样的检测元件的替代位置附近具有样品检测元件。
    图58示出了热样品传感器的构造,其带有包括单独的加热元件的样品检测元件。
    图59描绘了三个热取样检测器,诸如图58中所示的热取样检测器,其中样品检测元件傍着一表面彼此接近地布置。
    图60示出了相对于具有分析部位的通道定位的热样品传感器。
    图61示出了热样品传感器,其中样品检测分析器定位成相对于分析部位以阵列方式布置在表面上。
    图62示意性地示出了取样模块装置,其包括热样品传感器的多个可能构造,包括相对于样品流动通道和分析区域定位的样品检测元件。
    图63示出了具有本发明特征的组织穿透取样装置。
    图64是图63的组织穿透取样装置的取样模块的局部顶视图。
    图65是图64中所示的取样模块的通过线65-65的横截面图。
    图66示意性地示出了取样模块的替代实施例的截面图。
    图67描绘了取样模块的包围取样口的一部分。
    图68、69、70示出了在弹簧致动的刺血针驱动器使用期间刺血针驱动器的实现在三个不同位置处的截面图。
    图71示出了具有本发明特征的组织穿透取样装置的实施例。
    图72示出了包括多个取样模块的芯匣的顶面。
    图73示出了定位在读出器中的取样芯匣的取样模块的局部段。
    图74是带有取样模块的芯匣的组织穿透取样装置的局部剖切透视图。
    图75是图56的组织穿透取样装置的局部剖切正视图。
    图76是图75的组织穿透取样装置的顶视图。
    图77是一段取样模块带的透视图,所述取样模块带具有通过柔性聚合物片串联连接的多个取样模块。
    图78是图59的取样模块带中的单个取样模块的透视图。
    图79是图78中的取样模块的一段柔性聚合物片的仰视图,示出了沉积在柔性聚合物片底面上的柔性导线和触点。
    图80是无柔性聚合物盖板或者刺血针的图77的取样模块的主体部分的透视图。
    图81是图80的取样模块的主体部分的放大部分,示出了取样模块的输入口、样品流动通道、分析区域、刺血针通道和刺血针引导件。
    图82是具有多个小容积分析区域的取样模块的替代实施例的一部分的放大投影图。
    图83是能够容纳和引导刺血针而无取样或者分析功能的刺血针模块的主体部分的透视图。
    图84是驱动联接器的投影图,该驱动联接器具有构造成接收刺血针的驱动头的T-狭槽。
    图85是从侧方观察的图84的驱动联接器的投影图,示出了驱动联接器的导向滑台。
    图86是图84的驱动联接器的透视图,其中刺血针被装入驱动联接器的T-狭槽中。
    图87是图86的驱动联接器的透视图,其中刺血针的驱动头完全地装入驱动联接器的T-狭槽中。
    图88是布置在驱动联接器的T-狭槽内的取样模块带的透视图,其中取样模块之一的刺血针的驱动头装入在驱动联接器的T-狭槽内。
    图89是取样模块芯匣的透视图,其中取样模块布置成环形构造。
    图90是取样模块芯匣的透视图,其中多个取样模块布置成块矩阵,刺血针驱动头构造成与具有粘结剂联接的驱动联接器配合。
    图91是驱动联接器的替代实施例的侧视图,该驱动联接器具有构造成接收刺血针的L形驱动头的侧向狭槽,刺血针布置在刺血针模块内并且示出了为带有装入侧向狭槽中的L形驱动头。
    图92是图91的驱动联接器、带有L形驱动头的刺血针和刺血针模块的分解图。
    图93是与受控电磁驱动器的远端相联的刺血针芯匣的前部的透视图。
    图94是图93的刺血针芯匣的正视图。
    图95是图93的刺血针芯匣的顶视图。
    图96是图93的刺血针芯匣的透视图,其中为图示内部机构,芯匣体的一部分和刺血针插座未示出。
    图97、98、99、100、101示出了制剂注射装置的实施例。
    图102、103、104、105、106示出了具有取样芯匣体和刺血针芯匣体的用于取样的芯匣的实施例。
    图107、108、109、110示出了本发明的实施例,其中多个血糖测试传感器组装在单个可抛弃件上。
    图111、112、113、114、115示出了本发明的实施例,其中图111的实施例具有用于测试血糖的多个传感器。
    图116和117示出了本发明的实施例,其中刺血针完全容纳在被插入致动器螺管线圈的孔道中的芯匣内。
    图118、119、120示出了本发明的实施例,具有位于柔性传送载体上的多个独立的间隔的传感器。
    图121、122、123、124示出了具有二次模制的刺血针的本发明的实施例。
    图125、126、127示出了带有多个传感器测试带的本发明的实施例,所述传感器测试带具有整合的样品收集结构和相关联的电触点。
    图128、129、130、131、132、133、134、135、136、137、138、139 示出了带有壳体的本发明的实施例,该壳体包括容纳大量血糖传感器的密封室。
    图140、141、142、143、144、145示出了带有多个血糖传感器的本发明的实施例,所述多个血糖传感器通过线性滑动运动的作用散布。
    具体实施方式
    利用现有的组织穿透装置,诸如其中组织穿透装置的组织穿透元件是刺血针的穿刺装置,包括角质层的皮肤厚度和表皮的水合作用的变化能够在不同用户之间产生不同的结果。许多现行设备依赖可调节的机械限动器或者阻尼,来控制刺血针的穿透深度。
    弹簧驱动的和凸轮传动的组织穿透装置两者的移动速度曲线分别示出在图1和2中。相对于刺血针的位移X绘制出速度。图1示出了典型的弹簧驱动的装置的位移/速度曲线。刺血针出射速度增大,直到刺血针碰撞到皮肤10表面。由于皮肤的张力特性,其将弯曲或者变形直到刺血针末端刺穿表面20,刺血针然后将穿过皮肤直到它到达全程挡块30。此时,位移是最大的,并且达到穿透的极限尺寸,并且刺血针停止。机械挡块吸收来自驱动器的多余能量,并且将其传送到刺血针。弹簧中贮存的能量能够导致反冲,从而引起多次刺穿,如在图1中看到的。这样由于额外的组织穿透以及震动能量传送到皮肤中且刺激神经末梢而导致不必要的疼痛。然后刺血针退回,并且刺血针退出皮肤40以返回到壳体中。对于该类型的弹簧致动的驱动器,速度无法以任何有意义的方式来控制。
    图2示出了凸轮驱动的驱动器的位移/速度曲线,这与图1中的那些类似,但由于返回路径通过凸轮构造来规定,使得一次致动不可能引起多次组织穿透。基于凸轮的驱动器能够对于刺血针速度-位移提供一定水平的控制,但并不足以实现许多所需的位移/速度曲线。
    通过利用可控力驱动器来驱动刺血针,诸如由电磁能激励的驱动器,实现了优点。可控驱动器能够实现所需的速度-位置曲线,诸如图3中所示的曲线。本发明的实施例允许准确控制穿透深度、控制刺血针穿透和收回速度的能力,并且由此降低了在切入皮肤时感知的疼痛。本发明实施例包括可控驱动器,该可控驱动器能够与带有位置传感器的反馈回路一同使用来控制传送到刺血针的动力,这能够优化速度和位移曲线以补偿皮肤厚度的变化。
    减轻疼痛能够通过使用迅速的刺血针切割速度来实现,这通过利用轻的刺血针促成。迅速的切割使得刺血针撞击皮肤时除压缩皮肤以有效切割之外产生的冲击波最低。如果使用可控驱动器,则能够不需要机械挡块。由于刺血针的非常轻的质量以及无机械挡块,使得切割期间少量的或者没有振动能传递到手指。
    穿刺装置,诸如具有图1和2中所示的速度-位置曲线的穿刺装置典型地产生50%的自发血。另外,一些刺穿动作不成功并且不产生血,即使挤压手指也是如此。自发血微滴产生依赖于到达毛细血管和小静脉,这样产生血样。因此,切割装置的正确穿透深度成为一个问题。由于皮肤厚度和水合作用的变化,一些类型的皮肤在切割开始之前更多地变形,且因此实际的穿透深度将更小,导致稍弱的毛细管和小静脉切割。可控力驱动器能够控制刺血针的穿透深度并且由此提高血产量的自发性。此外,使用可控力驱动器能够允许刺血针的缓慢退回(比切割速度慢),从而因伤口通道保持打开用于血自由通过达到皮肤表面而提高了成功率。
    当血从切割的脉管沿伤口段流到皮肤表面时发生自发血产生,血在皮肤表面能够被收集和测试。组织的弹性参数可以迫使伤口段在刺血针退回之后闭合,从而阻止血到达表面。但是,如果刺血针缓慢地从伤口段退出,由此保持伤口打开,则血会在刺血针退出时在刺血针末端之后沿着未闭的通道流出(参考图10和11)。因此,控制进出伤口的刺血针速度的能力允许装置补偿皮肤厚度改变和皮肤水合作用变化,并且由此以最大成功率实现自发血,同时将疼痛降至最小。
    电磁驱动器能够直接联接到刺血针,从而使得刺血针的质量最小化并且允许驱动器在预定深度处停止,而不用机械挡块。替代地,如果需要机械挡块实现主动定位,则能够使得传递到挡块的能量最小化。电磁驱动器允许在整个穿刺过程的速度-位置曲线上的可编程控制,包括刺血针的起始时刻、跟踪刺血针位置、测量刺血针速度、控制远端挡块加速度以及控制皮肤穿透深度。
    参考图4,示出了组织穿透装置的实施例。组织穿透装置包括电磁驱动器形式的可控力驱动器,其可用于驱动刺血针。如在此使用的,术语“刺血针”包括任何尖锐或者钝的构件,优选地具有较低的质量,用以刺入皮肤用于切割血管并且允许血流到皮肤表面的目的。如在此使用的,术语“电磁驱 动器”大体包括移动或者驱动组织穿透元件的任何装置,诸如受电或磁性感应力作用的刺血针。图4是电磁驱动器的实施例的局部分解图。驱动器的上半部被示出为已组装。驱动器的下半部为说明的目的示出为被分解。
    为说明的目的,图4示出了与固定壳体或者PC电路板20分离的内部绝缘壳体22,和与内部绝缘壳体22分离的刺血针24和标记26组件。另外,仅四个铆钉18显示为附连到内部绝缘壳体22并且与PC电路板20分离。在一实施例中,位于PC电路板20和30中的PC电路板中的每一线圈驱动磁场铁心通过铆钉连接到内部绝缘壳体22和32。
    电磁驱动器具有运动部件和静止部件,运动部件包括刺血针组件,该刺血针组件带有刺血针24和附连在近端或驱动端处的透磁标记26,而静止部件包括带有电场线圈的静止壳体组件,电场线圈布置成使得它们在标记处产生平衡场以减少或消除作用在标记上的任意净横向力。电场线圈大体上是一个或者更多个金属线圈,其在电流通过线圈时产生磁场。铁标记是平坦的或增大的磁性材料件,其增大刺血针组件的表面积以提高在刺血针近端和磁场线圈生成的磁场之间所产生的磁力。刺血针和铁标记的组合质量能够最小化以促进急剧加速而引入到患者皮肤,从而减少刺血针在皮肤中停止时的冲击并且便于在整个取样周期中的迅速速度廓线改变。
    静止壳体组件由组装成单个单元的PC电路板20、下内部绝缘壳体22、上内部绝缘壳体32、上PC电路板30和铆钉18组成。下和上内部绝缘壳体22和32被减载以形成狭槽以便刺血针组件能够从与刺血针推进和退回方向垂直的侧面滑入驱动器组件。这允许除去刺血针组件和用另一刺血针组件重复使用静止壳体组件,同时避免更换期间的不慎刺血针起动。
    上下静止壳体20和30中的电场线圈被制成为多层印制电路(PC)板。它们也可是常规的盘绕金属丝线圈。材料或者其它的低磨擦绝缘材料被用以构造下部和上部内部绝缘壳体22和32。每一绝缘壳体安装在PC电路板上,以提供电绝缘和人体防护,以及提供对于刺血针的低磨擦引导。下部和上部内部绝缘壳体22和32提供带有小间隙的参考面,以便刺血针组件24和26能够与PC电路板中的驱动磁场线圈对准以实现良好的磁耦合。
    铆钉18将下部内部绝缘壳体22连接到下部静止壳体20,并且由用以会聚磁场的可透磁材料制成,诸如铁氧体或者钢。这使得上部内部绝缘壳体32和上部静止壳体30的构造镜像对称。这些铆钉形成电场线圈的磁极。PC电 路板用多层线圈或者用多个板制成。每个层围绕中央孔支撑螺旋形轨道。交替的层从中心向外螺旋延伸或者从边缘向内螺旋延伸。以这种方法,每一层经由简单折馈通孔连接,并且电流总是在同一方向行进,叠加安培匝数。
    在下部和上部静止壳体20和30内的PC电路板利用铆钉18连接到下部和上部内部绝缘壳体22和32。下部和上部内部绝缘壳体22和32将铆钉头暴露于狭槽的相反端,其中刺血针组件24和26在该狭槽中行进。来自每一铆钉的磁场曲线在铆钉头处形成磁极。位于下部和上部静止壳体20和30中的每个壳体中的PC电路板的相反侧上的铁条通过连接铆钉而完成磁路。由诸如铁或者钢的可透磁材料制成的任何紧固件能够用以替代铆钉。由可透磁材料制成且以马蹄形形状形成的单个部件能够用以替代铆钉/螺钉和铁条组件。运行中,附连到刺血针24的透磁标记26被分成狭缝和条棒34。狭缝图案是交错的,以便线圈能够以两阶段、三阶段或更多阶段来驱动标记26。
    下部和上部PC电路板20和30两者均包含驱动线圈,以便在标记26上方和下方均有对称磁场。当该对PC电路板通电时,在标记26上的可透磁铁的狭缝之间围绕条棒形成磁场。标记的条棒经受力的作用,该力趋于将可透磁材料移动到使磁力线的数目和长度最小并在磁极之间传导磁力线的位置。
    当标记26的条棒在磁极的铆钉18之间对中时,在标记上无净力作用,并且任何干扰力均被磁场的不平衡抵制。所述装置的这一实施例的工作原理类似于螺线管的工作原理。螺线管不能通过排斥铁来进行推动;它们仅能够通过将铁吸入到最低能量位置而进行拉动。标记26一侧上的狭缝34相对于另一侧偏移磁极节距的近似一半。通过交替地致动位于PC电路板每一侧上的线圈,刺血针组件能够相对于静止壳体组件移动。通过选择性地激励与刺血针组件上的金属标记相邻的线圈,建立移动方向。替代地,偏移四分之一节距的罩极线圈或者三相、三极设计建立所述移动方向。图4中所示的下部和上部PC电路板20和30包含电场线圈,该电场线圈驱动刺血针组件和用于控制整个电磁驱动器的电路。
    上述实施例一般使用磁力吸引的原理,这与通常可用的环状步进马达(Hurst Manufacturing BA Series motor,或者1997年“电工手册(Electrical Engineering Handbook)”第二版第1472-1474页)类似。这些参考文献由此通过引用合并入本文。其它实施例能够包括线性感应驱动器,其使用变换磁 场以在刺血针组件中感应出电流。这些感应电流产生次生磁场,次生磁场排斥主磁场并且对刺血针组件施加净力。线性感应驱动器使用电动控制器来从极到极扫过磁场,从而推进其前方的刺血针。通过改变驱动电压和频率改变磁场强度以及扫描速率,控制施加到刺血针组件的力及其速度。
    线圈和铆钉用以会聚磁通量的布置同样适用于随着磁场中的电流接通而形成增长磁场的感应设计。增长磁场在传导标记中形成反向电流。在线性感应马达中,标记是导电的,并且其磁性特性并不重要。铜或者铝是可用于传导标记的材料。一般地使用铜,原因在于其良好的电导率。反向的电场产生反向的磁场,该反向的磁场排斥线圈磁场。通过调整线圈电力的相位,能够产生移动的场,该移动的场以恰低于线圈的同步速率的速率推动标记。通过控制扫描速率,并且通过产生多次扫描,标记能够以希望的速度移动。
    图5示出了螺线管型电磁驱动器的另一实施例,其能够使用直流(DC)电源驱动安装到刺血针组件的铁芯或者条块。电磁驱动器包括驱动器线圈组件,驱动器线圈组件被沿着刺血针的路径分成三个单独线圈,即两个端部线圈和一中间线圈。直流电流被交变地送至线圈以推进刺血针和使刺血针退回。虽然驱动器线圈组件示出为带有三个线圈,但可以使用任何合适的线圈数,例如可以使用4、5、6、7或更多个线圈。
    静止铁壳体40容纳驱动器线圈组件,第一线圈52侧面与铁分隔器50相接,铁分隔器50在内径处汇聚磁通量,从而形成磁极。内部绝缘壳体48将刺血针42和铁芯46从线圈分离,并提供了光滑、低磨擦的引导面。刺血针引导件44进一步使刺血针42和铁芯46对中。通过第一线圈52、中间线圈和第三线圈之间的电流交替来吸引铁芯46,从而使刺血针42突出和退回。使线圈次序换向并将铁芯和刺血针吸引回到壳体中,这使得刺血针退回。刺血针引导件44另外用作用于安装到刺血针42的铁芯46的挡块。
    如上所述,使用弹簧凸轮驱动方法的组织穿透装置在刺血针推进和退回时具有对称或者近似对称的致动位移和速度曲线,如图6和7所示。在大多数可用的刺血针装置中,一旦开始起动,则储存的能量确定了速度曲线,直到能量消散。控制刺血针的冲击、回缩速度及在组织内的停留时间能够用于实现高的成功率,同时适应皮肤特性的变化并使得疼痛最小化。优点能够通过考虑如下事实实现:即组织停留时间与刺血针试图刺入皮肤表面时皮肤的变形量以及基于皮肤水合作用引起的患者之间的皮肤变形的不同有关。
    控制穿透的速度和深度的能力能够通过使用其中反馈是驱动器控制的一个整体部分的可控力驱动器来实现。这种驱动器能够控制金属或者聚合物的刺血针或者任何其它类型的组织穿透元件。这种驱动器的动态控制见图8和图9,图8示出了受控位移曲线的实施例,而图9示出了受控的速度曲线的实施例。这些被与图6和图7相比较,其中图6和7分别示出了谐振的弹簧/质量拖动的驱动器的位移和速度曲线的实施例。
    减轻的疼痛能够通过使组织穿透元件,诸如刺血针,进入组织的冲击速度大于2m/s来实现。
    在剖切小静脉/毛细管网之后以低的速度使刺血针退回使得血溢出伤口段并且自由地流到表面,由此在退回期间用刺血针将通道保持为打开,如图10和11所示。在伤口皮片附近,刺血针的低速退回阻止了伤口皮片密封所述通道。由此,减缓刺血针退回的能力直接有助于提高获得血的成功率。对于将取样和采集组合成为整合的取样模块,诸如整合有葡萄糖测试带的整合的葡萄糖取样模块,将取样成功率增大到接近100%会是很重要的。
    再次参考图5,刺血针和刺血针驱动器构造成使得反馈控制基于刺血针位移、速度或者加速度。与实际的刺血针路径有关的反馈控制信息被返回到处理器,诸如图12中所示的处理器,该处理器调节传递至驱动器的能量,由此准确地控制刺血针的推进和退回。驱动器可以由电流驱动,电流包括直流和交流电流。
    在图5中,所示的电磁驱动器能够使用直流(DC)电源驱动安装到刺血针组件的铁芯或者条块,并且还能够通过测量铁芯和线圈之间的磁耦合确定铁芯位置。线圈能够成对使用,以将铁芯吸入驱动器线圈组件。随着线圈之一被通电,能够监测相邻线圈中的相应感应电流。该感应电流的强度与通过铁芯提供的磁耦合度有关,并且能够用以推断铁芯位置且由此推断刺血针的相对位置。
    在一段时间后,驱动电压能够关断,从而允许线圈松弛,然后重复该循环。线圈之间的磁耦合度被电子地转换成成比例的直流电压,该直流电压供给到AD转换器。然后,数字化的位置信号由中央处理单元(CPU)处理并且与所需的“标称”位置比较。CPU使用实际位置和标称位置之间的误差来设置提供到螺管线圈的下一电力脉冲的水平和/或长度。
    在另一实施例中,驱动器线圈组件具有三个线圈,包括侧面与平衡检测 线圈相接的中央驱动线圈,它们构建在驱动器组件中以便它们包围致动或者磁性作用区,使得该区域在中间行程处对中在中间线圈上。当电流脉冲施加到中央线圈时,在相邻的感测线圈中感应出电压。如果感测线圈连接在一起使得它们的感应电压彼此反向,则所生成的信号将在从中间行程沿一个方向偏转时是正的,而在另一方向上是负的,并且在中间行程处为零。该测量技术通常用在线性可变差动变压器(LVDT)中。刺血针位置通过测量两个感应线圈之间的电平衡来确定。
    在另一实施例中,反馈回路能够使用市售的LED/光换能器模块,诸如Optek技术公司(1215W.Crosby Road,Carrollton,Texas,75006)制造的OPB703,来确定从静止壳体上的固定模块至安装在刺血针组件上的反射面或者目标的距离。LED用作光发射器以将光束发送到反射面,反射面又将光反射回到光换能器,光换能器用作光传感器。通过由光换能器测量反射光的强度来确定大约4mm范围上的距离。在另一实施例中,反馈回路能够使用刺血针轴本身上的可透磁区域作为线性可变差动变压器(LVDT)的芯。
    通过选择性地对刺血针轴的一部分退火或者通过在刺血针组件中包括带有足够透磁性的成分,诸如铁氧体,形成可透磁区域,以允许相邻感应线圈之间的耦合。在设计过程中规定线圈尺寸、匝数、驱动电流、信号放大和相对于可透磁区域的气隙。在另一实施例中,反馈控制对压电传动器供电,以在基本位移曲线上叠加高频振荡。通过允许刺血针“拉锯”式地进入组织或者利用刺血针前缘的高频振动产生的空化能量破坏细胞,压电传动器提供了了提高的切割效率并且减少了疼痛。供给到压电传动器的驱动电力被监视,以监测在装置与目标组织相互作用时引起的阻抗偏移。最终的力测量与刺血针的已知质量结合用以确定刺血针加速度、速度和位置。
    图12示出了使用处理器的反馈回路的操作。处理器60将曲线存入非易失性存储器。用户输入关于穿刺动作的期望条件或者参数的信息。基于通过工厂中测试确定的或者由操作者编程的典型或者希望的组织穿透装置性能,处理器60从已被编程到处理器60中的一组可选择驱动器曲线中选取驱动器曲线62。处理器60可以通过基于附加的用户输入信息64定标或者修改曲线来进行定制。一旦处理器已经选择并定制了曲线,则处理器60准备好调制经由放大器70从电源66到刺血针驱动器68的电力。处理器60使用位置感测机构74通过模-数转换器76测量刺血针72的位置。位置感测机构的示例 已经在上述实施例中说明。处理器60将刺血针的实际曲线与预定曲线比较来计算刺血针的移动。处理器60通过信号发生器78调制送到刺血针驱动器68的电力,信号发生器78控制放大器70以使刺血针的实际曲线不超过预定曲线大于预设的误差限度。误差限度是刺血针的控制的精度。
    在穿刺动作之后,处理器60能够允许用户对穿刺动作的结果分级。处理器60将这些结果和构造存入个体用户的数据库80。使用数据库80,处理器60依据用户输入信息64来计算各种曲线的曲线特性,诸如无痛程度、成功率和血量,以优化用于个体用户的曲线用于随后的穿刺周期。这些曲线特性取决于刺血针推进和退回的特征段。处理器60使用这些计算来优化用于每个用户的曲线62。除用户输入信息64之外,内部时钟允许在数据库80中存入信息,诸如存入时刻以产生穿刺动作的时间戳,以及刺穿动作之间的时间以预期用户的每日所需。数据库存入每个用户的信息和统计信息,以及具体用户使用的每个曲线。
    除了变化曲线之外,处理器60能够用以计算适于实现用户需要的血量必需的适当的刺血针直径和几何形状。例如,如果用户要求1-5微升的血量,处理器选择200微米直径的刺血针以实现这些结果。对于每类刺血针,直径和刺血针末端几何形状均被存储在处理器中以对应于基于预定的位移和速度曲线能够得到的血量的上下限。
    穿刺装置能够在穿刺动作的开始和末尾提示用户相关信息,以更充分地适应用户。目的在于变换为不同曲线或者修改现有曲线。一旦设定曲线,则驱动刺血针的力在推进和退回期间变化以跟随所述曲线。使用穿刺装置的穿刺方法包括选择曲线、根据选定的曲线穿刺、确定穿刺周期中每个特征段的穿刺曲线特性、以及最优化曲线特性用于随后的刺穿动作。
    图13示出了关于力-时间曲线的刺血针推进和退回的特征段的实施例,示出了通过刺血针驱动器施加在刺血针上的力来实现所需的位移和速度曲线。所述特征段是:刺血针引入段A-C,其中刺血针被在纵向上推进到皮肤中;刺血针静止段D,其中刺血针终止其纵向运动并到达其最大深度,并且变成相对静止;和刺血针退回段E-G,其中刺血针在纵向上退出皮肤。刺血针退回段E-G的持续时间比刺血针引入段A-C的持续时间长,而刺血针引入段A-C的持续时间又比刺血针静止段D的持续时间长。
    引入段还包括:A之前的刺血针发射段,此时刺血针在纵向上穿过空气 向皮肤移动;A开始时的组织接触段,此时刺血针的远端开始与皮肤接触;组织变形段A,此时皮肤依据其与水合作用和厚度相关的弹性而弯曲;组织穿刺段,其包括刺血针碰撞皮肤上的弯曲点并开始切割皮肤的时间B和刺血针继续切割皮肤的时间C。刺血针静止段D是刺血针到皮肤内的穿透极限。通过将刺血针引入段A-C的持续时间降至最小来降低疼痛,从而实现至一定穿透深度的快速切入,而与将因用户而异的变形段A的持续时间和弯曲点切割B无关。通过测量从弯曲点B到刺血针静止段D中的穿透极限的准确穿透深度,提高了成功率。该测量允许刺血针始终或者至少可靠地碰撞毛细血管床,所述毛细血管床位于皮肤表面之下已知的距离处。
    刺血针退回段还包括;主退回段E,此时皮肤将刺血针从伤口段中推出;辅助退回段F,此时刺血针开始被推移并且在皮肤的相反方向上牵拉;和刺血针退出段G,此时刺血针离开皮肤。主退回是在刺血针背离手指拉动时因施加减小的力拉起刺血针而形成。辅助退回是因在反方向上施力以去除刺血针而形成。需要控制以在血流出伤口段时保持伤口段打开。通过在刺血针退回段E-G期间使用匀速度来退回刺血针,增大了血量,而与依据用户皮肤特性而可能因用户而异的主退回段E或者辅助退回段F所需的力无关。
    图14示出了用于葡萄糖测试的标准行业刺血针,其具有三分面几何形状。取用直径114的杆,相对于主轴线的平面成8°进行研磨以形成主分面,从而制成刺血针116。然后将针轴旋转15°,并且然后相对于主分面的平面成12°进行辊压,形成辅助分面112。其它可能的几何形状要求改变刺血针的生产参数,诸如轴径、角度和平移距离。
    图15示出了分面和末端几何形状120和122、直径124和深度126,这些均是减低疼痛、血量和成功率的重要因素。已知通过增大主分面相对于辅助分面的剪切百分比或者比率,实现刺血针的附加切割,这与减低刺血针直径相结合减少了皮肤撕裂和穿透力并且使得感知的疼痛较少。但是,产血的总体成功率还依赖于各种因素,包括分面的存在、分面几何形状和皮肤构造。
    图16示出了用于受控刺血针退回的刺血针位移-时间曲线的另一实施例。图17示出了图16的用于受控退回的刺血针速度-时间曲线。在穿刺周期中,包括刺血针刺穿血管以允许采血130的时刻,刺血针驱动器以多个步骤控制刺血针的位移和速度,并且随着刺血针退回,调节退回速率以允许血溢出伤口段同时避免伤口皮片密封通道132,以允许血退出伤口。
    除减缓组织穿透元件的退回以保持伤口开放从而允许血流到皮肤表面之外,可考虑其它方法。图18示出了本发明实施例的使用,其包括刺血针末端上的可伸缩线圈。绕线螺旋状物或者管140附连到刺血针116外部且能够自由滑动,使得当刺血针穿透皮肤150时,螺旋状物或者管140跟随刺血针116的轨迹。螺旋状物在围绕刺血针的分面和轴绕线的状态下开始穿刺周期144。随着刺血针穿透皮肤,螺旋状物撑开刺血针146周围的伤口段。随着刺血针退回,螺旋状物保持撑开伤口段以防止伤口段收缩并且防止表面的皮肤皮片闭合148。这允许血152淤集,并且沿通道向上流到皮肤表面。然后随着刺血针将螺旋状物拉向螺旋状物被解除压缩的位置,螺旋状物退回到其中螺旋状物的直径变得小于伤口段的直径并且变得从皮肤取出的程度。
    管或者螺旋状物140用金属线或者在血管成型术支架中通常使用的类型的金属制成,诸如不锈钢、镍钛合金等等。替代地,所述管或者螺旋状物140或者环能够由可生物降解的材料制成,其通过安置在皮肤中而撑开伤口段。微生物降解在导入若干秒或分钟后完成,从而允许用于血淤集并沿伤口段流出的足够时间。微生物降解因来自皮肤的热、水分或者pH而引发。
    替代地,通过用粉末或者其它粒性物质涂覆刺血针,伤口能够被保持开放。粉末涂在伤口段上,并且在刺血针退出时保持伤口段开放。粉末或者其它粒性物质能够是微球粒或者胶囊剂的粗填料基层,其在允许血流过疏松空隙的情况下保持通道开放。
    在另一实施例中,能够使用双部件式针保持伤口开放,外部部件为“U”形形状,而内部部件填充该“U”形。在形成伤口之后,内部针退出,形成开放通道,有点像从枫树提取树液通常所用的塞子那样。
    图19示出了用于利用弹性体包覆伤口以促进血流动的方法和装置的另外实施例。该方法使用弹性体154通过覆盖和拉伸手指158的表面来包覆或者撑开伤口段156,其中弹性体154诸如是硅橡胶。弹性体154在穿刺之前施加到手指158。在短的延迟之后,刺血针(未示出)则穿透弹性体154和手指158表面的皮肤,如附图标记160所示。在弹性体154撑开如以162和164所示的伤口段156的同时,允许血淤集并且上升到表面。其它已知的用于增大穿刺之后的血产量成功率的机构包括形成真空、抽吸伤口、应用粘合带、切割时振动或者如果第一次穿刺不成功则开始第二次穿刺。
    图20示出了组织穿透装置的实施例,更具体地,示出了穿刺装置180, 穿刺装置180包括与组织穿透元件相联的可控驱动器179。穿刺装置180具有近端181和远端182。远端182处是呈刺血针183形式的组织穿透元件,其通过驱动联接器185联接到伸长的联接器轴184。该伸长的联接器轴184具有近端186和远端187。驱动器线圈组件188围绕伸长的联接器轴184布置在刺血针183的近侧。位置传感器191布置成围绕伸长的联接器轴184的近端部分192,并且导电体194将处理器193电联接到位置传感器191。驱动器线圈组件188由位置传感器191控制,由驱动器线圈组件188驱动的伸长的联接器轴184和处理器193形成可控驱动器,具体地形成可控的电磁驱动器。
    参考图21,穿刺装置180能够在局部纵截面中更详细地看到。刺血针183具有近端195和远端196,在刺血针183的远端196处具有尖锐端,而在刺血针183的近端195处布置有驱动头198。刺血针轴201布置在驱动头198和尖锐端197之间。刺血针轴201可以包括不锈钢或者任何其它合适的材料或者合金,并且具有大约0.1至大约0.4mm的横向尺寸。刺血针轴可以具有大约3mm至大约50mm的长度,具体地大约15mm至大约20mm。刺血针183的驱动头198是增大部分,该增大部分的横向尺寸大于刺血针轴201在驱动头198远侧的横向尺寸。这一构造允许驱动头198由驱动联接器185机械地捕获。驱动头198可具有大约0.5到大约2mm的横向尺寸。
    磁性构件202在伸长的联接器轴84的远侧部203上被固定到伸长的联接器轴184,位于驱动联接器185的近侧。磁性构件202是大致柱状的磁性材料件,具有延伸过磁性构件202的长度的轴向轴腔204。磁性构件202的外横向尺寸允许磁性构件202容易地在布置在驱动器线圈组件188内的低磨擦、也许润滑的聚合物导向管205'的轴向轴腔205内滑动。磁性构件202可以具有大约1.0至大约5.0mm的外横向尺寸,具体地大约2.3至大约2.5mm。磁性构件202可以具有大约3.0至大约5.0mm的长度,具体地大约4.7至大约4.9mm。磁性构件202能够由包括铁类金属的各种磁性材料制成,诸如含铁钢、铁、铁氧体等等。磁性构件202可以固定到伸长的联接器轴184的远侧部203,这可以通过各种方法实现,包括粘合剂或者环氧树脂粘结、焊接、折边或者任何其它合适的方法。
    在磁性构件202的近侧,光学编码器标记206被固定到伸长的联接器轴184。光学编码器标记206构造成在位置传感器191中的狭槽207内移动。 位置传感器191的狭槽207形成在位置传感器191的第一主体部分208和第二主体部分209之间。狭槽207可具有大约1.5到大约2.0mm的间隔宽度。光学编码器标记206能够具有大约14至大约mm的长度、大约3至大约5mm的宽度,和大约0.04至大约0.06mm的厚度。
    光学编码器标记206与以预定方式布置在位置传感器主体部208和209上或中的LEDs产生的各种光束相互作用。位置传感器191的LEDs产生的光束的相互作用产生指示光学标记206相对于位置传感器191的纵向位置的、相当高分辨率的信号。位置传感器191的分辩率可以是大约200至大约400周期/英寸,具体地大约350至大约370周期/英寸。位置传感器191可以具有0至大约120,000Hz的速度响应时间(位置/时间分辨率),其中标记的一个明暗条纹构成一个Hertz,或者周期每秒。光学编码器标记206相对于磁性构件202、驱动器线圈组件188和位置传感器191的位置使得光学编码器191能够提供关于刺血针183在刺血针的工作行程的整个长度上的精确位置信息。
    适于位置传感器191的光学编码器是Agilent科技公司制造的线性光电式增量编码器,型号HEDS9200。型号HEDS9200可以具有大约20至大约30mm的长度、大约8至大约12mm的宽度,以及大约9至大约11mm的高度。虽然图示的位置传感器191是线性光电式增量编码器,但是也能够使用其它合适的位置传感器实施例,只要它们具有需要的位置分辩率和时间响应。HEDS9200是一种双通道装置,其中通道彼此有90°的相位差。这形成的分辩率是标记基本周期的四倍。这些90°相移输出使得处理器可以确定刺血针行程的方向。其它合适的位置传感器包括电容式编码器、模拟反射传感器,诸如上述的反射位置传感器,等等。
    联接器轴引导件211布置成朝向穿刺装置180的近端181。引导件211具有引导件轴腔212,引导件轴腔212布置在引导件211中以滑动地接受伸长的联接器轴184的近端部分192。引导件211将伸长的联接器轴184保持成水平和纵向对中地位于光学编码器191的狭槽202中。
    驱动器线圈组件188、位置传感器191和联接器轴引导件211全部固定到底座213。底座213与驱动器线圈组件188、位置传感器191和联接器轴引导件211在纵向上共同延伸。底座213能够采取金属或者聚合物的矩形件的形式,或者可以带有凹部的更精致的壳体,其中凹部构造成接收穿刺装置 180的各种部件。
    如上所述,磁性构件202被构造成在驱动器线圈组件188的轴向轴腔205内滑动。驱动器线圈组件188包括最远侧的第一线圈214、在轴向上布置在第一线圈214和第三线圈216之间的第二线圈215,和最近侧的第四线圈217。第一线圈214、第二线圈215、第三线圈216和第四线圈217中的每一个具有轴向轴腔。第一至第四线圈的轴向轴腔被构造成与其它线圈的轴向轴腔同轴,并且一起总体上形成驱动器线圈组件188的轴向轴腔205。磁盘或垫圈218与每个线圈214-217轴向相邻,并且在装置180的穿刺周期期间促进线圈214-217的磁路的完整。图21的实施例的磁性垫圈218用含铁钢制成,但也能够由任何其它合适的磁性材料制成,诸如铁或者铁氧体。驱动器线圈组件188的外壳189也由铁或者钢制成,以完成围绕线圈及在垫圈218之间的磁路。磁性垫圈218具有与驱动器线圈组件188的大约4.0到大约8.0mm的外径相当的外径。磁性垫圈218的轴向厚度为大约0.05、至大约0.4mm,特别地大约0.15到大约0.25mm。
    将伸长的导电体221绕轴向轴腔卷绕或者缠绕直到已经实现足够的匝数,从而形成线圈214-217。伸长的导电体221总体上是绝缘的实心铜线,其具有大约0.06mm至大约0.88mm、特别是大约0.3mm至大约0.5mm的小的外横向尺寸。在一个实施例中,将32规格的铜丝用于线圈214-217。驱动器组件188每个线圈214-217的匝数可以随线圈尺寸变化,但对于一些实施例,每个线圈214-217可以具有大约30至大约80匝,特别地大约50至大约60匝。每个线圈214-217的轴向长度能够是大约1.0至大约3.0mm,特别地大约1.8至大约2.0mm。每个线圈214-217的外横向尺寸或者直径能够是大约4.0至大约2.0mm,特别地大约9.0至大约12.0mm。轴向轴腔205的横向尺寸能够是大约1.0至大约3.0mm。
    在一些驱动器线圈188的实施例中,可能有利的是用永久磁铁代替一个或多个所述线圈,所述永久磁铁产生的磁场与线圈通电时线圈所产生的磁场相类似。具体地,在一些实施例中,可能希望用永久磁铁代替第二线圈215、第三线圈216或者两者。另外,可能有利的是将永久磁铁定位在线圈驱动器组件的近端处或附近,以提供磁性构件(Adams magnetic Products23A0002挠性磁铁材料(800)747-7543)的固定磁体调零功能。
    图20和21示出了布置在驱动器线圈组件188的近端上的永久磁棒219。 如图21所示,磁棒219设置成使一端邻近磁性构件202的行进路径布置,并且具有构造成在相对于磁棒219的中心位置中吸引磁性构件202的极性。注意到,聚合物导向管205'能够构造成在近端方向上延伸,以将磁棒219的向内径向面从磁性构件202的外表面绝缘。该布置允许磁性构件219并且由此伸长的联接器轴184被吸引到且保持在零点或者静止位置,而不消耗来自电源225的电能。
    使伸长的联接器轴184和刺血针183具有固定的零点或起始点对于适当地控制刺血针183的穿透深度以及其它的穿刺参数会是关键的。这可能是因为,可控驱动器的深度穿透控制的一些方法从已知的开始位置测量伸长的联接器轴184和刺血针183的加速度和位移。如果已知刺血针末端196离目标组织的距离,已知刺血针的加速度和位移并且已知刺血针的开始位置,则能够由处理器193确定组织接触和穿透深度的时间和位置。
    磁棒219的许多构造可用于上述目的。具体地,第二永久磁棒(未示出)能够增加到驱动器线圈组件188的近端,使得两个磁棒的磁场构造成互补。另外,盘状磁体219'能够如图22中所示地使用。盘状磁体219'示出为布置在驱动器线圈组188的近端,而非磁性聚合物盘219″布置在最近侧线圈217和盘状磁体219'之间,并且将盘状磁体219'布置成背离最近侧线圈217的近端。非磁性聚合物盘间隔件219″被用以使得磁性构件202能够在驱动器线圈组件188的最近侧线圈217的略微近侧对中在零位或开始位置。这使得在穿刺周期开始时,磁性构件被最近侧线圈217吸引,而不是在穿刺周期的前向驱动部分中不活动。
    非磁性聚合物盘219″的内部轴腔能够构造成允许磁性构件202从中轴向穿过,而盘状磁体219'的内部轴腔能够构造成允许所述伸长的联接器轴184通过但又不大到足以允许磁性构件202通过。这使得磁性构件202被吸引到盘状磁体219'并且变得以磁性构件202的近侧表面抵靠盘状磁体219'的远侧面。该布置允许磁性构件且由此刺血针的可靠且可重复的停止。也可将类似构造用于上述的磁棒219。
    典型地,当驱动器线圈组件188的线圈214-217中的电流关断时,由软铁制成的磁性构件202被吸引到磁棒219或者盘状磁体219'。驱动器线圈组件188和磁棒219或者盘状磁体219'或者任何其它合适的磁体的磁场能够构造为使得当线圈214-217中的电流接通时,来自线圈214-217的泄露磁场具 有与磁棒219或者盘状磁体219'相同的极性。这导致来自磁棒219或者盘状磁体219'的排斥磁性构件202并且将磁性构件202吸引到激活的线圈214-217的磁力。由于该构造,磁棒219或者盘状磁体由此作用以促进磁性构件202的加速,这与抵抗加速的作用相反。
    导电体222将驱动器线圈组件188与处理器193联接,处理器193能够构造成或者被编程为基于位置传感器191的位置反馈控制驱动器线圈组件188的线圈214-217中的电流,位置传感器191由导电体194联接到处理器193。电源225电联接到处理器193并且提供电力以使处理器193工作并且对线圈驱动器组件188供电。电源225可以是对处理器193提供直流电力的一个或者更多个电池。
    图23更详细地示出了驱动联接器185的横向横截面图。刺血针183的驱动头198布置在驱动联接器185内,第一保持轨226和第二保持轨227捕获驱动头198,同时允许驱动头198以最小的机械阻力侧向地插入驱动联接器185和侧向地退出。驱动联接器185可以可选地构造成包括卡口隆起部228,卡口隆起部228允许驱动头198侧向地插入和退回,但阻止驱动头198掉出驱动联接器185,除非预定大小的外部施加的侧向力朝向驱动联接器185的侧向开口231被施加到刺血针183的驱动头198。图27示出了驱动联接器185的联接器开口231内的放大侧视图,示出了布置在侧向开口231中的卡口隆起部228以及保持轨226和227。图28示出了驱动联接器185的放大正视图。驱动联接器185能够由合金制成,诸如不锈钢、钛或铝,但也可由合适的聚合物制成,诸如ABS、PVC、聚碳酸酯塑料等等。驱动联接器可以在两侧开口,以允许驱动头和刺血针通过。
    参考图24,磁性构件202围绕伸长的联接器轴184布置并且固定到伸长的联接器轴184。磁性构件202布置在第四线圈217的轴向轴腔232中。驱动器线圈组件188固定到底座213。在图25中,位置传感器191固定到底座213,位置传感器191的第一主体部分208与位置传感器191的第二主体部分209相对布置,并且位置传感器191的第一和第二主体部分208和209通过间隙或者狭槽207分开。伸长的联接器轴184可滑动地布置在位于位置传感器191的第一和第二主体部分208和209之间的间隙207内。光学编码器标记206固定到伸长的联接器轴184,并且布置在位于位置传感器191的第一主体部分208和第二主体部分209之间。参考图26,伸长的联接器轴184 的近端部分192布置在联接器轴引导件211的引导件轴腔212内。联接器轴引导件211的引导件轴腔212可以衬有低磨擦材料,诸如等等,以减少伸长的联接器轴184在穿刺装置180的工作行程期间的摩擦。
    参考图29A-29C,所示的流程图描述了处理器193在工作周期期间控制上述穿刺装置180的刺血针183时执行的操作。图30-36示出了在刺血针装置183的操作周期期间刺血针183与患者手指234的皮肤233之间的相互作用。处理器193在存储在相关存储器中的程序化步骤的控制下操作。当执行程序化步骤时,处理器193执行本文所述的操作。由此,程序化步骤实现参考图29的流程图所述的操作的功能性。处理器193能够从存储在可记录介质中的程序产品接收程序化步骤,可记录介质包括直接存取程序产品存储装置,诸如硬盘驱动器或者flash ROM,包括可移动程序产品存储装置,诸如软盘,或者本领域技术人员已知的任何其它方式。处理器193也可以通过网络连接或者串行连接下载程序化步骤。
    在第一操作中,如图29A中的流程图框245所示,处理器193初始化存储器中存储的与刺血针控制有关的值,诸如用以在移动期间跟踪可控驱动器179的变量。例如,处理器可以将时钟值设置为零,以及将刺血针位置值设置为零,或者设置成其它的初值。处理器193也可以使线圈组件188断电一段时间,诸如大约10ms,以允许从线圈消散任何剩余磁通。
    在初始化操作中,处理器193还使刺血针采用初始静止位置。当在初始静止位置时,刺血针183典型地完全退回从而磁性构件202定位成大致相邻于驱动器线圈组件188的第四线圈217,如以上图21中所示。通过向第四线圈217发送电流脉冲以由此将刺血针183上的磁性构件202吸引到第四线圈217,处理器193能够将刺血针183移动到初始静止位置。替代地,磁性构件能够借助于永久磁铁定位在初始静止位置,所述永久磁铁诸如为以上关于图20和21中所示的组织穿透装置讨论的磁棒219、盘状磁体219'或者任何其它合适的磁体。
    在下一个操作中,如流程图框247所示,处理器193使线圈组件188中的一个或多个线圈通电。这应该使得刺血针183开始朝向皮肤目标233移动(即,实现非零速度)。处理器193然后确定刺血针是否的确在移动,如判定框249所示。处理器193能够通过监测刺血针183的位置来确定位置是否随时间变化来判定刺血针183是否在移动。处理器193能够通过跟踪固定到 伸长的联接器轴184的光学编码器标记206的位置来监测刺血针183的位置,其中编码器191产生与处理器193关联的指示刺血针183的空间位置的信号。
    如果处理器193判定(通过无运动事件的超时)刺血针183不在移动(判定框249产生“否”),则过程继续进行到流程图框253表示的操作,其中处理器认为存在错误状态。这意味着系统中的一些错误在导致刺血针183不移动。所述错误可以是机械、电气或者软件相关的。例如,刺血针183可能由于某些东西在阻碍其移动而被陷入静止位置。
    如果处理器193判定刺血针183的确在移动(判定框249产生“是”),则过程继续进行到流程图框257表示的操作。在这一操作中,处理器193促使刺血针183继续加速并且朝向皮肤目标233起动,如图30中的箭头235所示。处理器193能够以如下方式实现刺血针183的加速,即将电流输送到适当的线圈214-217以使线圈214-217对于磁性构件202施加吸力性的磁性发射力并使磁性构件202及与之相联的刺血针183在所需方向上移动。例如,处理器193能够导致电流被送到第三线圈216以便第三线圈216吸引磁性构件202并且促使磁性构件202从邻近第四线圈217的位置向第三线圈216移动。处理器优选地基于磁性构件202相对于线圈214-217的位置判断哪个线圈214-217应该用以吸引磁性构件202。以这一方式,处理器193对刺血针提供了控制刺血针的移动的受控的力。
    在该操作期间,处理器193周期性地或者连续地监测刺血针183的位置和/或速度。在随着刺血针183朝患者皮肤233或者其它组织移动而跟踪刺血针183的速度和位置时,处理器193还监测和调节到线圈214-217的电流。在一些实施例中,处理器193施加电流至适当的线圈214-217,以使刺血针183根据需要的方向和加速度继续移动。在本示例中,处理器193施加电流至适当的线圈214-217,该适当的线圈214-217将导致刺血针183在要被穿透的患者皮肤233或者其它组织的方向上持续移动。
    处理器193可以连续地在线圈214-217之间转换电流,以便在磁性构件202移动过具体线圈214-217时,处理器193然后断开到该线圈214-217的电流并且将电流施加到将吸引磁性构件202并导致磁性构件202在期望方向上继续移动的另一线圈214-217。当在线圈214-217之间转换电流时,处理器193可考虑到各种因素,包括刺血针183的速度、刺血针183相对于线圈214-217的位置、线圈214-217的数目,以及要施加到线圈214-217以实现所 需速度或加速度的电流水平。
    在下一个操作中,处理器193判断刺血针183的切割尖端或者远端尖端196是否已经接触患者皮肤233,如图31所示,并且如图29B中的判定框265所示。处理器193通过各种方法判定刺血针183是否已经与目标组织233接触,包括依赖于在穿刺周期开始之前测量的参数的一些方法,以及无预定参数的适于在穿刺周期期间使用的其它方法。
    在一个实施例中,刺血针183的端部尖端196已经相对于它的起始位置移动预定距离时,处理器193判断已经接触到皮肤。如果在刺血针183开始移动之前已知从刺血针183尖端961到目标组织233的距离,则刺血针183的起始位置是固定并且已知的,并且在穿刺周期期间能够准确地测量刺血针183的移动和位置,由此能够确定刺血针接触的位置和时间。
    该方法要求当刺血针183处于时间零点或者起始位置时,精确测量刺血针末端196和患者皮肤233之间的距离。这能够通过多种方式完成。一种方式是控制影响从刺血针末端196到患者组织或者穿刺装置180的将接触患者皮肤233的表面的距离的全部机械参数。这可能包括磁性构件202的开始位置、磁路公差、磁性构件202尺寸、驱动器线圈组件188在穿刺装置180中的总体位置、伸长的联结轴184的长度、磁性构件202在伸长的联结轴184上的布置、刺血针183长度等等。
    如果全部这些参数以及其它参数在制造中能够以可接受的公差堆叠合适地进行控制,则从刺血针末端196到目标组织233的距离能够在制造穿刺装置180时确定。该距离能因此被编程到处理器193的存储器中。如果可调节特征被增加到穿刺装置180,诸如可调节长度的伸长的联结轴184,这能够适应上述全部参数的变化,除刺血针183长度之外。该机械方案的电子替代例将是在制造期间基于如上所述的机械参数将存储的存储器接触点校正到处理器193的存储器中。
    在另一实施例中,在致动之前将刺血针末端196非常缓慢且轻柔地移动到目标组织233以接触皮肤233能够完成从刺血针末端196到组织233的距离。位置传感器能够准确地测量从起始点到接触点的距离,其中刺血针183推进的阻力使刺血针移动停止。然后,刺血针183退回到起始点,由此已经测量了到目标组织233的距离而未对用户形成任何不适。
    在另一实施例中,通过测量因患者皮肤233施加于刺血针183的磨擦或 者阻力引起的刺血针183速度的突然减少,处理器193可以使用软件判定刺血针183是否已经与患者皮肤233接触。光学编码器191测量刺血针183的位移。位置输出数据提供到处理器193的中断输入的输入。处理器193还具有定时器,该定时器能够测量中断之间的时间。已知光学编码器191的中断之间的距离,由此通过将中断之间的距离除以中断之间的时间,能够计算刺血针183的速度。
    该方法要求因磨擦造成的刺血针183和伸长的联接器184组件的速度损失已知为可接受的水平,使得当设立减速阈值时,能够考虑这些速度损失和形成的减速,其中超出所述减速阈值时,可推测刺血针末端196和目标组织233接触。该同一构思能够以许多方式实现。例如,除了监测刺血针183的速度,如果处理器193在控制刺血针驱动器以保持固定速度,则能够监测驱动器188的电力。如果需要预定阈值以上的电力大小来保持恒定速度,则可推测刺血针196的顶端与皮肤233之间接触。
    在再一实施例中,处理器193通过检测在刺血针183的尖端196撞击患者皮肤233时由其产生的声信号来判断刺血针183接触到皮肤233。如图31所示,声信号的检测能够由布置成接触患者皮肤233且邻近刺血针穿透部位237的声波探测器236测量。合适的声波探测器236包括压电式换能器、麦克风等等。声波探测器236将声信号产生的电信号经由导电体238传输到处理器193。在另一实施例中,刺血针183与患者皮肤233的接触能够通过测量包括刺血针183、患者手指234以及布置在患者皮肤233上邻近刺血针183的接触部位237的电触板240的电路的电连续性来测量,如图31所示。在该实施例中,一旦刺血针183接触患者皮肤233,则电路239接通并且电流流过电路239。然后,处理器193检测到电路239的接通以确认刺血针183接触到皮肤233。
    如果刺血针183尚未接触目标皮肤233,则过程继续进行到暂停操作,如图29B中的判定框267所示。在暂停操作中,处理器193等待预定的时间段。如果暂停时间段还没有过去(判定框267输出“否”),则处理器继续监测刺血针是否已经接触目标皮肤233。优选地,处理器193继续监视刺血针183的位置和速度,以及送到适当的线圈214-217的电流以维持所希望的刺血针183移动。
    如果过去了暂停时间段而刺血针183未接触皮肤(判定框267输出 “是”),则认为刺血针183不会接触皮肤并且过程继续进行到退回阶段,其中刺血针背离皮肤233退回,如下面更完整地描述的。刺血针183会由于各种原因未接触目标皮肤233,诸如患者将皮肤233从穿刺装置移开,或者某些东西在刺血针183接触皮肤之前阻碍刺血针183。
    处理器193也可能因其它原因而在皮肤接触之前转到退回阶段。例如,在刺血针183的移动开始之后的一些点,处理器193可能判定刺血针183朝向患者皮肤233的前进加速度应该停止或者供给到所有线圈214-217的电流应该断开。这能够例如在判定刺血针183已经实现足够的前进速度但是还没有接触皮肤233时发生。在一个实施例中,刺血针183从与皮肤的接触点到最大穿透深度点的平均穿透速度可以是大约2.0至大约10.0m/s,特别地大约3.8到大约4.2m/s。在另一实施例中,刺血针的平均穿透速度可以是大约2到大约8米/秒,特别地大约2到大约4m/s。
    处理器193也可在判定刺血针183已经充分伸展到穿刺步骤的操作周期的工作行程的终点时转到退回阶段。换句话说,如图21所示,当磁性构件202的轴向中心241已经移动到第一线圈214的轴向中心242的远侧时,过程可以转到退回阶段。在此情况下,对于驱动器线圈组件188的线圈214-217中的任意线圈的任何持续电力供给均用以使磁性构件202并且由此刺血针183减速。在这方面,处理器193考虑到刺血针183的长度(其能够存储在存储器中)、刺血针183相对于磁性构件202的位置以及刺血针183已经行进的距离。
    再次参考图图29B中的判定框265,如果处理器193判定刺血针183已经接触皮肤233(判定框265输出“是”),则处理器193能够调节刺血针183的速度或者传输到刺血针183用于皮肤穿透的动力,以克服作用在刺血针183上的任何摩擦力从而维持期望的刺血针穿透速度。流程图框267描绘该过程。
    随着在刺血针183在接触皮肤233之后保持刺血针183的速度,刺血针183的远端末端196将首先开始压下或者探入接触的皮肤237以及邻近刺血针183的皮肤233,以形成探入部分,如图32所示且进一步地如图33所示。随着刺血针183靠着患者皮肤233继续在远端方向上移动或者在远端方向上被驱动,刺血针183将最终开始穿过皮肤233,如图34所示。一旦皮肤233穿透开始,则在刺血针183的远端末端196处的来自皮肤233的静力将变成 动态切削力,其通常小于静态尖端力。由于切割开始时作用在刺血针183的远端末端196上的力减小,与如图32和24所示已被压下的刺血针183的远端末端196相邻的皮肤233的探入部分243将弹回,如图34所示。
    在下一个操作中,如图29B中的判定框271所示,处理器193判定刺血针183的远端196是否已经到达制动深度。制动深度是皮肤穿透深度,处理器193因该皮肤穿透深度而判定要启动刺血针183的减速,以实现刺血针183的期望最终穿透深度244,如图35所示。制动深度可以是预定的并且被编程到处理器的存储器中,或者处理器193可以在致动期间动态地确定制动深度。刺血针183在患者皮肤233中的穿透量可以在刺血针装置180的操作周期期间测量。另外,如上所述,成功获得可用样品所需的穿透深度能够取决于在穿刺周期期间的皮肤233的探入量。患者皮肤233的探入量又可取决于患者的组织特性,诸如弹性水合作用等等。用于确定这些特性的方法在以下就穿刺周期期间的皮肤233探入测量来讨论,并且在图37-41中示出。
    穿透测量能够通过不依赖于患者皮肤的探入的测量的各种方法执行。在一个实施例中,刺血针183在患者皮肤233中的穿透深度通过监测刺血针183和患者皮肤233之间的电容大小测量。在该实施例中,电路包括刺血针183、患者手指234、处理器193和连接这些元件的导电体。在刺血针183穿透患者皮肤233时,穿透量越大,则刺血针183和患者皮肤233之间的表面接触区域越大。随着接触区域增大,皮肤233和刺血针183之间的电容也是如此。增大的电容能够通过处理器193使用本领域已知的方法容易地测量,并且穿透深度则可与电容量相关。相同的方法可以通过测量刺血针183和患者皮肤之间的电阻来使用。
    如果还没有到达制动深度,则判定框271产生“否”,并且过程继续进行到流程图框273所示的暂停操作。在暂停操作中,处理器193等待预定的时间段。如果暂停时间段还没有过去(判定框273输出“否”),则处理器继续监测是否已经到达制动深度。如果过去了暂停时间段而刺血针183未实现制动深度(判定框273输出“是”),则处理器193认为刺血针183不会到达制动深度并且过程继续进行到退回阶段,这在下面将更完整地描述。这可以例如在刺血针183刺入一定的深度时发生。
    再次参考图29B中的判定框271,如果刺血针到达制动深度(输出“是”),则过程继续进行到流程图框275表示的操作。在该操作中,处理器193促使 制动力施加到刺血针,由此降低刺血针183的速度以实现期望的最终皮肤穿透深度244的量,如图26所示。注意到,图32和33示出了刺血针接触患者皮肤,并且在任何实质性皮肤穿透之前使皮肤变形或者压低。刺血针183的速度优选地减少到期望阈值以下的值,并且最终减少到零。处理器193能够通过引起发送到线圈214-217的电流以在磁性构件202上沿近端方向背离患者组织或者皮肤233施加吸引制动力来降低刺血针183的速度,如图36中的箭头290所示。这样的反向力使得刺血针183的向前或者远侧取向的速度减小。处理器193能够基于如位置传感器191所指示的、磁性构件202相对于驱动器线圈组件188的线圈214-217的位置判定激励哪个线圈214-217。
    在下一个操作中,过程继续进行到退回阶段,如流程图框277所示。退回阶段以图29C中的流程图框279所示的操作开始。在这里,处理器193允许刺血针183停留在最大皮肤穿透244的位置处,如图35所示。在这方面,处理器193通过监测刺血针183位置的改变而等待,直到刺血针183的任何运动(因冲击和存储在皮肤中的弹性能引起的振动等等)已经停止。处理器193优选地等待直至已经过去若干毫秒(ms),诸如大约8ms左右,而刺血针183的位置无改变。这表明刺血针183的移动已经完全地停止。在一些实施例中,刺血针可被允许停留大约1到大约2000毫秒,特别地大约50到大约200毫秒。对于其它的实施例,停留时间可以大约1到大约200毫秒。
    在穿刺周期的该阶段中,软件方法可用以测量患者皮肤233的探入量并且由此确定皮肤233的特性,诸如弹性、水合作用及其他。参考图37-41,示出了刺血针183的相对于目标组织233的穿刺周期的各阶段。图37示出了在起始冲击时开始接触皮肤233的刺血针183末端196.
    图38示出了与图37中所示的组织233初次接触时的刺血针183的放大图。在图39中,在穿透超过距离X(如图39中箭头标示的X所示)之前,刺血针末端196已经压下或者探入皮肤233。在图40中,刺血针183已经到达切割工作行程的全长并且位于最大位移处。在这一位置,刺血针末端196已经穿过组织233距离Y,如图39中箭头标记的Y所示。如比较图38与图40能够看到的,从与皮肤233初次接触的时间至刺血针末端196到达其最大范围的时间,刺血针末端196移位过X+Y的总的距离,如图40所示。但是,由于探入现象,刺血针末端196仅穿过皮肤233距离Y。
    在刺血针183的工作行程的末尾,如上关于图26和图29C中的框279 所述,处理器193允许刺血针停留大约8毫秒。在该停留时间期间,皮肤233弹回或者释放回到接触刺血针183之前的近似地其起始构造,如图41中所示。刺血针末端196仍埋入皮肤一深度Y,如图41所示,但组织的弹性反冲已经使刺血针向后移位或后退至无弹性探入的点,如图41中的箭头Z所示。在刺血针183由于组织233的弹性探入而向后移位期间,处理器读取并存储通过位置传感器191产生的位置数据并且由此测量作为X和Z之差的弹性探入量。
    穿刺周期期间刺血针183的探入过程和返回运动在图42中以曲线示出,其示出了在包括弹性和无弹性探入的穿刺周期期间刺血针末端的速度-时间曲线和位置-时间曲线。在图42中,刺血针183从点0至A被从起始位置或者零位置加速。从点A到点B,刺血针处于冲击或者惯性运转模式,而没有递送附加动力。在B点,刺血针末端196接触组织233并且开始探入皮肤233直至它到达位移C。随着刺血针末端196接近最大位移,制动力被施加到刺血针183直至刺血针开始停止在D点。在D和E之间标示的穿刺周期的停留阶段期间,刺血针183然后在后退方向上反冲。注意到,为图示的目的,图42中所示的无弹性探入的幅度被夸大。
    以Z表示的无弹性探入的量与弹性探入的大小相比趋于更为一致且是小的。一般地,无弹性探入Z的量能够是约120到大约140微米。由于对于大部分患者和皮肤类型来说无弹性探入的大小与弹性探入的大小相比具有更为恒定的值并且是小的,所以刺血针183的穿透行程的探入总量实际上等于在停留阶段期间由处理器193测量的刺血针的向后位移加上无弹性反冲的预定值,诸如130微米。对于一些实施例,无弹性反冲能够是大约100大约200微米。测量患者皮肤233的探入大小的能力对于控制刺血针末端196的穿透深度是重要的,因为一般地已知皮肤的弹性及其他参数由于老化、一天中的时刻、水合作用水平、性别以及病理状态而变化。
    穿刺周期的该总探入值然后可用以判定患者皮肤233的各种特性。一旦获得关于指定患者的一组探入数据,则该数据能够被分析以预测对于成功的穿刺步骤所必需的相对于皮肤接触点的总刺血针位移。这使得组织穿透装置能够实现高的成功率并且最小化用户疼痛。滚动平均值表格可用于收集患者的探入数据并存储该数据,利用指针指向表格中的最后条目。当输入新的条目时,其能够代替指针的条目并且指针行进到下一个值。当期望平均值时, 处理器193将全部的值相加,并将总和除以总的条目数。包括指数式衰减(乘以.95,追加0.05倍的当前值等等)的类似技术也是可以的。
    关于皮肤233的一般探入,现在讨论与穿透深度有关的一些典型值。图43示出了皮肤233的层的横截面图。为了可靠地从皮肤233获得可用的血样品,期望使刺血针末端196到达皮肤的小静脉丛。角质层典型地是大约0.1到大约0.6mm厚,并且从真皮顶部到小静脉丛的距离能够是从大约0.3到大约1.4mm。弹性探入能够具有最多大约2mm左右的大小,特别地大约0.2到大约2.0mm,平均大小为1mm。这意味着,克服探入所必需的刺血针位移的量能够具有比到达小静脉丛必需穿过的皮肤厚度大的大小。从初始皮肤接触点开始的总刺血针位移可以具有大约1.7到大约2.1mm的平均值。在一些实施例中,穿透深度和最大穿透深度可以是大约0.5mm到大约5mm,特别地大约1mm到大约3mm。在一些实施例中,大约0.5到大约3mm的最大穿透深度是有用的。
    再参考图29C,在图29C中的流程图框280所示的下一个操作中,处理器193促使退回力被施加到刺血针183以将刺血针183从皮肤233退回,如图36中的箭头290所示。处理器193发送电流至适当的线圈214-217,以便线圈214-217施加向远侧取向的吸引力到磁性构件202,这会导致刺血针183在期望方向上向回移动。在一些实施例中,刺血针183以与操作周期的穿透部分期间的力和速度相比较小的力和低的速度退回。在一些实施例中,刺血针的退回速度能够是大约0.004到大约0.5m/s,特别地大约0.006到大约0.01m/s。在其它实施例中,有用的退回速度能够是大约0.001到大约0.02米/秒,特别地大约0.001到大约0.01米/秒。对于使用与穿透速度相比较低的缓慢退回速度的实施例,退回速度可以直到大约0.02米/秒。对于这样的实施例,平均穿透速度相对于平均退回速度的比率能够是大约100到大约1000。在其中相对缓慢的退回速度并不重要的实施例中,可以使用大约2到大约10米/秒的退回速度。
    在下一个操作中,处理器193判断刺血针183是否在所施加的力的作用下沿期望的向后方向移动,如判定框281所示。如果处理器193判断刺血针183不在移动(判定框281输出“否”),则处理器193继续使得力被施加到刺血针183上,如流程图框282所示。处理器193可以使得更强的力被施加到刺血针183或者可以仅继续施加同样大小的力。处理器然后再次判断刺血 针是否在移动,如判定框283所示。如果仍未检测到移动(判定框283输出“否”),则处理器193判定存在错误状态,如流程图框284所示。在这种情况下,处理器优选地使线圈断电以从刺血针除去力,因为无移动可能表明刺血针刺入在患者皮肤中且因此继续尝试将刺血针从皮肤拔出可能是不希望的。
    再次参考图29C中的判定框281和283,如果处理器193判定刺血针的确是在背离皮肤233的期望的向后方向上移动,则过程继续进行到流程图框285所示的操作。在该操作中,刺血针183的向后移动继续进行,直到刺血针远端已经完全地退出患者皮肤233。如上所述,在一些实施例中,刺血针183通过与操作周期的穿透部分期间的力和速度相比较小的力和低的速度退回。刺血针183的相对缓慢的退回可以使得来自由刺血针183达到的患者毛细管的血在退回期间跟随刺血针183,并且可靠地到达皮肤表面以可靠地产生可用的血样。然后,过程终止。
    如上所述地在刺血针183的整个工作周期上控制刺血针运动允许由穿刺装置180产生多种的刺血针速度曲线。具体地,参考其它实施例的上述任意刺血针速度曲线能够利用穿刺装置180的处理器193、位置传感器191和驱动器线圈组件188来实现。
    图44和45示出了刺血针的速度曲线的实施例的另一示例,其示出的刺血针曲线具有快速的进入速度和缓慢的退回速度。图44示出了穿刺曲线的实施例,示出了相对于位置的刺血针速度。穿刺曲线在零点时间和位置处开始,并且示出了因电磁驱动器产生的电磁力引起的刺血针朝向组织的加速。在点A处,电力断开并且刺血针183开始惯性运转直至它到达皮肤233(由B指示),在此点处,速度开始降低。在点C处,刺血针183已经到达最大位移并且暂时停留,典型地停留大约8毫秒的时间。
    然后,可控驱动器在刺血针上施加后退的退回力,处理器控制可控驱动器以维持不大于大约0.006到大约0.01米/秒的退回速度。图45中的速度-时间曲线示出了同样的周期,其中刺血针从起始点到点A被加速。刺血针183从A到B惯性运转,在B处,刺血针末端196接触组织233。刺血针末端196然后穿透组织并且变慢,其中最终在接近最大穿透深度时施加制动力。刺血针在C和D之间停止并停留。在D处,退回阶段开始并且刺血针183缓慢地退回直至它返回到图45中E所示的起始点。注意到,为了图示和清 楚的目的,因弹性和无弹性探入引起的后退反冲在图44和45的穿刺曲线中未示出。
    在另一实施例中,退回阶段可以使用双速度曲线,其中在刺血针退回通过与组织的接触点之前使用缓慢的.006到.01米每秒的速度,然后可以使用.01到1米/秒的较快速度以缩短整个周期。
    参考图46,示出了穿刺装置的另一实施例,其包括带有驱动器线圈组件295的可控驱动器294、位置传感器和刺血针183。刺血针297具有近端298和远端299,在刺血针297的远端299处具有尖锐端。磁性构件301围绕刺血针297的近端部分302布置并固定到近端部分302,刺血针轴303布置在磁性构件301和尖点299之间。刺血针轴303可以由不锈钢或者任何其它合适的材料或者合金制成。刺血针轴303可以具有大约3mm至大约50mm的长度,具体地大约15mm至大约15mm。
    磁性构件301构造成在驱动器线圈组件295的轴向轴腔304内滑动。驱动器线圈组件295包括最远侧的第一线圈305、在轴向上布置在第一线圈305和第三线圈307之间的第二线圈306,和最近侧的第四线圈308。第一线圈305、第二线圈306、第三线圈307和第四线圈308中的每一个具有轴向轴腔。第一至第四线圈305-308的轴向轴腔被构造成与其它线圈的轴向轴腔同轴,并且一起总体上形成驱动器线圈组件295的轴向轴腔309。磁盘或垫圈310与每个线圈305-308轴向相邻,并且在驱动线圈组件295的穿刺周期期间促进线圈305-308的磁路的完整。图46的实施例的磁性垫圈310用含铁钢制成,但也能够由任何其它合适的磁性材料制成,诸如铁或者铁氧体。磁性垫圈310具有与驱动器线圈组件295的大约4.0到大约8.0mm的外径相当的外径。磁性垫圈310的轴向厚度为大约0.05、至大约0.4mm,特别地大约0.15到大约0.25mm。线圈组件的外壳294也由铁或者钢制成,以完成围绕线圈及在垫圈310之间的磁路。
    将伸长的导电体311绕轴向轴腔309卷绕或者缠绕直到已经实现足够的匝数,从而形成线圈305-308。伸长的导电体311总体上是绝缘的实心铜线。驱动器线圈组件295的线圈305-308、垫圈310及其他部件的具体材料、尺寸、线圈匝数等等能够与上述驱动器线圈组件188的材料、尺寸、线圈匝数等等相同或类似。
    导电体312将驱动器线圈组件295与处理器313联接,处理器313能够 构造成或者被编程为基于位置传感器296的位置反馈控制驱动器线圈组件295的线圈305-308中的电流,位置传感器296由导电体315联接到处理器313。电源316电联接到处理器313并且提供电力以使处理器313工作并且对驱动器线圈组件295供电。如上所述,电源316可以是对处理器313提供直流电力的一个或者更多个电池(未示出)。
    位置传感器296是光换能器317形式的具有光源和光接收器的模拟反射光传感器,位置传感器296布置在壳体318内并且壳体318以相对于驱动器线圈组件295的固定空间关系被固定。反射构件319布置在磁性构件301的近端320上或者与之固定。处理器313通过首先从光换能器317的光源以预定的立体发射角朝向反射构件319发射光来确定刺血针299的位置。然后,光换能器317的光接收器测量从反射构件319反射的光的强度,并且导电体315将从中产生的信号传输到处理器313。
    通过对于在驱动器线圈组件295的工作周期期间刺血针297的各种位置标定来自反射构件319的反射光的强度,刺血针297的位置此后能够通过在任意给定时刻测量反射光强度来确定。在一个实施例中,传感器296使用市售的LED/光换能器模块,诸如Optek科技公司(1215W.Crosby Road Carrollton,Texas,75006)制造的OPB703。用于位置感测的该模拟反射测量的方法能够用于本文所述的刺血针致动器的任何实施例。另外,包括线圈的任意刺血针致动器或者驱动器可以使用线圈中的一个或多个线圈通过使用刺血针轴303上的可透磁区域或者磁性构件301本身作为线性可变差动变压器(LVDT)来确定刺血针297的位置。
    参考图47和48,示出了扁平绕线圈刺血针驱动器325,其具有主体壳体326和旋转框327。旋转框327绕布置在主体壳体326的底座329、顶部主体部分330之间并且布置在旋转框327的枢转引导件331中的轴328枢转。旋转框327的致动器臂332从枢转引导件331径向地延伸并且具有布置在致动器臂332的向外端部334处的拉杆接收孔333。联接器拉杆336的第一端335联接到致动器臂332的拉杆接收孔333并且能够在拉杆接收孔333中旋转。联接器拉杆336的第二端337布置在位于联接器平移构件341的近端338处的开口内。这一构造允许施加在致动器臂332上的周向力被转换成为作用在与联接器平移构件341的远端相固定的驱动联接器342上的线性力。驱动联接器342的材料和尺寸能够与上述驱动联接器342的材料和尺寸相同或类 似。
    与旋转框327的致动器臂332相反地,呈线圈臂344形式的平移基底从旋转框327的枢转引导件331径向地延伸。线圈臂344的形状是大致的三角形。扁平绕线圈345布置在线圈臂344上并且与之固定。扁平绕线圈345具有前段346和尾段347,前段346和尾段347两者的延伸均大致正交于当旋转框327绕枢转引导件331旋转时部段346和347的运动方向。前段346布置在第一磁性作用区348内,第一磁性作用区348由与上磁体基部351相固定的第一上部永久磁铁349和与下部磁体基部353相固定的第一下部永久磁铁产生。尾段347布置在第二磁性作用区354内,第二磁性作用区354由与上磁体基部351相固定的第二上部永久磁铁355和与下部磁体基部353相固定的第二下部永久磁铁产生。
    第一上下永久磁铁349、352、355和356的磁力线或者磁路能够从第一下部永久磁铁352向上指向第一上部永久磁铁349或者沿反方向向下指向。来自第二永久磁铁355和356的磁力线同样向上或向下指向,并且将具有与第一上下永久磁铁349和352反向的方向。这一构造产生围绕枢转引导件331的作用在线圈臂344上的旋转力,该力的方向由在扁平绕线圈345中流动的电流方向确定。
    位置传感器357包括固定到旋转框327的光学编码器盘段358,该光学编码器盘段358随旋转框327旋转并且通过固定到基部329的光学编码器359读取。位置传感器357确定旋转框327的旋转位置并且将该位置信息经由电线361发送到处理器360,处理器360能够具有与上述处理器193的特征相同或相类似的特征。扁平绕线圈345的导电引线363还电联接到处理器360。
    在电流通过扁平绕线圈345的前段346和尾段347时,施加在部段346和347上的旋转力被传递到旋转框327以及致动器臂332,并且通过联接器拉杆336和联接器平移构件341最终传递到驱动联接器342。使用中,刺血针(未示出)固定到驱动联接器342中,并且扁平绕线圈刺血针致动器325被激活。扁平绕线圈345中的电流确定所产生的作用在驱动联接器342上且因此作用在固定到联接器342的刺血针上的力。处理器360基于发送至处理器360的信息、如由位置传感器357测量的刺血针的位置和速度控制扁平绕线圈345中的电流。此外,处理器360能够以与上述处理器193相类似的方 式控制刺血针的速度,并且能够产生上述所期望刺血针速度曲线中的任意曲线。
    图49和50示出了用于组织穿透装置的具有驱动器线圈组件370的受控驱动器369的再一实施例。驱动器线圈组件370具有近端371、远端372和从近端371延伸到远端372的轴向轴腔373。内线圈374围绕轴向轴腔373布置,并且具有沿远端方向的逐渐增大的伸长的导体375的每英寸匝数。内线圈374从线圈驱动器组件370的近端371向驱动器线圈组件370的远端372延伸,其中主外径或者横向尺寸是大约1到大约25mm,特别地大约1到大约12mm。
    内线圈374在驱动器线圈组件370的近端371处的外径或者横向尺寸近似等于轴向轴腔373在线圈组件370的近端371处的直径。亦即,内线圈374沿近端方向缩减到减小的外径,直到在驱动器线圈组件370的近端371处几乎没有或者没有伸长的导电体375的匝。内线圈374的该渐缩形构造在内线圈374利用流过内线圈374的伸长的导电体375的电流工作时产生这样的轴向磁场,该轴向磁场在驱动器线圈组件370的轴向轴腔373是梯度变化的。
    当内线圈374工作时,该轴向磁场梯度对于布置在轴向轴腔373内的磁性构件376产生驱动力,该驱动力对磁性构件376朝向驱动器线圈组件370的远端驱动。由内线圈374产生的作用在磁性构件上的驱动力是平滑的连续力,其能够对于磁性构件376和与之固定的刺血针377产生平滑且持续的加速。在一些实施例中,在远端方向上沿着内线圈374的外径增大/轴向位移的比率能够是从大约1到大约0.08,特别地大约1到大约0.08。
    外线圈378布置在内线圈374上,并且与内线圈374在纵向上作共同延伸。外线圈378能够具有与内线圈374同样或者类似的尺寸和结构,除外线圈378在近端方向上渐变成增大的直径或者横向尺寸之外。外线圈378的伸长的导电体379在近端方向上的变大的每英寸匝数使得在外线圈378在用电流激活时产生沿近端方向驱动磁性构件376的磁场梯度。这在刺血针377和驱动器线圈组件370的操作周期期间对磁性构件376产生制动或换向作用。内线圈374和外线圈378的伸长的导电体375和379联接到处理器381,处理器381联接到电力源382。处理器381能够具有与上述的其它处理器类似的特性,并且能够控制磁性构件376和刺血针377的速度曲线以产生上述以及其它速度曲线中的任意速度曲线。驱动器线圈组件370能够用作上述线圈 驱动器组件的替代,而穿刺装置180的其它部件相同或类似。
    驱动器或者致动机构的实施例已经讨论,现在我们讨论能够安放刺血针、收集流体试样、分析样品或者这些功能的任意组合的装置的实施例。这些前端装置可以整合有致动器,诸如上述的那些致动器,或者整合有任何其它合适的驱动器或者可控驱动器。
    一般地,大部分已知的采血方法要求多个步骤。首先,通过集合各种物品建立测量对话,物品诸如是刺血针、刺血针驱动器、测试带、分析器具等等。第二,患者必须通过加载无菌刺血针、加载测试带并且装备刺血针驱动器来组合各种器械。第三,患者必须将手指抵靠刺血针驱动器并且用另一只手开动驱动器。第四,患者必须放下刺血针驱动器并且将出血的手指抵靠测试带,(其可能已被装入或未被装入分析器具)。患者必须确保血已经加载到测试带上,并且在这样的加载之前已经校准分析器具。最后,患者必须处置掉所有的被血污染的各种器械,包括刺血针。照此,整合组织穿透取样装置的穿刺和样品收集结构能够实现关于患者便利性的优点。
    图51示出了容纳刺血针412的可抛弃型取样模块410。刺血针412具有位于连接到驱动器438的近端416上的头部和刺穿皮肤的远端414。远端414布置在管道418中。近端416延伸到空腔420中。储样器422具有位于仿形人机工程的表面426上的窄输入口424,其邻近刺血针412的远端414。如在此使用的,术语“仿形人机工程的”一般地指成形为紧贴地配合要穿刺的或者另外地放置在表面上要测试的手指或者其它身体部分。取样模块410能够将血样从储样器422通过小的通道(未示出)输送到分析区域428。分析区域428能够包括分析血样的化学、物理、光学、电气或者其它的装置。刺血针、样品流动通道、储样器和分析区域以单个组合单元整合到取样模块410中。
    图52示出了壳体410’中的装载有取样模块410的腔室430。取样模块410被装载到利用弹簧434悬置的底座432上,并且支承在狭槽436中。驱动器438被附接到底座432。驱动器438近端440和远端442。驱动器438能够是可控驱动器或者非可控驱动器的任何机械装置,诸如弹簧或者凸轮驱动的,或者电气装置,诸如电磁式或者电子驱动的,用于推进、停止和退回刺血针。在驱动器438的远端442和被附接到腔室430的传感器446之间设有余隙444。底座432还容纳分析仪448,分析仪448是用于分析血的系统。 在模块410装入底座432时,分析仪448对应于模块410上的分析区域428。
    图53示出了组织穿透取样装置411,其中取样模块410被装入壳体410’的底座432中。分析区域428和分析仪448重叠。驱动器438配合到空腔420中。驱动器438的近端440邻接刺血针412的远端416。患者的手指450支承在仿形人机工程的表面426上。
    图54示出了替代刺血针构造的图,其中刺血针412和驱动器438定向成在当手指450支承在仿形人机工程的表面426上时穿刺手指450的侧面。
    图55示出了孔口452和仿形人机工程的表面426。管道418具有孔口452,孔口452在血槽454上开放。储存器422的样品输入口424也在血槽454上开口。样品输入口424的直径明显大于孔口452的直径,孔口452的直径是与刺血针412的直径大致相同的直径。刺血针退回之后,从手指450流出的血将收集在血槽454中。刺血针412将已经退回到孔口452中,从而有效地阻挡血沿着孔口452通过。血将从血槽454通过样品输入口424流入储存器422。
    图56示出了穿刺动作的图。患者通过用手指450压下到仿形人机工程的表面426上来施加压力。这在装入底座432中的取样模块410上施加向下压力。随着底座432被向下推动,其压缩弹簧434。传感器446与驱动器438的远端442接触,并且由此电检测手指在仿形人机工程的表面上的存在。传感器能够是压电器件,其检测该压力并且将信号发送到电路456,电路456致动驱动器438并且推进且然后退回刺血针412,从而穿刺手指450。在另一实施例中,传感器446是电触点,其在接触驱动器438时使电路接通,从而致动驱动器438以推进和退回刺血针412,以穿刺手指450。
    采样方法的实施例包括患者必需执行以获得样品和分析该样品的数量减少了的步骤。首先,患者将具有嵌入的无菌刺血针的取样模块410装入壳体装置410’。其次,患者通过打开装置动力或者将要穿刺的手指放在仿形人机工程的表面426上并下压以开始穿刺周期。传感器的启动使得传感器工作并且提供控制以激活起动。
    当刺血针在其穿刺周期之后退回时,传感器未被唤起以避免非故意的多次刺穿动作。穿刺周期包括装备、推进、停止和退回刺血针,以及将血样收集在储存器中。一旦血样已经收集在储存器中,则周期完成。第三,患者压下取样模块,这使得驱动器38与传感器接触,并且激活驱动器438。刺血针 然后刺破皮肤,储存器收集血样。
    然后,患者通过诸如嗡嗡声或者哔哔声的声频信号和/或诸如LED或者显示屏的视频信号被可选地通知移去手指。然后,患者能够通过去除取样模块410和处理掉它而处置掉所有的受污染部件。在另一实施例中,复用取样模块410可以装入芯匣形式的壳体410’中(未示出)。患者能够被组织穿透取样装置411告知关于在分析完成后何时处置掉整个芯匣。
    为了正确分析取样模块410的分析区域428中的样品,可能需要或必需确定在样品流动通道、储样器或者分析区域的指定部分中是否存在流体样品。以下讨论用于确定流体在区域中的存在的各种装置和方法。
    在图57中,热传感器500被嵌入在基底502中与流体可能流过的表面504邻近。所述表面可以是例如流体可能流过的通道的壁或者是流体可能流过的平面器件的表面。热传感器500与信号调节元件506电通讯,信号调节元件506可以嵌入在基底502中或者可以远程地布置。信号调节元件506接收来自热传感器500的信号并且借助于诸如放大该信号并且过滤该信号而对该信号进行修改,从而降低噪声。图57还示出了位于表面上另一个位置处的热传感器508,热传感器508直接暴露于流体流动。
    图58示出了热传感器500与分离的加热元件510相邻的构造。热传感器500和加热元件510被嵌入在基底502中与流体可能流过的表面504邻近。在替代实施例中,一个或者更多个附加的热传感器可以与加热元件相邻并且可以允许提高信号灵敏度。热传感器500与信号调节元件506电通讯,信号调节元件506可以嵌入在基底502中或者可以远程地布置。
    信号调节元件506接收来自热传感器500的信号并且借助于诸如放大该信号并且过滤该信号而对该信号进行修改,从而降低噪声。加热元件510与电源和控制元件512电通讯,电源和控制元件512可以嵌入在基底502中或者可以远程地布置。电源和控制元件512对加热元件510提供了受控的电压和电流源。
    图59示出了热传感器500的构造,其具靠傍表面504彼此接近地有嵌入在基底502中的三个热传感器/加热元件对(500/500)或者检测元件(具有如图58中所示的相关联的信号调节元件506以及电源和控制元件512)。该图示出了以与表面504平行的线性方式布置的热传感器500,但可以使用任何可操作的构造。在替代实施例中,少于三个或多于三个的热传感器/加热 元件对(500/510)可用以指示横过表面504流动的流体的到达。在其它实施例中,使用自加热的热传感器,使得不需要单独的加热元件。
    本发明的实施例提供了简单且准确的用于检测流体到达限定位置处的方法。这样的检测对于限定用于测量基于速率的反应的时间周期的零点或者开始时间能够是特别有用的。这可用在生物化学检验中以检测在各种类型的生物标本或者流体中存在的各种被分析物,以及用于基于速率的反应,诸如酶促反应。相关流体的示例包括血、血清、血浆、尿、脑脊液、唾液、酶性物质及在分析和生物医学领域熟知的其他相关物质和流体。用于具体检验以分析生物分子流体的反应化学物质通常是已知的,并且所使用的具体检验的选择将取决于相关的生物流体。
    与本发明实施例有关的检验包括导致各个被分析物或者酶类的测量的那些检验,被分析物或者酶类例如是葡萄糖、乳酸酯、肌酐活化酶等等,以及测量总体样品的特性的那些检验,特性例如是凝血时间(凝血)或者依赖于补足物的溶解。本发明的其它实施例允许感测对于测试制品的样品添加或者样品到达制品内的具体位置。
    现在参考图60,基底502限定具有内表面522的通道520,流体可以在内表面522之上流动。分析部位524位于通道520中的、在通道520中流动的流体可与分析部位524相接触的位置处。在各种实施例中,分析部位524可以替代地位于内表面522上、凹陷到基底502中或者基本与内表面522齐平。图60示出了用于热传感器的相对于基底、通道和分析部位的多个可能位置;另外,如对于本领域技术人员明显的,其它的位置也可以是有用的并且将依赖于装置的设计。
    在使用中,依据预定设计,热传感器可以从图60所示的一个或多个位置略去。分析部位524中的凹部可以提供用于热传感器526的位置,如分析部位的周边可以提供用于热传感器528的位置那样。一个或者更多个热传感器530、532、534可以布置于分析部位524的上游侧(如流体从图60中的右方向左方流动),或者一个或者更多个热传感器536、538、540可以布置在分析部位524的下游侧。
    热传感器可以嵌入基底中并接近表面,如所示的热传感器542那样。在各种其它实施例中,热传感器可以布置在内表面上、凹陷到内表面中或者基本与内表面齐平。如上所述,每个热传感器也可与信号调节元件、加热元件 和电源和控制元件关联,并且单个的信号调节元件、加热元件或者电源和控制元件可以与多于一个的热传感器关联。
    图61示出了热传感器相对于在表面556上以阵列布置的分析部位524的位置。分析部位524中的凹部可以提供用于热传感器544的位置,如分析部位的周边可以提供用于热传感器546的位置那样。包围分析部位阵列的表面边缘可提供用于一个或者更多个热传感器548的位置。热传感器可以以阵列的指定行550或者列552定位在分析部位之间,或者可以布置在对角线554上。
    在各种实施例中,热传感器可以嵌入在基底中接近表面,或者可以位于表面上、凹陷到表面中或者基本与表面齐平。如上所述,每个热传感器也可与信号调节元件、加热元件和电源和控制元件关联,并且单个的信号调节元件、加热元件或者电源和控制元件可以与多于一个的热传感器关联。
    小的热传感器的使用在对于非常小的流体样品执行生物分子分析的小型化系统中能够是有用的,诸如微流体装置。这样的分析一般地包括使生物分子流体通过分析部位、从分析部位之上通过或者邻近分析部位通过,并且产生关于通过使用与分析部位关联的试剂和/或测试电路和/或部件获得的生物分子流体的信息。
    图62示出了热传感器相对于通道和分析部位的多个可能构造。图62中示意性地示出的装置可以是例如用于分析小体积的样品流体例如生物分子流体的微流体装置。该装置具有用于一定量的样品流体的储样器。样品流体经由与储样器560流体连通的样品入口562引入到储样器560。热传感器564位于样品入口562中或附近。主通道566从储样器560处开始并且在排流储存器568处终止。
    一个或者更多个附加的储存器570可选地存在并且经由一个或者更多个附加的通道572与主通道566流体连通,附加的通道572从附加的储存器570引出到主通道566。所述附加的储存器570用以保持检验操作所需的流体,诸如试剂溶液、洗液、显影液、固定液等等。在主通道566中距离储样器560预定距离的位置处,设置有分析部位574阵列。
    热传感器布置在阵列576的直接上游(如流体从图中的右方向左方流动)以及阵列578的直接下游。热传感器还布置在主通道中接近主通道在储样器580处的起始位置并且接近主通道在排流储存器582处的终止位置。附加的 通道提供了用于另一热传感器584的位置。
    当装置工作时,位于样品入口562中或附近的热传感器564用以指示例如生物分子流体的样品流体在热传感器的局部环境中的到达,如在此说明的,并且由此提供关于样品流体已经被成功地引入装置中的确认。位于主通道566中并且与主通道在储样器560处起始的位置邻近的热传感器580产生指示样品流体已经开始从储样器560流入主通道566的信号。主通道566中在分析部位574阵列直接上游处的热传感器576可以用来指示流体样品正在接近阵列574。类似地,在主通道566中位于分析部位574阵列直接下游处的热传感器578可用以指示流体样品已经行进超过阵列574并且由此已经接触每个分析部位。
    在附加的通道572中的热传感器584提供了关于包含在附加储存器570中的流体已经开始从那儿流动的确认。在主通道566中与主通道566在排流储存器568处终止的位置相邻近的热传感器582指示样品流体到达排流储存器568附近的时刻,这又可能会指示充足的样品流体已经经过分析部位574阵列并且分析部位处的分析已完成。
    本发明实施例提供了热传感器用以检测流体样品到达在热传感器的局部环境中的热传感器附近的确定区域的用途,诸如到达分析部位。各种热传感器可以被使用。热敏电阻器是热敏感的电阻器,其主要功能在于当经受温度升高时检测可预测且精确的电阻变化,负温度系数(NTC)热敏电阻器在经受温度升高时呈现电阻降低,而正温度系数(PTC)热敏电阻器在经受温度升高时呈现电阻增大。
    各种热敏电阻器已被制成用于场外用途和应用。热敏电阻器能够在-100℃至超过600℃的温度范围上工作。由于它们的灵活性,热敏电阻器对于微流体和温度测量及控制的应用是有用的。
    温度变化引起热敏电阻器的电阻的相应改变。该温度变化因从样品或者周围环境经由导体或幅射到达热敏电阻器的外部传热或者因装置内的电力消耗的内部热生成所导致。当热敏电阻器在“自加热”模式下工作时,装置内消耗的电力就足以使其温度升高至高于局部环境的温度,这又更易于检测局部环境的传热性的热变化。
    热敏电阻器在应用中频繁地以“自加热”模式使用,诸如液面检测、风量检测和导热性材料特性鉴定。这一模式在流体感测中是特别有用的,因为 自加热的电导传感器与在静止空气中相比在流体或者在移动的气流中耗散更多的热。
    本发明实施例可以设计成使得热传感器直接暴露于样品。但是,其也可以嵌入在装置的材料中,例如嵌入在用以传送样品的通道装置的壁中。热传感器可以用聚合物或者其他防护材料的薄覆层覆盖。
    装置的实施例需要建立所监测参数诸如温度的基线或者阈值。理想地,,这在构造过程中建立。一旦流体运动已经开始,则装置持续地监测此后的明显变化。标志为“明显”的变化水平被设计为噪声抑制和足够敏感性之间的折衷方案。“零时刻或起始时刻”的实际限定也可以包括根据数据的随时间变化确定的算法,即其能够在从穿过简单阈值的确切瞬间至以数据的时间序列为基础的复杂数学函数的范围内来限定。
    使用中,在无样品或者流体的情况下,从热传感器读取信号。然后,引入流体样品。样品流到并经过热传感器的局部环境中的感兴趣的部位,并且热传感器记录样品的到达。感兴趣的部位可以包括用于进行例如酶性检验的分析部位。测量感兴趣的部位的流体到达由此指示了要执行的反应的零时刻或者起始时刻。为检测流体的存在,这些部位可以为沿着流体通路的任何各种预定位置。本发明实施例特别良好地适用于微流体芯匣或者平台,其为使用者提供了关于流体样品已经引入并且已经流到平台中的适当位置的保证。
    基于速率的检验必须测量开始时刻,以及一些随后的时间点,这些时间点之一是检验的终点。因此,基线或者阈值可被建立,并且然后被连续地监测以用于之后的明显变化,一个这样的变化是流体样品到达而开始酶反应。在装置构造过程中,基准值被频繁地建立。该阈值设计为噪声抑制和足够敏感性之间的折衷方案。限定的零时刻或者“起始时刻”能够在从穿过简单阈值的准确瞬间至使用基于数据的时间序列的滤波器以算法确定的值的范围中限定。
    本发明实施例以各种方式完成该功能。在一个实施例中,起始温度测量在热传感器处在无样品存在的情况下进行。样品变化的到达导致热传感器记录新的值。这些值然后进行比较。
    另一实施例测量在热传感器的局部环境中因流体样品的到达引起的热性质变化(诸如,导热性或者热容量)。一般而言,这是已知为“热导率传感器”或者“热通量传感器”的一类装置的工作原理。至少两种硬件实现已 被使用,并且在上文中已经描述。一个实现利用了“自加热模式”中的热传感器。在“自加热模式”中,自加热热传感器可以利用布置在流动通道中或附近的正温度系数热敏电阻,例如位于流动通道的壁中。
    电流流过热敏电阻器,从而导致热敏电阻器的平均温度上升超过周围环境的温度。该温度能够依据电阻来确定,因为电阻是与温度有关的。当流体流过通道时,其改变热敏电阻器附近的局部导热性(通常变得更高),并且这使得热敏电阻器的平均温度变化。它还使得热容量改变,由此改变了热的动态响应。这些改变产生信号,该信号能够通过熟知的手段以电子方式检测到,并且由此能够推断流体的到达。
    第二硬件实现要求位于流动通道中或附近的单独加热元件,以及紧密相邻的热传感器布置。使电流通过元件对局部环境提供了热,并且建立了通过热电偶装置检测的局部温度。这一温度或者其动态响应因流体或者血到达局部环境中或附近而变化,与先前所述的实现相类似,并且该事件以电子方式检测到。
    加热元件能够以受控输入模式来工作,该输入模式可以包括以规定方式控制如下参数中的一个或多个—施加的电流、电压或者功率。当以受控输入模式工作时,热传感器的温度波动被监测,以检测流体的到达。
    替代地,加热元件能够以这样的方式工作,即通过规定方式控制热传感器的温度。在该工作模式下,加热元件的输入参数中的一个或多个输入参数(施加的电流、电压和功率)的最终波动能够被监测,以检测流体的到达。
    在任一上述工作模式中,规定参数能够在装置的指定工作阶段期间保持为恒定值或者被保持恒定的序列值。规定参数也可依据已知的时间函数或波形而变化。
    因流体的到达引起的被监测参数的变化能够以使用信号处理领域中熟知的方法的多种方式中的任一方式来计算,信号处理方法允许将流体到达之前接收的信号与流体到达时接收的信号相关,以表明流体已经到达。例如,在应用了合适的信号滤波后,受监测的信号值或者信号值的变化率的改变能够被监测以检测流体的到达。此外,流体到达将导致局部环境的热力学性质的动态改变,诸如导热性或者热容量。当输入参数是时间变化函数时,则热力学性质的这一改变将导致测量的参数相对于受控参数的相移。这一相移能够被监测,以检测流体的到达。
    另外应该指出,在这些工作模式中的任一模式下,通过适当地选择规定参数的时间变化波形以及将合适的且熟知的信号处理方法应用于被监测参数,对于热噪声和工作功率水平的敏感性能够得以降低。但是,获得这些可能益处的代价可能是变慢的响应时间。
    参考图63,示出了组织穿透取样装置的替代实施例,其整合有可抛弃型取样模块590、刺血针驱动器591和备选模块芯匣592。备选模块芯匣包括壳体593,壳体593具有用于贮存取样模块590的贮存空腔594。为清楚起见,已经省去了该空腔的盖子。该芯匣还包括用于保持刺血针驱动器591的腔室595。刺血针驱动器具有预加荷载的调整旋钮596,可以通过该调整旋钮596调整刺血针驱动器的触发点。这保证了作用于皮肤表面上的可重现的张力,以更好地控制穿透深度和血产量。在一个实施例中,取样模块590可拆除地连接到刺血针驱动器591,如所示的,以便取样模块590能够是可抛弃型的而刺血针驱动器591可重复使用。在一替代实施例中,取样模块和刺血针驱动器被容纳在单个组合的壳体中,并且组合样品采集模块/刺血针驱动器是可抛弃型的。取样模块590包括采样部位597,采样部位597优选地具有凹形的凹陷598,或者托架,其能够被符合人机工程学地设计成与用户手指或者其他组织结构(未示出)的形状相一致。
    采样部位进一步包括位于凹形凹陷中的开口599。刺血针驱动器591被用以激发容纳在取样模块590内且由取样模块590引导的刺血针,以在用户手指放在采样部位597上时产生对于手指的切入。在一个实施例中,采样部位在皮肤牢固地压靠采样部位时在开口处形成大致气密密封;采样部位可以额外地围绕开口具有软的压缩性材料,以进一步限制环境空气对于血样的污染。“大致气密”在这里指通常情况下仅可不计的量的环境空气可能泄漏过密封,该大致气密密封允许无缝地收集血。
    参考图64和65,刺血针600被保持在整合的壳体601中,壳体601提供了用于定位用户手指或者其它身体部分的托架602、在托架602内的取样口603以及用于收集产生的血样的储样器603'。刺血针600是具有远端604的轴,远端604是尖锐的从而以最小疼痛产生切入。刺血针600进一步具有与远端反向的扩大的近端605。类似的刺血针在本领域中是通常已知的。
    刺血针并不局限于具有尖头的轴,相反刺血针可具有本领域已知的各种构造,需要对系统进行合适的修改以容纳这样的其它刺血针构造,这样的构 造具有锐利工具以从取样口出射而产生伤口,从该伤口可以获得血样。
    在图中,刺血针600可滑动地布置在壳体601中的刺血针引导件606内,并且刺血针600在刺血针引导件606内的移动被紧密地控制以减少刺血针的横向运动,由此减低刺血针刺入的疼痛。样品采集模块还包括返回挡块613,返回挡块613将刺血针保持在样品采集模块中。取样模块具有用于连接到刺血针驱动器的附着部位615。
    取样模块进一步包括深度选择器,以允许用户选择多个穿透深度设定中的一个。深度选择器显示为具有带刻度表面的多位置拇指轮607。通过旋转拇指轮607,用户选择带刻度表面的哪一部分接触刺血针的扩大的近端605,以限制刺血针600在刺血针引导件606内的移动。
    拇指轮由保持器608保持在选定的位置处,保持器608具有与拇指轮607中的多个凹陷609(例如,凹座、凹槽或者狭槽)中的至少一个相接合的突出的圆化表面。凹陷609在空间上排列以对应于拇指轮607的带刻度斜面,从而当拇指轮607转动时,保持器608接合与具体的所选深度设定相对应的凹陷609,从而选择并保持深度设定。
    在替代实施例中,保持器可以位于深度选择器上并且与深度设定对应的凹陷位于壳体中,使得保持器可以功能性地接合凹陷。用于保持部件对准的其它类似布置在本领域中是已知的并且可以采用。另一替代实施例中,深度选择器可以呈现具有带刻度斜面的楔形物的形式,该斜面与刺血针的扩大的近端接触,而楔形物由壳体中的凹槽保持。
    储样器603'包括位于样品采集模块的壳体601内的伸长的圆化腔室610。腔室610具有平坦或者略球形的形状,腔室610的至少一侧由光滑的聚合物形成,优选地无尖角。储样器603'还包括通到腔室610的样品输入口611,腔室610与取样口603流体连通,并且还包括引出腔室的排泄孔612。
    由优选地诸如塑料的透明材料制成的盖子(未示出)定位刺血针600并且闭合腔室603',从而形成腔室603'的反向侧。在其中盖子透明的实施例中,盖子可以充当测试手段,使得样品可以在储存器中经由光学传感技术通过盖子工作而被分析。透明的盖子还将有助于通过检查确定储样器被血样充满的时刻。
    图66示出了取样模块的一部分,示出了储样器的替代实施例。储样器具有腔室616,腔室616具有样品输入口617,样品输入口617将腔室616 接合到血传送毛细管道618;腔室616还具有排泄孔619。腔室具有第一侧620,第一侧620具有无尖角的平坦或者略球形的形状并且由光滑聚合物形成。弹性体膜片621被附接到腔室616的周边,并且优选地能够紧密地配合到腔室620的第一侧。
    为控制血流的方向,储样器设有位于储样器的入口617处的第一止回阀622以及位于排泄孔619处的引出到退出通道624的第二止回阀623。替代地,可以设置单个止回阀(在位置622处),以控制经由血传送毛细管道流入腔室616以及从腔室616流出到可选的替代退出通道625中。储样器具有导管626,导管626连接可变压力源以促进膜片621的移动。
    当膜片621背离腔室620的第一侧挠曲(从所述源经由导管626供给低压)时,第一止回阀622打开并且第二止回阀623闭合,接着血样被抽入储样器。当膜片621朝腔室620的第一侧的方向挠曲(从所述源经由导管626供给高压)时,第一止回阀622闭合并且第二止回阀623打开,血被压出储样器。膜片621的运动方向和致动速度能够通过压力源控制,并且由此能够加速或者减速样品的流动。这一特征不仅允许降低对于血细胞的损害,而且允许控制腔室616的填充速度。
    虽然在该实施例中,描述了经由气动手段控制膜片621,替代地可以使用机械手段。基本上,该微型隔膜泵满足了抽入、贮存和输送的功能。膜片621可以基本上用作泵,用以促进血的输送以到达全部所需区域。这样的所需区域可以是更下游处的简单的样品存储区,用于检验血或者将血暴露到化学传感器或者其它测试装置。血可以输送到取样模块内的部位或者取样模块外部的部位,即单独的分析装置。
    在替代实施例中,化学传感器或者其它测试装置位于取样模块中,并且血与经由储样器流体连通的血传送通道被输送到化学传感器或者其它测试装置。取样模块的部件可以是注塑的,膜片可以被融合模制或者嵌入模制为整体式部件。
    图67示出了可抛弃型取样模块的包围取样口627的一部分,包括采样部位托架表面628的一部分。取样模块的壳体包括主样品流动通道629,主样品流动通道629是将样品输入口连接到储样器的毛细管道。主样品流动通道629包括主通道腔内表面630和主通道入口631,主通道入口631开口到样品输入口627。取样模块可以可选地包括附加的样品流动通道632,样品 流动通道632同样是具有附加的通道腔内表面633和附加的通道入口634的毛细管道,附加的通道入口634开口到样品输入口627中。
    主样品流动通道629具有比附加的样品流动通道632更大的横截面积,优选地大至少两倍。由此,附加的样品流动通道632比主样品流动通道629更快地抽吸流体。当第一微滴的血被接收到样品输入口627中时,该微滴的大部分通过附加的样品流动通道632被抽吸。但是,随着血继续从切口流入样品输入口627,该血中的大部分被通过主样品流动通道629抽吸,因为附加的样品流动通道632的能力有限并且被第一血微滴填充或大部分地填充。该双毛细管道构造在其中存在与例如因刺血针冲击或者(特别是在血液气体测试的示例中)空气形成的碎片对样品的污染有关的测试中是特别有用的。
    为了改进血微滴流动,有时需要表面的一些用血填装或者芯吸作用以开始毛细流动过程。样品输入口627的表面的部分以及主和附加(如果存在)的样品流动通道629、632被处理以给予那些表面亲水性。表面改性可以使用机械、化学、电晕放电或者等离子处理实现。这样的涂层和方法的示例在AST Products(Billerica,MA)以及Spire Corporation(Bedford,MA)有售。
    但是,表面的完全覆盖处理可能证明是不利的,因为使得血无差别地流过整个表面,而不是优选地流过毛细管道。这最终将导致血流体的损失。接收处理的具体表面选择成促进血从采样部位托架表面628上的被切入的手指通过样品输入口627以及样品流动通道629、632中的至少一个流到储样器。由此,处理过程应该被掩蔽并且局限于仅选定的表面。选择性地将取样表面从疏水性修改为亲水性的掩模过程可以利用机械掩蔽技术来完成,诸如利用金属屏蔽层、沉积的绝缘体或者导电薄膜或者电屏蔽手段。
    在一些实施例中,处理表面限于以下的一个或多个:取样口的位于采样部位托架表面和主以及附加的样品流动通道之间的表面,与主和/或附加的样品流动通道631、634的入口紧密相邻的表面(两者均位于样品输入口和样品流动通道中),和主和/或附加的样品流动通道630、633的腔内表面。
    在离开切口时,血优选地通过样品输入口627移动到附加的样品流动通道632(如果存在)、进入主样品流动通道629,到达储样器,产生高效的血捕获。替代地,基底材料可以选择成是亲水性的或者疏水性的,并且基底材料的表面的一部分可以处理以具有相反的特性。
    在图67的实施例中,位于样品输入口627基部的膜片635定位在刺血 针636的退回的尖锐远端与样品流动通道631、634的入口之间。通过限制血流入刺血针637远端周围的区域636,膜片635促进血样流过样品流动通道629、632。血由此优选地流入储样器。在一实施例中,膜片635被处理成具有疏水性特性。在另一实施例中,膜片635由已被涂有硅酮基凝胶639的聚合物基薄膜638制成。
    例如,膜结构可以包括由聚对苯二甲酸乙二醇酯组成的聚合物基薄膜638,诸如商标为MYLAR的市售薄膜。膜结构还可以包括在薄膜的至少一个表面上的硅酮基凝胶639的薄覆层,诸如商标为SYLGARD的市售凝胶。这样的薄膜的可用性在于其能够在刺血针穿过其之后重新密封,而不会在物理上影响刺血针的切削尖端和边缘。MYLAR薄膜提供了结构稳定性,同时薄的SYLGARD硅酮层压板足够柔性,以保持其形式并且封盖在MYLAR膜中制成的孔。实现结构稳定性和柔性作用的其它类似材料可以制造本实施例中的膜片。
    膜片635工作以允许刺血针637的尖锐远端在刺血针637的尖锐远端行进到并通过样品输入口627时刺穿膜片。在一实施例中,膜片635的硅酮基凝胶639自动地密封由正在刺穿的刺血针形成的切口。因此,在对用户手指形成切口之后,来自切口的血被阻止流过膜片635,这有助于血穿过主样品流动通道629而积累在储样器中。由此,薄膜阻止任何的血流入刺血针装置组件,并且防止进入刺血针装置机构空腔的血沾染和损失。即使没有重新密封层639,疏水性膜片635也会阻止血穿过膜片635的流动,导致增强的通过主样品流动通道629的流动并且减少或消除通过被刺破的膜片635的流动。
    图68-70示出了在刺血针驱动器的使用期间位于三个不同点的刺血针驱动器640的一种实现。在刺血针驱动器的这一描述中,近侧指示与取样模块的连接的部位较接近的位置;相对地,远侧指示与取样模块的连接部位较远的位置。刺血针驱动器具有驱动器操纵体641,驱动器操纵体641限定圆筒形腔642,预加载弹簧643设置在腔642内。预加载弹簧643的近侧是驱动器套筒644,驱动器套筒644紧密地配合在腔642内并且可滑动地布置在腔642内。驱动器套筒644限定其内设有致动器弹簧646的圆筒形驱动器腔室645。致动器弹簧646的近侧是柱塞套筒647,柱塞套筒647紧密地配合在驱动器套筒644内并且可滑动地布置在驱动器套筒644内。
    驱动器操纵体641具有远端648,远端648限定带螺纹的通路649,预加载螺杆650配合到通路649中。预加载螺杆限定镗孔651。预加载螺杆650具有远端652和近端654,远端652附连到预加载调整旋钮653,近端654限定开孔655。驱动器套筒644具有远端656,远端656附连到卡接配合件657。卡接配合件657限定卡接孔658。驱动器套筒644具有近端659,近端659具有环绕驱动器套筒的近端659的内表面的斜面环状特征660。
    刺血针驱动器包括柱塞杆660,柱塞杆660具有近端661和远端662。在其远端662处,扩大的柱塞头663与柱塞杆660端接。在其近端661处,柱塞杆660通过粘性粘结、焊接、压接或者螺纹连接到冲头667的孔中而被固定到冲头667。柱塞钩子665位于柱塞杆660上在柱塞头663和冲头667之间。柱塞头663可滑动地布置在由预加载螺杆650限定的镗孔651内。柱塞杆660从柱塞头663延伸、通过预加载螺杆的近端654限定的开孔655、由此通过卡接配合件657中的孔658,到达冲头667中的接头664。为装配的目的,柱塞基部接头664可以整合到柱塞套筒647中,并且柱塞杆660通过压接、旋转锻造、胶粘、焊接或者其它的手段附连到柱塞基部664。注意到,刺血针驱动器640能够用任意的上述受控电磁驱动器替换。
    组织穿透取样装置的操作可参考图63-70如下描述。运行中,新的取样模块590被从贮存空腔594移除并且被用多位置拇指轮607调整用于预定深度设定。然后,取样模块590被布置到刺血针驱动器591的端部。预加载设定可以被检查,但一旦创设该优选设定,其将不会在周期之间变化;如果需要,预加载设定可以用预加载调整旋钮596来调整。
    然后,组合的取样模块和刺血针驱动器组件以平稳运动被压靠用户手指(或其它选择的组织结构),直至到达预置触发点。触发点对应于需要克服以致动驱动器从而朝向皮肤驱动刺血针的预加载力的大小。预加载螺杆允许用户调整预加载设定,使得每次执行穿刺时,一致的预置(由用户)的预加载力的大小被施加到采样部位597。
    当开始将组件压靠于用户手指的运动时(见图68),柱塞钩子665接合卡接配合件657,从而将致动器弹簧646保持在扳起位置,同时抵靠手指的力随着驱动器套筒644继续压缩预加载弹簧643而产生。最终(见图69),柱塞钩子665的斜面后部滑动到预加载螺杆654的近端中的孔655中并且从卡接配合件657分离。一旦柱塞钩子665释放,则柱塞套筒647在近端方向 上自由移动,并且柱塞套筒647被致动器弹簧646加速,直到冲头667撞击刺血针212的扩大的近端。
    在撞上刺血针605的扩大的近端时,被致动的刺血针驱动器的冲头667可逆地接触刺血针605的扩大的近端。这可以通过机械手段完成,例如与冲头667相连的能够分离地与刺血针605的近端上的互补配合件接合的配合件,或者刺血针605的扩大的近端可以涂有粘合剂,该粘合剂粘合被致动的刺血针驱动器的冲头667。在被冲头667接合时,刺血针600在刺血针引导件606内滑动,刺血针604的尖锐的远端从壳体601通过取样口603伸出以在用户手指中形成切口。
    近似地在其中冲头667接触刺血针605的扩大的近端的点处,致动器弹簧646处于其松弛位置,并且冲头667以其最大速度行进。在伸展行程中,致动器弹簧646被伸展并且使得冲头667和刺血针600变慢。在刺血针605的扩大的近端撞击多位置拇指轮607时,行程终止(参见图70)。
    刺血针600的运动方向然后反向,并且伸展的致动器弹簧然后迅速地使刺血针604的尖锐远端通过取样口603后退。在回程终点,刺血针600借助于返回挡块613从冲头667脱离。粘合剂粘合到返回挡块613,从而将刺血针保持在安全位置。
    随着血从伤口渗出,其填充样品输入口603并且通过毛细管作用被抽吸到储样器603'中。在该实施例中,在伤口处并无压力降低或者真空,即伤口处于环境气压下,但也可使用通过例如由注射器或者泵提供的抽吸作用抽吸血样的实施例。排泄孔612允许毛细管作用继续进行直至整个腔室被填充,并且提供了用于由其它器械分析血的输送口。手指被保持靠着样品采集模块,直至在储样器中观察到完备样本。
    在取样模块600被从刺血针驱动器591移除时,作为返回挡块613结构的一部分的闩锁614接合刺血针驱动器591内的斜面环状特征660。在刺血针驱动器591被从取样模块600移除时,闩锁使得返回挡块613向刺血针600旋转,从而使其弯曲以将其锁定在安全位置,并且防止被重复使用。
    在取样模块600被从刺血针驱动器591移除时,驱动器套筒644被迫通过预加载弹簧643存储的能量而在驱动器操纵体641中滑动。驱动器套筒644、柱塞套筒647和致动器弹簧646一起向外移动,直至柱塞杆660上的柱塞头663接触位于预加载螺杆654的近端处的镗孔651的底部。预加载弹 簧643继续使驱动器套筒644向外移动以压缩致动器弹簧646,直至柱塞钩子665通过卡接配合件657中的孔658。最终,两个弹簧到达平衡,并且柱塞套筒647在扳起位置静止。
    在取样模块600被从刺血针驱动器591移除之后,其可以被布置在单独的分析装置中以获得血液化学读数。在优选实施例中,取样模块600的整合的壳体601或者储样器603'容纳至少一个生物感测器,该至少一个生物感测器由单独的分析装置供电和/或由所述单独分析装置读取。在另一实施例中,分析装置直接通过取样模块的透明塑料盖执行血样的光学分析。替代地,血样可以从取样模块传送到分析装置用于分布到各种分析处理。
    本发明的替代实施例提供了增强的取样成功率,这减少了由容积填充不足导致的储样器或者分析模块的不必要牺牲。替代实施例允许自动地确认足够的血已经收集,之后向用户发信号(例如,通过信号光或者听觉上的鸣叫)指示可以将皮肤从采样部位移去。在这样的替代实施例中,一个或者更多个附加的刺血针(标示为备用刺血针)和/或刺血针驱动器(标示为备用刺血针驱动器)和/或储样器(标示为备用储样器)设置在“主”取样模块中。
    在一个这样的优选实施例中,在检测到血样体积不足之后(例如,通过光或电子方法),自动地初始化备用取样周期。“备用取样周期”包括经由简单的阀门系统断开主储样器,使备用部件联机,穿刺皮肤,收集血,并且将血移动到备用的储样器。
    血流入备用的储样器,直至获得所需的体积。该周期根据需要重复,直到获得正确的体积。由此,仅储样器可用作测量中使用的或者用于其它应用的采样的血源。该系列的储存器和/或刺血针和/或刺血针驱动器可以容易地制成在同一壳体中并运送到用户。
    在一个实施例中,多达三个储样器(主储样器加上两个备用的储样器)设置在单个样品采集模块中,每个储样器经由毛细管道/阀门系统连接到一个或者更多个取样口。另一实施例具有四个储样器(主储样器加上三个备用的储样器)设置在单个样品采集模块中,每个储样器经由毛细管道/阀门系统连接到一个或者更多个取样口。通过三个或者四个储样器,一些实施例能够实现至少80%的取样成功率。
    另一实施例包括小型化版本的组织穿透取样装置。微型刺血针中的多个刺血针可以位于单个采样部位中,通过相应的样品流动通道将血传送到一个 或者更多个储存器。样品流动通道可以可选地,具有阀门以用于控制血的流动。装置也可包括一个或者更多个传感器,诸如上述的热传感器,用于检测血的存在,例如以确定是否已经获得足够量的血。在这样的实施例中,可抛弃型取样模块、刺血针驱动器和可靠的模块芯匣的尺寸将不大于大约150mm长、60mm宽以及25mm厚。
    在其它实施例中,包括可抛弃型取样模块、刺血针驱动器和可选择的芯匣的组织穿透取样装置的大小具有的尺寸将不大于大约100mm长、大约50mm宽以及大约20mm厚,并且在又一其它的实施例中,不大于大约70mm长、大约30mm宽以及大约10mm厚。包括可抛弃型取样模块、刺血针驱动器和可选择的芯匣的组织穿透取样装置的大小一般地将为至少大约10mm长、大约5mm宽以及大约2mm厚。
    在另一微型实施例中,无芯匣或者取样模块的刺血针驱动器的尺寸不大于大约80mm长、10mm宽以及10mm厚,或者特别地不大于大约50mm长、7mm宽以及7mm厚,或者更更具体地不大于大约15mm长、5mm宽以及3mm厚;无芯匣或者取样模块的刺血针驱动器的尺寸一般地至少是大约1mm长、0.1mm宽以及0.1mm厚,或者特别地至少大约2mm长、0.2mm宽以及0.2mm厚,或者特别地至少大约4mm长、0.4mm宽以及0.4mm厚。
    在再一微型实施例中,无刺血针驱动器或芯匣的小型取样模块的尺寸不大于大约15mm长、大约10mm宽以及大约10mm厚,或者不大于大约10mm长、大约7mm宽以及大约7mm厚,或者不大于大约5mm长、大约3mm宽以及大约2mm厚;无刺血针驱动器或者芯匣的微型取样模块的尺寸一般地至少是大约1mm长、0.1mm宽以及0.1mm厚,特别地至少大约2mm长、0.2mm宽以及0.2mm厚,或者特别地至少大约4mm长、0.4mm宽以及0.4mm厚。
    在另一实施例中,小型化的取样模块和刺血针驱动器形成具有共用壳体的单个单元,并且组合的样品采集模块/刺血针驱动器单元是可抛弃型的。这样的组合单元不大于大约80mm长、大约30mm宽以及大约10mm厚,特别地不大于大约50mm长、大约20mm宽以及大约5mm厚,更更具体地不大于大约20mm长、大约5mm宽以及大约3mm厚;组合单元一般地是至少大约2mm长、大约0.3mm宽以及大约0.2mm厚,特别地至少大约4mm长、0.6mm宽以及0.4mm厚,更具体地,至少大约8mm长、1mm宽以及0.8mm 厚。
    参考图71,示出了组织穿透取样装置的另一实施例,其整合有可抛弃型取样模块608芯匣以及分析仪装置669。分析仪装置669包括舱部670,舱部670具有盖671,盖671通过沿着系统672的后缘的铰链附连到舱部。盖671上的读出显示器673作用以给予用户关于分析仪装置669和/或取样模块芯匣668的状态的信息,或者给予验血的读出。分析仪装置669具有多个功能按钮674,用于控制分析仪装置669的功能或者用于将信息输入到读出器669中。替代地,读出器可具有触摸感应屏、光学扫描器或者本领域已知的其它输入装置。
    在其中患者信息可以用设置在患者腕带或者资料档上的扫描码来记录的临床设定中,带有光学扫描器的分析仪装置是特别有用的。分析仪读出器可具有存储器,以允许分析仪装置存储许多最近测试的结果。分析仪装置也可具有时钟和日历功能,以允许存储在存储器中的测试结果带有时间与日期戳。计算机接口675允许存储器中的记录被输出到计算机中。分析仪装置669具有位于舱部670和盖671之间的腔室,其紧密地容纳取样模块芯匣668。升高盖671,则允许插入或移除取样模块芯匣668,以使用腔室。
    图72是示出取样模块芯匣的实施例的一些结构的图示。取样模块芯匣668具有壳体,该壳体具有定向敏感接触界面以用于与分析仪装置上的互补表面配合。接触界面作用以使取样模块芯匣与分析仪装置对准,并且在准备新的取样动作时还允许分析仪装置旋转取样模块芯匣。接触界面可以采取形成在壳体中的嵌齿或者凹槽的形式,其与分析仪装置的腔室中的互补嵌齿或者凹槽配合。
    取样模块芯匣具有位于壳体上的多个采样部位678,该多个采样部位678显示为取样模块芯匣668的周边附近的略凹形的凹陷。每个采样部位限定与取样模块的样品输入口邻接的开口679。在替代实施例中,采样部位和样品输入口位于取样模块芯匣的边缘处。光学窗口680允许光透射到取样模块芯匣中,用于光学地读取试验结果的目的。替代地,传感器连接点允许试验结果经由电触点被传输到分析仪装置。进入口681(如果存在)允许力或压力从分析仪装置传输到取样模块芯匣。进入口在与运行标定试验或者将试剂与样品血或者其它体液组合时是有用的。
    所述的结构布置在取样模块芯匣周围,并且取样模块芯匣径向地分隔成 许多个取样模块,每个取样模块具有执行单个采血和测试动作所需的部件。多个取样模块设置在取样模块芯匣上,一般地至少10个取样模块设置在单个可抛弃型取样模块芯匣上;在更换新的取样模块芯匣之前,存在至少大约20个、或在一些实施例中更多个,以及在一个实施例中至少大约34个取样模块,从而允许取样模块芯匣被保持在分析仪装置中大约一周(假设每天五个取样以及测试事件,共七天)。通过不断增加的小型化,多达大约100个、或更优选地直到大约150个,取样模块可以包括在单个取样模块芯匣上,从而允许在用新取样模块芯匣进行更换之间的长达一月的间隔。采样部位布置在围绕取样模块芯匣的多个同心环上或者以其它方式被组装到壳体表面上可能是必需的,以允许单个取样模块芯匣上的高取样模块数。
    在其它实施例中,取样模块芯匣可以是可以方便地插入分析仪装置并且被设计成容纳多个取样模块的任何其它形状,例如方形、长方形、椭圆形或者多边的形状。每个取样模块被小型化,一般地小于大约6.0长、大约1.0宽以及大约1.0厚,从而35个左右的楔形取样模块能够围绕具有大约6.0cm半径的盘装配。在一些实施例中,取样模块能够更小,例如小于大约3.0cm长、大约0.5cm宽以及大约0.5cm厚。
    图73高度示意性地示出了定位在分析仪装置内的单个取样模块。当然,本领域普通技术人员将构思到各种提及的部件可以在物理上以各种构造布置,以形成功能系统。图73示出了一些部件,这些部件可能仅存在于替代实施例中或者不必要都存在于任何的单个实施例中。取样模块具有样品输入口682,样品输入口682与由芯匣壳体685上的采样部位684限定的开口683邻接。具有与样品输入口682邻接的刺血针末端687的刺血针686被可操作地保持在壳体中,使得刺血针686能够移动而使刺血针末端687延伸通过样品输入口682到达取样模块芯匣外部。
    刺血针686还具有与刺血针末端相反的刺血针头部688。刺血针686由刺血针驱动器689驱动移动,刺血针驱动器689被示意性地示出为围绕刺血针686的线圈。刺血针驱动器689可选地包括在取样模块芯匣中(如所示的),或者替代地位于取样模块芯匣外部。取样模块还可以包括由壳体限定的与刺血针头部688相邻的驱动器端口690,驱动器端口690允许外部的刺血针驱动器691接触到刺血针686。
    在其中刺血针驱动器689位于取样模块芯匣中的实施例中,可能必需的 是在壳体上设置能够达到分析仪装置的驱动器连接点694。驱动器连接点694可是触发刺血针驱动器689或者将原动力供给到刺血针驱动器689的手段,例如供给到机电式刺血针驱动器的电流。注意到,上述驱动器中的任意驱动器,包括可控驱动器、机电式驱动器等等,能够替代所示的刺血针驱动器689。
    在一个实施例中,可刺穿膜片692布置在刺血针末端687和样品输入口682之间,以在使用之前将刺血针686从外部接触密封开。第二膜片693可以布置成与刺血针头部688邻近以密封驱动器端口690。可刺穿膜片692以及第二膜片693用以将刺血针686隔离在刺血针腔室内,以在使用之前保持刺血针686无菌。在使用期间,刺血针末端687和外部刺血针驱动器691刺穿可刺穿膜片692以及第二膜片693(如果分别存在)。
    样品流动通道695从样品输入口682引向分析区域696。分析区域696与能够由分析仪装置读取的样品传感器关联。如果样品传感器本质上是光学传感器,则样品传感器可以包括壳体中的位于分析区域696之上及之下的光学透明窗697,以允许分析仪装置中的光源将光698穿过分析区域。光学传感器698',例如CMOS阵列,被布置在分析仪装置中用于感测已经穿过分析区域696的光699,并且产生由分析仪装置分析的信号。
    在单独实施例中,设置仅一个光学透明窗,并且分析区域的相反侧被镀银或者以其它方式被反射性地涂布以将光通过分析区域反射回并且反射出窗口以由分析仪装置分析。在替代实施例中,传感器是电化学传感器700,例如酶电极,并且包括位于壳体上能够接触到分析仪装置的将电流从取样模块芯匣传输到分析仪装置的手段,例如电触点701或者多个电触点701。
    在一个实施例中,可刺穿膜片692可以由已被涂有硅酮基凝胶的聚合物基薄膜制成。例如,膜结构可以包括由聚对苯二甲酸乙二醇酯制成的聚合物基薄膜,诸如商标为的市售薄膜。膜结构还可以包括在薄膜的至少一个表面上的硅酮基凝胶的薄覆层,诸如商标为的市售凝胶。
    这样的薄膜的使用在于其能够在刺血针末端穿过其之后重新密封,而不会在物理上影响刺血针的切削尖端和边缘。薄膜提供了结构稳定性,同时薄的硅酮层压板足够柔性,以保持其形式并且封盖在薄膜中制成的孔。实现结构稳定性和柔性作用的其它类似材料可以制造本实施例中的可刺穿膜片。
    可刺穿膜片692用以允许刺血针末端687在刺血针末端687行进到取样 口682中且穿过取样口682时刺穿可刺穿膜片692。在描述的实施例中,膜片692的硅酮基凝胶自动地密封由刺血针末端687形成的切口。因此,在对用户手指形成切口并且刺血针末端687通过可刺穿膜片692退回之后,来自切口的血被阻止流过可刺穿膜片692,这有助于血行进过样品流动通道695以积累在分析区域696中。
    由此,可刺穿膜片692阻止血流入刺血针装置组件,并且防止进入刺血针装置机构空腔的血沾染和损失。在再一实施例中,在进入下一样品采集周期之前,用过的样品输入口通过简单的按钮机构被自动地密封。类似的机构密封样品输入口,则取样无法实现。
    在替代实施例中,校准物供给储存器702也设置在每个取样模块中。校准物供给储存器702被填充校准物溶液并且与校准腔室703流体连通。校准腔室703提供了来自取样模块芯匣的已知信号源,用以确认和量化在分析区域696中进行的测试。照此,校准腔室703的构造紧密地相似于分析区域696。
    在使用期间,校准物溶液被从校准物供给储存器702压入校准腔室703。附图示出了在校准物供给储存器702之上的准备挤压校准物供给储存器702的程式化柱塞704。在实践中,输送少量流体的各种方法在本领域中是已知的,并且能够施用于取样模块芯匣。校准腔室703与校准物测试装置关联。
    图73示出了两个替代的校准物测试装置--光学窗口697和电化学传感器676。在其中取样模块被设计用以对于血执行多个不同测试的示例中,可以设置光学装置和电化学测试装置两者。光学窗口697允许来自分析仪装置的光677通过校准腔室703,由此离开校准腔室703的光703'被投向光学传感器698'而在分析仪装置中产生信号。
    电化学传感器676能够产生信号,该信号经由例如电触点704'传递到分析仪装置,电触点704'能够接触到分析仪装置上的接触探头702',探头702'能够延伸以接触电触点704'。校准物溶液可以是任何的溶液,该溶液与校准物测试装置相结合将提供将用作分析仪装置的校准测量的合适信号。合适的校准物溶液在本领域中是已知的,例如已知浓度的葡萄糖溶液。校准量测被用以调节来自样品传感器的从分析区域696获得的结果。
    为在一些取样模块芯匣实施例中维持小型化,从而使得少量的样品血能够是足够的,则取样模块的每个部件必须是小的的,特别是样品流动通道和分析区域。样品流动通道的直径能够小于大约0.5mm,具体地小于大约 0.3mm,更具体地小于大约0.2mm,并且甚至更为具体地小于大约0.1mm。
    样品流动通道的直径可以一般地是至少大约50微米。分析区域的尺寸可以是小于大约1mm×1mm×1mm,具体地小于大约0.6mm×大约0.6mm×大约0.4mm,更具体地小于大约0.4mm×0.4mm×0.2mm,并且甚至更具体地小于大约0.2mm×大约0.2mm×大约0.1mm。分析区域一般地能够是至少大约100微米×100微米×50微米。
    取样模块芯匣能够利用从患者皮肤取得的小于大约5微升、具体地小于大约1微升、更具体地小于大约0.4微升并且甚至更具体地小于大约0.2微升的血返回有效的试验结果。一般地,从样品抽取至少0.05微升的血。
    芯匣壳体可以由多个不同的部件制成,这些部件被组装以提供完整的壳体。不同的部件可以由各种各样的基底材料制成。用于形成所述设备的合适材料包括但不限于聚合物材料、陶瓷(包括氧化铝等等)、玻璃、金属、复合材料以及它们的层压件。聚合物材料在此是特别优选的,并且将典型地是这样的有机聚合物,该有机聚合物是天然的或者合成的、交联的或者非交联的同聚物或者共聚物。
    预期本文所述的各种部件和装置,诸如取样模块芯匣、取样模块、壳体等等可以由各种材料制成,包括诸如以下材料:聚碳酸酯;聚合物,包括聚(对苯二甲酸乙二酯)和聚(丁烯对酞酸盐);聚酰胺,(诸如尼龙);聚醚,包括聚甲醛和聚(苯撑硫化物);聚亚胺,诸如KAPTON商标(DuPont,Wilmington,DE)和UPILEX商标(Ube Industries,Ltd.,Japan)的聚亚胺;聚烯径化合物,包括ABS聚合物,Kel-F共聚物,聚(异丁烯酸甲酯),聚(苯乙烯-丁二烯)共聚物,聚(四氟乙烯),聚(乙烯醋酸乙烯)共聚物,聚(N-乙烯基咔唑)和聚苯乙烯。
    本文所述的各种部件和装置还可以由“复合材料”制成,即由不同材质组成的成分。所述复合材料可以是区段复合材料,例如A-B-A区段复合材料、A-B-C区段复合材料等等。替代地,复合材料可以是材料的不均匀组合,即,其中材料不同于不同材质的分散相或者均质组合。具有相同或不同材料的多个不同粘结层的层压复合材料也能够被使用。
    其它优选的复合材料基底包括聚合物层压板、聚合物-金属层压板,例如涂有铜的聚合物、含陶瓷金属复合材料或者含聚合物金属复合材料。一种复合材料是这样的聚亚胺层压板,该聚亚胺层压板由已被与由热粘合剂形式 的聚亚胺(已知为也可以从DuPont(Wilmington,Delaware)购买)制成的第二薄层共同挤出的、由诸如KAPTON聚亚胺的聚亚胺(DuPont(Wilmington,Delaware)有售)制成的第一层形成。
    本文所述的各种部件和装置能够使用任何合适制造方法,包括但不限于模制和铸造技术、印花法、表面加工技术、成批加工技术和压模法。另外,本领域中熟知的注塑技术也可用以对用于产生采样模块和其它部件的材料进行成形。
    对于一些实施例,在首次使用新的取样模块芯匣668时,用户从取样模块芯匣668去除任何外部包装材料并且打开分析仪装置669的盖671,以暴露腔室。取样模块芯匣668被滑入腔室,并且盖671闭合。患者皮肤被定位在采样部位678上,并例如通过按压功能按钮674以导致刺血针驱动器被触发,从而启动穿刺皮肤、收集血样和测试血样的整体过程。患者皮肤在采样部位678上保持在位且邻近样品输入口682,直至已经收集了足够量的血,由此系统可以发出关于患者皮肤可以从采样部位678抬起的信号(例如,听觉上的鸣叫)。
    当样品测试完成时,分析仪装置669自动地从取样模块芯匣668读取结果并且将结果在读出显示器673上报告。分析仪装置669还可以将结果存储在存储器中,用于随后下载到计算机系统。取样模块芯匣668然后可以自动地推进以将下一取样模块联机用于下一使用。每次相继地使用系统时(可选地直到取样模块芯匣668耗尽),患者皮肤可以置放在(已经安装的)取样模块芯匣668的采样部位678上,由此简化采血和测试的过程。
    一种提供更方便的采血的方法,其中描述了使用单个可抛弃型取样模块芯匣收集并测试一系列的血样。取样模块芯匣的实施例包括多个取样模块。每个取样模块能够适于执行单个采血周期并且功能性地布置在取样模块芯匣内以允许在完成采血周期之后将新的取样模块联机。
    每个采血周期可以包括穿刺患者皮肤、收集血样,以及测试血样。采血周期还可以包括由分析仪装置读取关于血样的信息、由分析仪装置显示和/或存储试验结果,和/或自动地推进取样模块芯匣以将新的取样模块联机并准备用于开始下一采血周期。
    方法实施例以联接取样模块芯匣和分析仪装置开始,并且然后启动采血周期。在完成采血周期时,取样模块芯匣推进以将新的未用的取样模块联机, 准备执行另一采血周期。一般地,设有至少10个取样模块,从而允许在初始的采血周期之后推进九次取样模块芯匣。
    在一些实施例中,设有更多的取样模块并且取样模块芯匣可以推进大约19次,并且在一些实施例中大约34次,从而分别允许在初始的采血周期之后大约19次或者34次的采血周期。在已经执行一系列的采血周期并且大致所有(即超过大约80%)的取样模块已被使用之后,取样模块芯匣脱离分析仪装置并且除去,留下分析仪装置准备与新的取样模块芯匣相联。
    参考图74-76,示出了组织穿透取样装置180,其中图20中的可控驱动器179联接到取样模块芯匣705并且布置在驱动器壳体706内。棘轮驱动机构707固定到驱动器壳体706,联接到取样模块芯匣705并且构造成推进取样模块芯匣705内的取样模块带708以允许顺次地使用取样模块带708中的每个取样模块709。棘轮驱动机构707具有驱动轮711,驱动轮711构造成接合取样模块带708的取样模块709。驱动轮711联接到致动杆712,致动杆712推进驱动轮711以递增单个取样模块709的宽度。T-狭槽驱动联接器713固定到伸长的联接器轴184。
    取样模块709被装入,并且准备与装入驱动联接器713的T-狭槽714中的取样模块709的刺血针183的驱动头198一起使用。采样部位715布置在取样模块709的远端716处,取样模块围绕刺血针出口孔717布置。取样模块709的远端716暴露在模块窗口718中,窗口718是取样模块芯匣705的芯匣盖子721中的开口。这允许取样模块709的远端716被装入,用于被暴露以避免来自穿刺过程的血沾染芯匣盖子721。
    读取模块722布置在被装入驱动联接器713以便可以使用的取样模块709的远侧部之上,并且具有两个接触刷724,两个接触刷724构造成与取样模块709的传感器触点725对准并且与之电接触,如图77所示。通过传感器触点725和接触刷724之间的电接触,可控驱动器179的处理器193能够在穿刺周期完成之后从取样模块709的分析区域726读取信号,并且血样进入取样模块709的分析区域726。接触刷724能够具有任何合适的构造,这些构造将允许取样模块带708在接触刷724下方侧向地传送并且与装入驱动联接器713中的取样模块可靠地电接触并且随时可使用。弹簧加载的导电球轴承是能够使用的接触刷724的一个例子。成形为沿着取样模块709的传感器接触区728并且压靠柔性聚合物片727的内侧表面的弹性导电带是接触 刷724的另一实施例。
    取样模块芯匣705具有供给罐729和容器罐730。取样模块带708中的未用的取样模块布置在供给罐729中,并且已被使用的取样模块带708中的取样模块在使用后被顺次地推进到容器罐730中。
    图77是在图74的取样模块芯匣705中所示的取样模块带708的一段的透视图。取样模块带708具有通过一片柔性聚合物727串联连接的多个取样模块709。图77中所示的取样模块带708由多个取样模块主体部分731形成,该多个取样模块主体部分731布置成侧向地彼此相邻并且通过单片柔性聚合物727相连且密封。柔性聚合物片727能够可选地具有在柔性聚合物片727的内表面734上形成的传感器触点725、柔性导电体732、样品传感器733或者这些元件的任意组合。这些电气、光学或者化学元件能够通过包括汽相淀积等等的各种方法形成。
    柔性聚合物片727的近端部分735已被折叠到其自身上,以将传感器触点725暴露于取样模块709的外表面。这使得在取样模块709利用可控驱动器179的驱动联接器713被推进并且被装入到位准备使用时,在读取模块722的接触刷724和传感器触点725之间的电接触更易于建立。柔性聚合物片727能够通过粘性粘结、溶剂粘结、超声波热粘结或者任何其它合适的方法固定到取样模块主体部分731。
    图78示出了在取样模块709的组装期间的图77的取样模块带708的单个取样模块709的透视图。柔性聚合物片727的近端部分735如所示地已被折叠到其自身上,以将传感器触点725暴露于柔性聚合物片727的内表面上。图79是图78中的取样模块709的一段柔性聚合物片727的仰视图,示出了沉积在柔性聚合物片底面上的传感器触点725、柔性导线732和样品传感器733。
    刺血针183示出为布置在图78的取样模块709的刺血针通道736内以及布置在图77的取样模块带708的取样模块709的刺血针通道736内。刺血针183具有末端196和轴部分201和驱动头198。刺血针的轴部分在取样模块709的刺血针通道736内滑动,并且刺血针183的驱动头198具有余隙以在取样模块709的驱动头狭槽737内沿近端和远端方向移动。与驱动头狭槽737相邻地布置并且至少部分地形成驱动头狭槽的是被伸长并且大致与刺血针183平行地延伸的第一保护撑杆737'和第二保护撑杆737″。
    在一个刺血针183实施例中,刺血针183的驱动头198能够具有大约0.9到大约1.1mm的宽度。刺血针183的驱动头198的厚度能够是大约0.4到大约0.6mm。取样模块709的驱动头狭槽714应该具有允许驱动头198在驱动头狭槽714内自由移动的宽度。刺血针183的轴部分201能够具有大约50μm到大约1000μm的横向尺寸。典型地,刺血针183的轴部分201具有圆形的横向横截面,但是,其它构造是预期的。
    取样模块主体部分731和柔性聚合物727片能够均由聚甲基丙烯酸甲酯(PMMA)或者任意其它合适的聚合物制成,诸如上述的那些。典型取样模块主体部分731的尺寸能够是大约14到18mm长、大约4到大约5mm宽,以及大约1.5到大约2.5mm厚。在其它实施例中,采样模块主体部分的长度能够是大约0.5到大约2.0英寸,并且横向尺寸能够是大约0.1到大约0.5英寸。柔性聚合物片727的厚度能够是大约100到大约150微米。取样模块带708中的相邻取样模块709之间的距离能够从大约0.1mm至大约0.3mm变化,并且在一些实施例中,从大约0.2到大约0.6变化。
    图80和81示出了图77中的取样模块709的主体部分731的透视图,其中为图示目的而没有示出柔性聚合物盖板727或者刺血针183。图81是图80的取样模块709的主体部分731的一部分的放大图,示出了取样模块709的采样部位715、样品输入空腔715'、样品输入口741、样品流动通道742、分析区域743、控制室744、排泄孔762、刺血针通道736、刺血针通道停止结构747和748以及刺血针引导件749-751。
    刺血针通道736具有近端752和远端753,并且包括一系列的刺血针支承导向部分749-751和样品流动停止结构747-748。刺血针引导件749-751可以构造成与刺血针183的轴紧密地配合并且将刺血针183限制为大致的轴向移动。在刺血针通道736的远端753处,最远侧的刺血针引导部分749布置成邻近样品输入口741并且包括位于其最远末段处的刺血针出口孔754,刺血针出口孔754布置成邻近样品输入空腔715'。样品输入空腔的横向尺寸、深度或者两者均是刺血针183的横向尺寸的大约2到5倍,或者大约0.2大约2mm,具体地,大约0.4到大约1.5mm,并且更具体地大约0.5到大约1.0mm。最远侧的刺血针引导件749的内部横向尺寸能够具有大约300到大约350微米的宽度,以及大约300到大约350微米的深度。最远侧的刺血针引导部分749的近侧是远侧样品流动挡块747,样品流动挡块747包括与最 远侧刺血针749相邻的腔室。该腔室的横向尺寸明显地大于最远侧刺血针引导件749的横向尺寸。该腔室能够具有大约600到大约800微米的宽度、和大约400到大约600微米的深度以及大约2000到大约2200微米的长度。在最远侧刺血针支承引导件749和远侧样品流动挡块747之间的横向尺寸和横截面积的快速转换中断了将流体样品抽吸过样品输入空腔715'并进入到刺血针通道736的毛细管作用。
    中央刺血针支承引导件750布置于远侧刺血针通道挡块747的近侧,并且能够具有与最远侧刺血针支承引导件749的尺寸相类似的尺寸。带有腔室的近侧刺血针通道挡块748位于中央刺血针引导件750的近侧。近侧刺血针通道挡块的尺寸能够与远侧刺血针通道挡块747的尺寸相同或类似。近侧刺血针通道挡块748能够具有大约600到大约800微米的宽度、和大约400到大约600微米的深度以及大约2800到大约3000微米的长度。近侧刺血针通道挡块748的近侧是近侧刺血针引导件751。近侧刺血针引导件751的尺寸能够类似于其它刺血针引导件749和750部分的尺寸,其中内部横向尺寸是大约300到大约350微米宽以及大约300到大约350微米深。典型地,刺血针引导件749-751的横向尺寸比刺血针引导件749-751构造成要引导的刺血针183的轴部分201的横向尺寸大大约10%。
    近侧可碎裂密封(未示出)能够定位在近侧刺血针引导件751和刺血针183的轴部分201之间,其将近侧刺血针通道挡块748的腔室从外部环境密封开。当取样模块709被存储以使用时,可碎裂密封将近侧刺血针通道挡块748的腔室以及样品腔室的其它内部部分从外部环境密封开。可碎裂密封保持完好,直至刺血针183在穿刺周期期间被向远侧驱动,此时密封被破坏并且样品腔室的无菌内部部分被暴露并且准备接收液体样品诸如血样品的输入。远侧可碎裂密封(未示出)能够布置在刺血针183和取样模块709的最远侧刺血针引导件749之间,以密封刺血针通道736的远端753和样品输入口741,从而维持取样模块709的内部部分的无菌直至刺血针183在穿刺周期期间被向前驱动。
    与样品输入空腔715'内的刺血针出口孔754相邻的是样品输入口741,样品输入口741构造成接收在穿刺周期之后从穿刺部位处的目标组织233开始进入样品输入空腔715'的流体样品。样品输入口741的尺寸能够是大约60到大约70微米的深度、大约400到大约600微米的宽度。样品输入空腔的 横向尺寸能够是刺血针183的横向尺寸的大约2到大约5倍,或者是大约400到大约1000微米。样品输入空腔用以在流体样品从切开的组织发出时接收流体样品并且将流体样品引导到样品输入口741并且之后引导到样品流动通道742。样品流动通道742布置在样品输入口741和分析区域743之间并且与之流体连通。样品流动通道742的横向尺寸能够与样品输入口741的横向尺寸相同,其中深度大约60到大约70微米,宽度大约400到大约600微米。样品流动通道742的长度能够是大约900到大约1100微米。由此,使用中,目标组织布置在采样部位715上,并启动穿刺周期。一旦目标组织233已被切开,并且样品开始从中流动,则样品进入样品输入空腔715'并且然后进入样品输入口741。样品输入空腔715'可以定尺寸和构造成以如下方式促进取样成功,即在穿刺周期之前、期间和之后将压力施加到目标组织233的周边,并且在穿刺周期之后保持伤口段开放以允许血或者其它流体从伤口段流动并流入样品输入空腔715'。从样品输入口741开始,样品然后因毛细管现象或者其它力被抽吸通过样品流动通道742并进入分析区域743并且最终进入控制室744。控制室744可用以提供关于分析区域743被样品流体完全填充的间接确认。如果在控制室744中已经检测到流体样品,这确认样品已经完全地填充了分析区域743。由此,样品检测器可以定位在控制室744内,以确认分析区域743的填充。
    分析区域743布置在样品流动通道742和控制室744之间并且与之流体连通。分析区域743能够具有大约60到大约70微米的深度、大约900到大约1100微米的宽度以及大约5到大约6毫米的长度。分析区域743的典型容积能够是大约380大约400纳升(nanoliter)。控制室744布置成与分析区域743相邻并位于分析区域743近侧,并且能够具有大约900到大约1100微米的横向尺寸或者直径以及大约60到大约70微米的深度。
    通过布置在控制室744和近侧刺血针通道挡块748的腔室之间并且与之流体连通的排泄孔,控制室744通往近侧刺血针通道挡块748的腔室。排泄孔762的横向尺寸能够与布置在分析区域743和样品输入口741之间的样品流动通道742的横向尺寸相同或类似。样品输入口741、样品流动通道742和762、分析区域743、排泄孔745或者控制室744的任意内表面能够被促进毛细管作用的涂层涂覆。疏水性涂层如清洁剂是这样的涂层的一个示例。
    分析区域743容纳通过毛细管作用从采样部位715行进通过样品输入空 腔715'以及进入样品输入口741、通过样品流动通道742并且进入分析区域743的血样。血然后能够行进到控制室744中。控制室744和分析区域743两者均通过排泄孔762开孔,排泄孔762允许气体逸出并且防止样品在分析区域743和控制室744中的气泡形成和截留。注意到,除毛细管作用之外,血样进入到分析区域743内的流动能够通过应用真空、机械泵或者任何其它合适的方法来促进或者完成。
    一旦血样布置在分析区域743内,则能够对样品执行分析检验,结果通过导电体732、光学方法或者通过任何其它合适的方法或者手段传输到处理器193。在一些实施例中,可能需要确认血样已经填充分析区域743并且在腔室存在适当量的样品以对样品执行分析。
    样品到达分析区域743或者控制室744的确认能够通过可为透明的柔性聚合物片727目视地实现。但是,在一些实施例中,可能需要使用非常小量的血样以降低患者在穿刺周期期间的疼痛和不适。对于诸如这里所述的取样模块709实施例,使得样品输入空腔715'和样品输入口741与刺血针出口孔754相邻允许从患者皮肤233收集血样,而无需在穿刺周期和样品收集过程之间移动取样模块709。照此,用户不需要能够看到样品以使其被传送到取样模块709。因此,样品输入空腔715'和样品输入口741邻近刺血针出口孔754的定位允许可靠地获得并测试非常小量的样品。
    数十纳升量级的,诸如大约10到大约50纳升的样品能够利用取样模块709可靠地收集和测试。血样的大小太小而不能看到和可靠地目视验证。因此,采用确认血样在分析区域743中的存在的另一方法是必要的。样品传感器733,诸如上述的热样品传感器能够定位在分析区域743或者控制室744中,以确认适当量的血样的到达。
    另外,光学方法,诸如对于分析区域743或者控制室744的内容物的光谱分析,能够用以确认血样的到达。其它方法,诸如电气检测也能够使用,并且这些相同的检测方法也能够沿着通过取样模块709的样品流路的任何地方布置,以在样品沿着流路移动时确认样品的位置或者发展,如图81中的箭头763所示。上述的检测方法也能够用于要求准确起动时间的分析方法。
    要求分析方法具有准确起动时间又会要求分析区域743的快速填充,因为许多分析过程在血样进入分析区域743时开始。如果分析区域743的填充花费太长时间,则最先进入分析区域743的血样的部分与进入分析区域743 的样品的最后部分相比被测试更长的时间,这能够导致不准确的结果。因此,在这些情况中,可能需要使血样首先流到储存器、填充储存器,并且然后使样品快速地突然从储存器流动到分析区域743中。
    在取样模块709的一个实施例中,分析区域743的横向横截面能够显著大于控制室744的横向横截面。横向横截面的改变能够以如下方式完成:通过阶梯式地降低控制室744的深度或者以任何其它合适的方法,限制控制室744对分析区域743的侧向横向尺寸。在分析区域743和控制室744之间的这样的台阶如图81中所示。在这样的实施例中,分析区域743用作储样器,控制室744能够用作分析区域,该分析区域要求快速的或者接近瞬间的填充以具有一致的分析起动时间。分析区域743由来自样品流动通道742的样品流填充,直到分析区域充满并且样品到达位于控制室744边界处的处于腔室深度的阶梯式降低处。一旦样品到达控制室744的横截面积的阶梯式降低处,则样品借助于控制室744的减少的横截面积形成的增强的毛细管作用而迅速填充控制室744。控制室的快速填充允许在控制室744中执行因存在样品而启动的任何分析过程,并且对于控制室744的全部样品具有可靠的分析过程起动时间。
    通过毛细力填充是被动的。对于一些类型的分析检验,也能够有用的是将进入取样模块709的样品的第一部分舍弃,诸如其中对于样品中的第一部分可能存在组织间隙液沾染的情况。样品的这种受污染的部分能够通过如下的盲孔通道或者储存器被除去,该盲孔通道或者储存器通过毛细管作用将样品抽吸到侧面样品流动通道(未示出)中,直到侧面样品流动通道或者与之流体连通的储存器被充满。其余的样品然后转到与盲孔样品流动通道相邻的样品流动通道,而进入分析区域743。
    对于一些类型的分析测试,可能有利的是在单个取样模块709中具有多个分析区域743。以这种方法,能够对同一类型的分析进行多次反复操作,以得出一些统计信息,例如测量不同参数的给定测试或多次测试的平均值、变动量或者确认能够在填充有来自单个穿刺周期的血样的同一取样模块709中的不同分析区域743中执行。
    图82是具有多个小容积分析区域767的取样模块766的替代实施例的一部分的放大投影图。小容积的分析区域767能够在两个方向上的宽度上具有大约40至大约60微米的尺寸以及具有一定深度,使得对于每个分析区域 767产生大约1纳升至大约100纳升、特别地大约10纳升至大约50纳升的容积。小容积分析区域767的阵列能够利用毛细管作用通过在第一分支点769、第二分支点770和第三分支点771分支的样品流动通道768被填充。每个小容积的分析区域767可用于执行相同的分析检验,或者各种不同的测试能够在各个分析区域767中执行。
    对于一些分析测试,分析区域767必须保持非常准确的容量,因为能够对血样执行的一些分析检验是与容积有关的。一些分析检验方法通过测量葡萄糖消耗的速率或者动力学来检测葡萄糖水平。这些测试需要的血量是在大约1至大约3微升的量级上。动力学分析对于血样体积的变化不敏感,因为其依赖于葡萄糖在较大体积样品中的浓度,而葡萄糖的浓度在整个分析期间保持基本上恒定。因为这类分析在测试期间动态地消耗葡萄糖,与小的样品一起使用是不适当的,例如数十纳升量级的样品,其中葡萄糖的消耗将改变葡萄糖浓度。
    另一分析方法使用葡萄糖浓度的库伦公制计量。如果样品体积小于大约1微升并且分析区域的容积被精确地控制,则该方法是准确的。所述方法的精度和速度依赖于分析区域767的小而精确地已知的容积,因为分析速率是体积相关的并且大的体积减缓反应时间并且不利地影响测量精度。
    另一分析方法使用光学荧光衰减测量,其允许分析非常小的样品体积。该方法同样要求精确地控制分析区域767的容积。当所述小容积的分析区域767使用精密制造工艺形成时,上述小容积的分析区域767能够满足维持小而精确地受控的体积的标准。准确地形成的小容积的分析区域767能够用诸如PMMA的材料通过诸如模制和压印的方法形成。通过化学或者激光完成的机加工和蚀刻也能够使用。汽相淀积和光刻技术也能够用以实现期望的结果。
    上述的取样模块709和766均涉及这样的实施例,即既包含刺血针183又具有收集且分析样品的能力。在取样模块的一些实施例中,可以存储刺血针183并且在储样器中收集样品,而无任何分析功能。在这样的实施例中,储样器中的样品的分析可以通过将样品从储存器输送到单独的分析仪来完成。另外,一些模块仅用以收纳刺血针183,而根本不具备任何的样品采集能力。这种刺血针模块775的主体部分774在图83中示出。刺血针模块775的外部结构类似于上述取样模块709和766的外部结构,并且能够以相同或 类似的材料制成。
    柔性聚合物片727(未示出)可用以覆盖刺血针模块775的面并且将刺血针183包藏于在刺血针模块主体部分774中纵向地延伸的刺血针通道776中。聚合物727的柔性片材能够由与上述柔性聚合物片727相同的材料形成,并且具有与上述柔性聚合物片727相同的尺寸。注意到,柔性聚合物片727的近端部分不必折叠到其自身上,因为没有需要暴露的传感器触点725。这样的刺血针模块775中的柔性聚合物片727仅用以将刺血针183限制在刺血针通道776中。刺血针模块775能够用与利用柔性聚合物片727作为所述带的上述取样模块带708类似的刺血针模块带构造成。驱动头狭槽777布置成位于刺血针通道776的近侧。
    关于图74的组织穿透取样装置180,装置180的使用以将取样模块芯匣705装入可控驱动器壳体706开始,从而将芯匣705联接到可控驱动器壳体706并且将取样模块带708与可控驱动器179的棘轮驱动707和驱动联接器713接合。驱动联接器713能够具有T-狭槽构造,诸如图84和85中所示的。伸长的联接器轴184的远端被固定至驱动联接器713,驱动联接器713具有主体部分779、布置在主体部分779内的第一和第二引导件斜面780和781以及T-狭槽714。T-狭槽714构造成接收刺血针183的驱动头198。在取样模块芯匣705被装入可控驱动器壳体706之后,取样模块带708侧向地推进直到取样模块709之一的刺血针183的驱动头198被进给到驱动联接器713中,如图86-88所示。图86-88另外示出了刺血针压接装置783,该刺血针压接装置783使与驱动联接器713相邻的用过的刺血针183的轴部分201弯曲。这阻止用过的刺血针183移出模块体731并且被再次使用。
    随着取样模块带708中的取样模块709被顺次地使用,它们每次一个地被侧向推进到容器罐730中并且储存在容器罐730中,直到全部的取样模块带708被消耗。容器罐730然后能够根据用于血污染废物的处理的适当技术被适当地处置。取样模块芯匣705允许用户方便地执行多次测试操作,而不必暴露于血废料产物,并且替代于每次使用之后处置受污染的刺血针183或者模块709,仅需要在多次使用之后处置一个芯匣。
    图89和90示出了取样模块芯匣的替代实施例。图89示出了采用转盘构造的取样模块芯匣784,其中相邻的取样模块785被刚性连接并且其中各个取样模块785的分析区域的传感器触点786布置成接近转盘的内径787。 取样模块芯匣784的取样模块785通过驱动联接器713被推进,但采用环形方式而非线性方式。
    图90示出了采用4x8矩阵的取样模块788块。图90中所示的取样模块789的刺血针183的驱动头198采用与上述驱动联接器713的方法不同的方法接合和驱动。刺血针183的驱动头198具有与刺血针驱动器179的驱动联接器791配合且与之固定的粘附涂层790,刺血针驱动器179能够是上述的任意驱动器,包括可控驱动器。
    在刺血针周期的开始期间,驱动联接器791的远端792接触并且粘贴到刺血针183的驱动头198的近侧表面的粘合剂790上。驱动联接器791将刺血针183推入到目标组织237中至预定的贯穿深度并停止。然后,使用在刺血针183的驱动头198的近侧表面和成形为与所述近侧表面配合的驱动联接器791的远端面之间的粘性接触,驱动联接器791使刺血针183从组织233退回。
    在退回行程的顶部,被固定到取样模块789的一对被钩挂构件793接合驱动头198的近侧表面并且阻止驱动头198和刺血针183的任何更进一步退回运动。结果,驱动联接器791破坏与驱动头198的粘性粘结,然后能够通过分度操作被推进到要使用的下一取样模块789。
    图91是驱动联接器796的替代实施例的侧视图,该驱动联接器796具有构造成接收刺血针799的L形驱动头798的侧向狭槽797,刺血针799布置刺血针模块800内并且示出了为带有装入侧向狭槽797中的L形驱动头798。图92是图91的驱动联接器796、带有L形驱动头798的刺血针799和刺血针模块800的分解图。这类驱动联接器796和驱动头798布置可代替以上就图84-88所讨论的构造。驱动头798的该L形实施例可以是用于产生这样的联接布置的略不昂贵的可选方案,其中该联接装置允许通过刺血针驱动器的驱动联接器796顺序地推进取样模块带或者刺血针模块带,其中刺血针驱动器诸如是可控刺血针驱动器179。
    对于复用穿刺装置180的一些实施例,可能希望的是设置不需要刺血针模块775的高容量穿刺装置,以将刺血针183贮存在一芯匣中。从复用刺血针装置180中取消刺血针模块775允许更高容量的芯匣,因为芯匣的容积不被大体积的复用模块775占用。图93-96示出了联接至带推进机构804的大容量刺血针芯匣。该带推进机构804被固定至受控驱动器179壳体,该壳体 容纳受控的电磁驱动器。
    刺血针芯匣803具有供给罐805和容器罐806。刺血针带807布置在供给罐805内。刺血针带807包含多个无菌刺血针183,其中刺血针183的轴部分201布置在第一载运带809的粘合表面808和第二载运带811的粘合表面810之间,并且其中粘合表面808和810被绕刺血针183的轴部分201按压在一起以将它们牢固地保持在刺血针带807中。刺血针183具有驱动头198,驱动头198构造成侧向地与驱动联接器713接合,驱动联接器713被固定至可控驱动器179的伸长的联接器轴184。
    带推进机构804包括第一嵌齿辊814和第二嵌齿辊815,嵌齿辊815和814具有同步的旋转运动并且以增量的分度运动被一致地推进。第一和第二嵌齿辊814和815的分度运动将刺血针带807以与布置在刺血针带807中的刺血针183之间的距离相等的距离单位推进。带推进机构804另外包括第一张紧辊816和第二张紧辊817,张紧辊816和817构造成分别张紧第一和第二载运带809和811中的松驰。
    当刺血针带芯匣803装入带推进机构804中时,第一载运带809的前部818布置在带推进机构804的第一嵌齿辊814和第二嵌齿辊815之间。第一载运带809的前部818卷绕于第一转向辊827的外表面,并且再次与辊814接合,其中第一嵌齿辊814的嵌齿820接合第一载运带809中的配合孔821。第一载运带809的前部818然后固定到第一张紧辊816。第二载运带811的前部822同样布置在第一嵌齿辊814和第二嵌齿辊815之间,并且卷绕与第二转向辊828的外表面,并且再次接合辊815,其中第二嵌齿辊815的嵌齿826'接合第二载运带811的配合孔825。此后第二载运带811的前部822固定至第二张紧辊817。
    随着第一和第二嵌齿辊814和815被推进,转向辊827和828将第一和第二载运带809和811分开并且暴露刺血针183。因为第一和第二嵌齿辊814和815的推进产生的第一和第二载运带809的部分的附加长度或者松驰由第一和第二拾取辊816和817张紧。随着刺血针183被从第一和第二载运带809和811剥出,暴露的刺血针183由带推进机构804的刺血针引导轮826'捕获,如图96所示,其与第一和第二嵌齿辊814和815是同步的。刺血针引导轮826'然后侧向地推进刺血针183,直到刺血针183的驱动头198被加载到可控驱动器179的驱动联接器713中。可控驱动器179然后可被致动,以将刺 血针183驱动到目标组织233中并且退回,以完成穿刺周期。
    一旦穿刺周期完成,带推进机构804能够再次被致动,这使得刺血针引导轮826旋转并且侧向地推进用过的刺血针183并将其推进到容器罐806中。同时,新的未用的刺血针183被装入驱动联接器713并且准备下一穿刺周期。复用穿刺装置180的重复顺次使用继续进行直到刺血针带807中的全部刺血针183已被使用并且被置于容器罐806中。在最后的刺血针183已被消耗之后,刺血针带芯匣803然后可被移除并处置,而用户不必暴露于任何的被血污染的材料。
    带推进机构804能够通过各种方法被致动,包括与第一和第二嵌齿辊814和815以及刺血针引导轮826相联的机动驱动器或者人工操作的拇指轮。
    虽然关于本文所述装置的讨论已经主要地涉及用于获得患者的毛细血管血液的基本无痛方法,但本装置和方法具有许多其它的用途。例如,本文所述的组织穿透装置能够用于小量的药物、或者诸如基因治疗制剂的生物活性制剂、传病媒介、放射源等等的基本无痛递送。照此,本文所述的组织穿透装置和刺血针装置能够用以将制剂递送到患者身体的位置以及从患者身体取得材料诸如血、淋巴液、脊液等等是预期的。递送的药物可以包括在贯穿患者身体组织时会进一步降低患者感知的疼痛的止痛剂以及在贯穿患者组织时可以促进血样的成功采集的抗凝血剂。
    参考图97-101,示出了用于将药物或者其他有用材料流向到患者组织内的装置。将注射或者疫苗限定在身体内的组织、多层组织或者器官内的指定部位的能力会是重要的。例如,上皮细胞瘤能够通过足以使抗原进入患者的至少表皮或者真皮的皮下注射针或者高压注射来注射被膜抗原、细胞活素或者菌落刺激因子进行治疗。通常,药物或者组合药物治疗的效果依赖于定向递送到限定区域以由此影响治疗结果。
    准确地将药物或者接种疫苗递送到皮肤或者组织层内的指定深度可以避免昂贵的治疗药物的浪费,由此影响到具体治疗的成本效率。另外,在治疗结果依赖于准确定位的施药的情况中(诸如,损害内脏的免疫疗法),将药物或者其他制剂递送到准确的深度的能力能够是显然的优点。另外,期望皮下注射针被快速地插入患者皮肤中的准确预定深度,以降低针插入皮肤的疼痛。借助于与皮下注射针联接的可控驱动器的位置反馈回路,能够精确地控制皮下注射针或者适于穿透组织的任何其它合适的伸长递送装置的快速 插入和贯穿深度。
    图97示出了皮下注射针902的远端901由电磁可控驱动器904驱动到多层皮组织903中。图79的电磁可控驱动器904能够具有任何合适的构造,诸如上述电磁可控驱动器的构造。被贯穿的皮肤903的层包括角质层905、透明层906、颗粒层907、棘层908、角质层909和真皮911。角质层905的厚度典型地是大约300微米厚。表皮的不包括角质层905的部分包括透明层906、颗粒层907,并且角质层能够是大约200微米厚。真皮能够是大约1000微米厚。在图97中,皮下注射针902的出口912示出为近似地布置在皮肤903的棘层908中,将制剂913注射到棘层908中。
    图98-101示出了制剂注射模块915,制剂注射模块915包括注射构件916,注射构件916包括伸缩式罐917和皮下注射针902,它们可以由诸如上述的任何可控驱动器的可控驱动器驱动或者致动,以将皮下注射针驱动到皮肤903内用于注射药物、疫苗等等。制剂注射模块915具有能够为具有主室918的伸缩式罐917形式的储存器,诸如图98中所示,用于要注射的药物或者疫苗913。具有多个制剂注射模块915的盒子(未示出)可以提供用于长效药剂需要的一系列计量剂量。这样的盒子可以构造成与上述的模块盒相类似。制剂注射模块915和针头902可以是可抛弃型的,以避免因未耗尽的药物或者使用过的皮下注射针902产生的生物危害忧虑。图79所示的皮下注射针的切割分面921的几何形状可以与上述刺血针183的切割分面的几何形状相同或者类似。
    可控驱动器的一些实施例中的位置和速度控制系统的固有特性在于能够精确地确定皮下注射针902相对于可控驱动器或者被贯穿的目标组织或者皮肤903的层的位置或者穿透深度。对于将光学编码器用于位置传感器(诸如Agilent HEDS9200系列)并且使用四边检测算法的可控驱动器的实施例,可以实现面内空间分辨率为+/-17μm的深度。如果总的组织穿透行程是大约3mm长,诸如可用于皮内或者皮下注射,则沿着穿透行程能够分辨总计88个位置点。该精细的空间分辨率允许在制剂或者药物913的递送期间皮下注射针902的远端末端901或者出口912相对于皮肤903层的准确设置。在一些实施例中,能够实现优于大约200微米的位移精度,在其它的实施例中,能够实现优于大约40微米的位移精度。
    制剂注射模块915包括注射构件916,注射构件916包括皮下注射针902 和药物储存器或者伸缩式罐917,其可经由如所示的驱动联接器185联接到伸长的联接器轴184。皮下注射针902能够被驱动到期望的穿透深度,然后药物或者其它制剂913,诸如疫苗,被通过皮下注射针902的中央腔923传送到针902的入口922,如图98中箭头924所示,并且传送出位于皮下注射针902的远端901处的出口,如图97所示。
    药物或者制剂递送能够在最大穿透深度的点发生,或者跟随皮下注射针902的退回而发生。在一些实施例中,在皮下注射针902的插入期间递送药物或者制剂913可能是期望的。药物或者制剂递送能够随着皮下注射针902正在被退回而持续进行(这在牙科手术中的麻醉期间是常见的)。替代地,药物递送能够在退回阶段的任意部分期间在针902静止时发生。
    中空的皮下注射针902配备有包含要配送的药物或者其它制剂913的伸缩式罐917。该伸缩式罐917的壁928能够由软的弹性材料制成,诸如塑料、橡胶或者任何其它合适的材料。远侧板925布置在伸缩式罐的远端926处,并且牢固地固定到皮下注射针的轴927,位于皮下注射针902的远端末端901的近侧。远侧板925被密封并且固定到皮下注射针902的轴927,以阻止药剂913从伸缩式罐917漏出。
    布置在伸缩式罐917的近端932处的近侧板931利用滑动密封934可滑动地装配到皮下注射针902的轴927的近侧部分933。滑动密封934阻止在密封934和皮下注射针902的轴927的外侧表面之间的制剂或者药剂漏出。该滑动密封允许伸缩式罐917的近侧板931沿着针902相对于伸缩式罐917的远侧板925轴向地滑动。药物剂量可以在制造期间装入伸缩式罐917的主室918,并且整个组件在发运和贮存期间由包围制剂注射模块915的驱动头狭槽936的包装和导向翅片935保护。
    当制剂注射模块915装入棘爪推进机构(未示出)并且在皮下注射针902的驱动头937接合在驱动联接器185中的情况下配准在驱动位置时,可以开始注射周期。在这一预备位置下的皮下注射针902和伸缩式罐917的位置如图99中所示。
    一旦制剂注射模块915的驱动头937被装入驱动联接器185,则可控驱动器可用以以高速度将包括有皮下注射针902和伸缩式罐917的注射构件916朝向患者组织903弹射并进入到患者组织903中,到达患者皮肤或者其它器官内的预定深度。注射构件916在与患者皮肤903或者其它组织接触的 部位处的速度对于一些实施例能够是直到大约10米/秒,特别地,大约2到大约5m/s。在一些实施例中,注射构件916的速度在与患者皮肤903接触的部位处可以是大约2到大约10m/s。随着伸缩式罐917随皮下注射针902移动,当伸缩式罐917到达穿透行程的终点时,伸缩式罐917的近侧板通过模块体939的咬合在近侧板931后方的两个闩锁弹簧938之间,如图100所示。
    可控驱动器然后换向,在相反的后退方向施加力并且开始缓慢地(相对于穿透行程的速度)退回皮下注射针902。皮下注射针902在相对于伸缩式罐917的近侧板931沿近端方向载运伸缩式罐的远侧板925的情况下滑动通过伸缩式罐917的滑动密封934。伸缩式罐917的远侧板925和伸缩式罐917的近侧板931之间的相对运动引起主室918的容积减小。主室918的容积减小迫使布置在伸缩式罐917的主室918内的药物或者其它制剂913从主室918出来进入到皮下注射针902的轴927中的入口922。皮下注射针902的入口922布置成与伸缩式罐917的主室918流体连通,如图80所示。药物或者制剂然后穿过皮下注射针902的空心轴927的中央腔923,然后从位于皮下注射针902的远端901处的输出口912配送到目标组织903中。药物或者其它制剂913的灌注速率可以由伸缩式罐917的内径或者横向尺寸确定。灌注速率也可以由被递送的药物或者制剂913的粘性、皮下注射针902的中央腔923、输入口922或者输出口912的横向尺寸或者直径、以及其它参数确定。
    在皮下注射针902的近侧倒转的后退行程期间,药物递送持续进行直到伸缩式罐917的主室918完全地溃陷,如图101所示。此时,驱动联接器185可以继续后退直到皮下注射针902的驱动头937获得自由,或者位于腔室的远侧板925和皮下注射针902之间的远侧密封941失效,从而使得驱动联接器185返回到起动位置。皮下注射针902的远端末端901能够使用以上关于使用可控驱动器或者任何其它合适的驱动器实现期望的穿透深度所述的任何方法或装置被驱动到患者的组织903内的准确穿透深度。
    在另一实施例中,制剂注射模块915被装入棘爪推进机构,该棘爪推进机构包括可调节或者可移动的远侧阶面或表面(未示出),其将制剂注射915模块相对于皮肤接触点或者表面942定位。以这种方法,具有预定固定长度的穿透行程的制剂递送模块915,诸如图99-101中所示,到达可预设的穿透深度。可移动阶面在药物递送周期期间保持静止。在该实施例的一种变型中, 可移动阶面运动可以与皮下注射针902的退回协调,以进一步控制药物递送的深度。
    在另一实施例中,在图99-101的制剂注射模块915中所示的闩锁弹簧938可以模制有多个棘轮齿(未示出),所述多个棘轮齿在其在穿透行程中经过时接合伸缩式罐917的近端932。如果预定的穿透深度小于完整行程,则中间齿在退回行程期间保持伸缩式罐917的近端932以使伸缩式罐917的主室918溃陷并且将药物或者制剂913如上所述地配送。
    在再一实施例中,驱动指(未示出)被固定到致动机构(未示出)并且代替闩锁弹簧938。致动机构与可控驱动器相结合地由处理器或者控制器诸如上述的处理器60电子驱动,以控制致动周期期间递送到任何地方的药物的速率和量。该实施例允许在致动周期期间以及在退回周期期间的药剂递送。
    可控驱动器的位置和速度控制系统的固有特性在于能够精确地确定皮下注射针902的空间位置,从而允许皮下注射针在皮肤903中的暂时放置以用于注射药物、疫苗等等。依据需要,药物递送能够是非连续的或者连续的。
    图102-106示出了具有刺血针芯匣体946和取样芯匣体947两者的可以用于取样的芯匣945的实施例。取样芯匣体947包括多个取样模块部分948,该多个取样模块部分948相对于取样芯匣体947的纵轴949径向地布置。刺血针芯匣体946包括多个刺血针模块部分950,该多个刺血针模块部分950具有刺血针通道951,其中刺血针183可滑动地布置在刺血针通道951中。刺血针模块部分950相对于刺血针芯匣体946的纵轴952径向地布置。
    取样芯匣体947和刺血针芯匣体946在操作构造中彼此相邻地布置,从而每个刺血针模块部分950能够在功能布置中容易地与每个取样模块部分948对准。在图102-106中所示的实施例中,取样芯匣体947相对于刺血针芯匣体946可旋转,以将刺血针芯匣体946的所有刺血针通道951和相应刺血针183与取样芯匣体947的取样模块部分948的所有刺血针通道953对准。取样芯匣体947和刺血针芯匣体946的该相对位置以及可旋转联接的操作构造允许刺血针通道951和953的容易对准,以实现具体刺血针模块部分950和取样模块部分948的功能布置。对于所示的实施例,用以使具体的刺血针模块部分950和取样模块部分948对准的相对运动经由相对旋转被局限于单自由度。
    芯匣945使各种取样模块948部分和刺血针模块部分950对准的能力允许用户将具体刺血针模块部分950的单个刺血针183与取样芯匣体947的多个取样模块部分948一起使用。另外,如果每次穿刺作用需要或者期望新的未用的刺血针183并且先前的穿刺周期未成功获得可用抽样,则刺血针模块部分950的多个不同的刺血针183可用于在取样芯匣体947的单个取样模块部分948中获得样品。
    图102示出了芯匣945的透视分解图,芯匣945具有近端部分954和远端部分955。刺血针芯匣体946布置在芯匣945的近端部分954,并且具有多个刺血针模块部分950,诸如图103中所示的刺血针模块部分950。每个刺血针模块部分950具有刺血针通道951,刺血针183可滑动地布置在刺血针通道951中。刺血针通道951大致平行于刺血针芯匣体946的纵轴952。所示的刺血针183具有驱动头198、轴部分201和尖锐的末端196。刺血针的驱动头198构造成联接到驱动联接器(未示出),诸如上述的驱动联接器185。
    刺血针183在相应的刺血针通道951中自由地滑动,并且标准地布置成使得尖锐端196退入刺血针通道951以保护末端196并且允许刺血针芯匣体946和取样芯匣体947之间的相对旋转运动,如图102中的箭头956和箭头957所示。每个刺血针通道951的径向中心布置成与刺血针芯匣体946的纵轴952和芯匣945的纵轴958相距固定的已知径向距离。通过将每个刺血针通道951布置成与刺血针芯匣体946和芯匣945的纵轴952和958相距固定的已知径向距离,刺血针通道951能因此容易地且可重复地在功能布置中与取样芯匣体947的刺血针通道953对准。刺血针芯匣体946绕可移除的枢轴959旋转,枢轴959的纵轴960与刺血针芯匣体946和芯匣945的纵轴952和950共轴。
    取样芯匣体947布置在芯匣的远端部分955处,并且具有绕取样芯匣体947的纵轴949径向地布置的多个取样模块部分948。取样芯匣体947的纵轴949与刺血针芯匣体946、芯匣945和枢轴959的纵轴952、958和960共轴。取样芯匣体947也可绕枢轴959旋转。为了实现在刺血针芯匣体946和取样芯匣体947之间的准确的相对运动,芯匣体946和947之一或者两者均必需能够绕枢轴959旋转,但是两者并不需要能够绕枢轴959旋转,即芯匣体946和947之一可以永久地或者可拆除地固定到枢轴959。
    取样芯匣体947包括基部961和盖板962,盖板962盖住基部的近侧表面963,从而形成液密密封。取样芯匣体947的每个取样模块部分948,诸如图104所示的取样模块部分948(为图示清楚起见,盖板未示出),具有储样器964和刺血针通道953。储样器964具有位于向外径向端部处的排泄孔965以允许储样器964容易地用流体样品填充。储样器964与相应的刺血针通道953流体连通,刺血针通道953与取样芯匣体947的纵轴949大致平行地延伸。刺血针通道953布置在储样器964的向内径向端部处。
    样品芯匣体947的刺血针通道953允许刺血针183通过,并且还用作从图106中所示的刺血针通道953的入口967延伸到储样器964的样品流动通道966。注意到,盖板962的近侧表面968在刺血针通道部位处与刺血针芯匣体946的远侧面969空间分开,以防止任何流体样品因毛细管作用被抽吸到刺血针芯匣体946的刺血针通道951中。盖板962的近侧表面968与刺血针芯匣体946的远侧面969的空间分离通过位于两个表面968和969之间的、形成到刺血针芯匣体的远侧面969中的凸起部970实现,如图105所示。
    取样芯匣体947的储样器964可以包括上述关于其它取样模块实施例论述的任何样品检测传感器、测试传感器、传感器触点等等。盖板962可以由PMMA形成,并且具有在其表面上形成的导体、传感器或者传感器触点。还可能期望的是盖板962由透明的或者半透明的材料制成,以对储样器中获得的样品使用光学感测或者测试方法。在所示的实施例中,取样芯匣体967的至少一部分储样器964的外部径向定位超过刺血针芯匣体946的外部径向尺寸。由此,光检测器或者传感器971,诸如图105中所示的,能够通过将光信号透射通过盖板962并且从样品接收光信号来检测或者测试布置在储样器964内的样品。
    芯匣体946和947具有的特征、尺寸或者材料可以与上述的取样芯匣和刺血针芯匣或者其任何部件的特征、尺寸或者材料相同或类似。模块部分948和950具有的特征、尺寸或者材料也可以与上述的刺血针或者取样模块或者其任何部件的特征、尺寸或者材料相同或类似。另外,芯匣945在操作构造中能够联接到或者定位成邻近任何的上述驱动器或者任何其它合适的驱动器,由此刺血针芯匣体的刺血针在穿刺周期中能够被选择性地驱动。虽然图102-106中所示的实施例允许各种取样模块部分948和刺血针模块部分950通过相对旋转运动对准,类似地作用的其它实施例也是预期的。例如,刺血 针模块部分、取样模块部分或者两者均能够在功能布置中布置成二维阵列,其中使用相对的x-y运动来使模块部分对准。这样的相对x-y运动能够通过位置传感器和伺服马达完成,以在这样的替代实施例中实现对准。
    在一个实施例中,本发明包括基于单个可抛弃件组装的多个血糖测试。单个可抛弃件提供给用户掌握且不具有松散的个体测试带。多个被分析物传感器被设置在一个基底上并且借助于盒子壳体被提供有净度和湿气密封,以根据需要暴露传感器。穿刺和葡萄糖测试被整合到单个装置中。
    在一个具体实施例中,组装有5个或更多个电化学传感器的可抛弃型塑料盘使得用户能够将单个可抛弃件插入整合了血葡萄糖测量和手指穿刺的装置。可完成多次测试,而不必更换可抛弃件。所述盘被包含在盒子壳体中,其中壳体提供抵抗湿度的屏障并且保持传感器的净度。盘在盒子壳体中自由旋转。图1中示出了这样的盘,其中7个传感器例如被组装在盘上,并且为了清晰,盒子壳体示出为半透明的。在这一构造中,随着盘旋转以准备用于用户测试,未使用的传感器被暴露以在切口中使用,如图107所示。盒子壳体容纳密封,该密封保护以防止因湿度导致传感器退化,同时允许新传感器通过该密封供测试之用并且允许用过的传感器回到盒子壳体中。
    如图107所示,盘包括用于测试体液中的被分析物的多个传感器,被分析物包括但不限于血糖。在图107中,传感器具有穿刺孔以允许刺血针通过传感器用于以出血-读取构造使用。盘被容纳在盒子壳体中以提供净度屏障和湿气保护。
    盒子壳体内的盘可以是具有多个传感器的连续平盘,或者其可以是辐盘使得,如果用户希望在盒子在装置中保持原位的情况下更换刺血针,刺血针能够在辐条之间通过。这一构造在图108中示出。
    盘上的传感器数目是至少5个并且可以是多达12个。这对于允许用户将一个盘装入它们的装置以及允许对于一天的检测进行足够测试是足够的传感器数目,使得用户不必要携带额外的盒子。
    本发明的另一实施例在图108中示出。在该形式中,盘基底是辐条式的以允许刺血针在辐条之间通过从而用过的刺血针可以被除去并且新的刺血针可以插入而不用去除盘。
    在图107和108两者中,盘能够制成为使得传感器适用于出血-然后-读取或者出血-读取使用。在出血-然后-读取使用中,传感器制成为使得血被置 于传感器的最外边缘上。在出血-读取使用中,传感器如所示地制成有传送孔,该传送孔允许刺血针成直角地通过传感器、刺破用户皮肤并且抽取自发血的样品,该样品润湿传感器。
    如图108所示的辐盘的另一实施例示出在图109中。在该实施例中,盘构造为使得一个幅条能够弯曲出平面以促进装置的紧凑设计并且允许刺血针通过盘。重定位一个或者更多个辐条的能力也适用于端部填充-吸入带(end-fill sip-in strip)。图109示出了关于辐盘的变型,其中幅条能够弯曲出平面以便于通向通孔用于穿刺或者另外地将有源传感器重定位用于端部填充-吸入带。左边的图片示出了平面辐盘;右边的图片示出了盘的被弯曲出平面的一个辐条。图109所示的辐盘将被安放在盒子中,诸如图108所示,但为清楚起见,盒子在图109中未示出。
    对于全部的实施例,传感器必需设有电触点。如图110所示,一个实施例将与个体的传感器关联的电触点暴露。这一实施例能够使用平盘或者辐盘,并且电触点能够位于传感器的任一侧上。在这种实施例中,装置在传感器暴露以供使用时与传感器直接电接触。
    在另一实施例中,传感器能够电连接到整合在盒子壳体中的触点,并且那些触点用其它方式连接到装置使得适用于进行电化学葡萄糖测量。
    关于盒子壳体,一个实施例将在传感器本身设置湿气密封,并且当盘旋转以将未用过的传感器布置到位用于测试时,盒子壳体具有将湿气密封从传感器除去的手段,而无需用户的明显动作。
    另外关于盒子壳体,另一实施例将为盒子壳体中的那些未用的传感器提供湿气密封环境。在该实施例中,盒子壳体将提供机械密封,以使盘能够在壳体中旋转而不会影响抵抗湿气的密封完整性。
    通过提供湿气密封的盒子壳体,一种使用模型将优选这样的密封,该密封足以在短时间内保护未用的传感器,该短时间在一天或者一周之间,这也代表了用户将耗尽一个盘的量的传感器所用的时间量。在另一使用模型中,用户将优选这样的密封,该密封足以在长时间内保护未用的传感器,长达3个月,这相当于测试带在目前的通常使用中在干燥小瓶中的储存期。
    盒子壳体能够提供湿气保护的一个手段在于,将针对环境的机械密封与以干燥塑性材料制造相组合。
    图1、2和3中所示的盘构造能够通过两种方法制造:(i)将传感器印刷 在塑性基底上以直接形成所示的构造,然后再组装到盒子壳体中;(ii)以单个或批量方式印刷、层合或者以其它方式制造传感器,并且将个体的传感器组装到所示构造中,位于合适基底上,然后组装到盒子壳体中。
    在本发明的另一实施例中,可抛弃型塑料盘组装有5个或更多个传感器,从而所述盘使得用户能够将单个可抛弃件插入整合了血葡萄糖测量和手指穿刺的装置,并且可使用5次或更多次的测试,而不必更换可抛弃件。这种盘在图1中示出,其中例如7个传感器组装在盘上。在该构造中,每个传感器被密封以抵挡湿气,从而防止用以与血糖起反应的材料弱化以及形成电流。使用中,用户将这样的盘插入血-葡萄糖计,血-葡萄糖计另外整合有穿刺机构。随着盘转动以准备用于用户测试,湿气密封由装置顺带地除去,即用户不用特意地执行密封拆除动作。
    图111示出了用于测试血糖的具有多个传感器的盘。该图中示出了具有穿刺孔的传感器,所述穿刺孔允许刺血针通过传感器用于以出血-读取构造使用。
    图112的实施例类似于图111中的实施例。在该图示中,盘基底是辐条式的以允许刺血针在辐条之间通过从而用过的刺血针可以被除去并且新的刺血针可以插入而不用去除盘。
    在图111和112两者中,盘能够制成为使得传感器适于出血-然后-读取或者出血-读取使用。在出血-然后-读取使用中,传感器制成为使得血被置于传感器的最外边缘上。在出血-读取使用中,传感器如所示地制成有传送孔,该传送孔允许刺血针成直角地通过传感器、刺破用户皮肤并且抽取自发血的样品,该样品润湿传感器。
    图113示出了采用出血-然后-读取构造的图112中的辐盘的实施例。在该构造中,盘的一个辐条暴露以便用户接近。如图中所示,这示出为位于葡萄糖计的顶侧。有源传感器从装置前部暴露,以便用户接近。
    图114示出了用于出血-读取构造的辐盘或者平盘的其它实施例。在这一构造中,辐盘定向成使得刺血针致动的轴线与盘的平面成直角。对于辐盘,设置有刺血针从中穿过以更换的存取孔。在图114中,辐盘图示为具有刺血针孔,刺血针通过该刺血针孔被更换。辐盘位于装置中,但为清楚起见,在图114中示出为好象其位于装置端部上。
    图115示出了图112实施例的变型。在该实施例中,盘构造为使得一个 幅条能够从平面中弯曲出以促进紧凑设计,并且允许接近通孔用于穿刺或者以其它方式重定位有源传感器用于端部填充-吸入带。重定位一个或者更多个辐条的能力也适用于端部填充-吸入带。图中左边示出了平面辐盘;图中右边示出了盘的从平面弯曲出的一个辐条。
    重新构造一平盘的极端示例是将其成形为锥体或者筒体,以便于实现整合的穿刺装置和葡萄糖计量计的其它定向或构造。
    参考图111、112、114和115,当以出血-读取构造使用时,传感器上的电触点示出为朝向盘的中心,而刺血针孔朝向盘的外边沿。这两个特征的相对位置能够互换,以使电触点朝向盘的外边沿,而刺血针孔朝向盘的中心。
    图111、112和115中所示的盘构造能够通过两种方法制成:(i)将传感器印刷在塑料基底上,以直接形成所示的构造;以及(ii)单个地或者批量地印刷、层合或者以其它方式制造传感器,将个体的传感器组装到所示构造中位于合适基底上。
    在本发明的一个实施例中,可抛弃型刺血针以某种方式联接到致动器,或者驱动器。该实施例使用电磁驱动原理,而未使用机械夹持器或者夹头来将刺血针固定至致动器驱动机构。相反,刺血针被完全地收纳在“芯匣”中,该“芯匣”插入致动器螺线管的孔中,如图116所示。
    芯匣在穿刺工作期间并不相对于线圈移动,从而较简单的捕获/锁定机构可用以固定芯匣相对于线圈的位置。图111示出了可抛弃型芯匣被插入致动器线圈的孔。用以测量刺血针在芯匣内位置的传感器也被示出。其它手段能够用以测量刺血针位置,包括但不限于涡流等等。
    图117示出了芯匣的横截面。在芯匣内设有多个轴承,它们提供对于刺血针组件的支撑和导向路径。刺血针组件包括刺血针线,刺血针线联接至条块,一种致动器螺线管能够推/拉的材料,以及可选地“标记”,一种能够用以确定刺血针位置的部件。条块和标记布置在刺血针上的确保它们分别被最佳地定位在致动器的螺线管内以及位置传感器内的位置处。
    图117提供了条块和标记相对于致动器螺线管和位置传感器的示意图,其中芯匣被相对于致动器/装置适当地定位。图117是可抛弃型刺血针芯匣的横截面。刺血针组件被悬置在芯匣内的轴承中。芯匣包含与刺血针线性对应的孔。
    标记能够以多种方式实现,包括:(i)利用线性编码器标记;(ii)作为绝 对编码器标记;并且条块可用作标记,其中利用了通过涡流感测位置的装置。
    刺血针组件的特征或者部件、条块、标记等等的尺寸,能够与轴承组合设计以限制刺血针的运动范围。这些机械“挡块”总是能够防止刺血针掉出芯匣。
    “出血-读取”传感器能够附接到芯匣的面上,以形成“一击”的可抛弃件。无菌挡板、箔片二次模制盖等等能够经过芯匣的孔装入。芯匣更易于由用户操纵和使用。
    在本发明的一个实施例中,设有样品捕获和传感器传送构造,诸如测试带,其是可抛弃件,具有固定间隔的多传感器带,使用允许单次使用测试的传送方法。能够设计结构以允许:(i)进行刺穿动作,(ii)收集样品;(iii)传送样品并且测量体液样品。这些结构被紧密地流体联接,以使从刺穿动作挤出的样品将其本身置于规定位置处,这样的结构允许收集这样的样品以及随后将样品输送至测量单元。
    图118示出了具有位于柔性传送承载件上的竖向间隔的传感器的本发明的一个实施例。被独立的传感器以固定间隔固定至载运带。
    在该实施例中,传感器能够被单独地或者连续地密封,并且是双面的。这一实施例允许对未用传感器的保护和单次使用。利用高容量SMT卷绕制造技术,可采用传感器至带的SMT安装。由于单独的高密度传感器制造,这一实施例是低成本的。
    传感器基底能够用作带并且在条带切断之后使用,以提供更简单的制造和更低的传感器密度。传感器带能够施加在基底或者带之上,然后切割成最终形状。双面密封能够用以降低湿气和污染物进入。传感器连接器接触垫能够位于相反面的下方和上方。
    图119图示了位于柔性传送承载件上的水平间隔的传感器的实施例,其中被独立的传感器被以固定间隔固定至载运带。
    在图119实施例中,个体的传感器能够被密封,能够使用连续密封,以及采用双面密封。图119实施例允许对未用传感器的保护和单次使用。SMT安装可用以将传感器安装到带。高容量SMT卷绕制造可被采用。由于单独的高密度传感器制造,这一实施例提供了低成本的传感器。
    传感器基底也能够用作带并且在条带切断之后使用,以提供更简单的制造和更低的传感器密度。传感器带能够布置在基底或者带之上,并且切割成 最终形状。双面密封能够用以降低湿气和污染物进入。传感器连接器接触垫能够定位于相反面的下方和上方。
    在图120的实施例中,基底传送系统使卷到卷传感器以固定间隔位于柔性载运带上,并通过供给卷和拾取卷配送。这一实施例提供了带有以固定间隔分开的被独立的传感器的低成本的柔性带。传感器电触板能够被包含在传感器中位于前面或后面。这一实施例允许对未用的传感器的保护和单次使用。传感器带能够不布置在基底或者带之上并且被切割成最终形状。所述卷提供了高密度/高总数。独立的传感器能够被从低成本的高密度片材中被独立出来。
    在该实施例中,新的干燥剂能够布置在每一可抛弃件中。低成本的辅助包装能够是低成本的箔片。带-卷能够用以提供对于用过的传感器材料和带的拾取。卷-带能够用以允许用户插入环境密封的容器,以便被独立的传感器一次一个地使用,带在最后一次使用时输出以便手动拆除。
    在本发明的另一实施例中,被分析物流体测试装置具有整合的电子穿刺以及传感器,包括但不限于测试带。提供使用新的刺血针和传感器的芯匣。芯匣呈现为易于操纵的、由用户安装的可消耗品。一个芯匣对于一个测试有效。该系统提供了依据穿刺结果的血糖测试,并且是能够对用户提供单步结果的出血-读取系统。此外,该系统提供了利用每个可抛弃型芯匣的单次测试。
    该测试装置能够具有对于便携式的常规使用所需的大小和形状要素。该器械被要求尽可能地紧凑。该测试装置在成本方面对用户是适宜的,与SMBG产品的行业范例一致。
    该测试装置是整合的穿刺和葡萄糖测量测试装置,其中穿刺和取样过程紧密流体联接。这促进了单步测量体验。穿透构件或者穿刺致动器可被提供,其能够是支承致动器组件,提供了用户可更换的测试芯匣。该测试装置在单个用户步骤中提供了穿刺、自动样品捕获、传送和测量。
    该单击可抛弃件是上述测试装置的芯匣部分。这一芯匣包含刺血针、葡萄糖传感器并且允许紧密的机械和流体联接以实现单击装置的要求。
    也可提供这种装置的多次测试版本。多次测试版使用单独的或相连的多个芯匣,并增强该单击件的收纳和应对多个芯匣的更换的功能性。该多击测试装置符合单击的基本要求。
    在各种实施例中,刺血针能够是二次模制的,以降低不牢固的刺血针成为高严重性的安全危险的可能性,并且便于实现对于刺血针的设备接口。如果使用二次模制来制成无菌挡板,则挡板被包括在二次模制的刺血针/芯匣的生产成本中,如果使用二次模制以形成无菌挡板,则不需要箔片无菌挡板。芯匣能够对刺血针和传感器进行综合管理,因此芯匣造价与二次模制的刺血针和单独传感器的造价相比可以是有竞争力的。
    模制的芯匣能够设计成易于操纵。芯匣可构造成便于传感器的浮动,以允许传感器基于传感器上的关键特征来定位,这与将传感器精确地定位到芯匣不同。芯匣或者二次模制件能够由干燥用材料模制成,或者能够包括干燥用材料以便于传感器的湿气管理。
    整个芯匣的制造能够以高度自动化的方式完成,将传感器保持在带或者片条上并且将芯匣成链布置,并连接,从而传感器不被个体地处理。如果二次模制被用作设计的一部分,则刺血针仅作为模制工序的一部分来处理。如果使用二次模制,则制造过程被明显简化,因为二次模制部件被生产、消毒,然后传感器被添加到二次模制件。
    湿气管理能够以如下方式保持:(i)个体地密封传感器;(ii)将全部的传感器/芯匣安放在被湿气管理的主包装中,诸如小瓶或者箔片包装等等。
    通过将刺血针二次模制件、刺血针无菌密封、传感器保持器和芯匣制成为单个模制品,增强了芯匣的成本、装配、消毒和使用。
    图121的实施例整合有安放在模制芯匣中的裸露刺血针。刺血针通过胶体保持、夹脚结构等等保持。刺血针腔室的无菌利用箔片屏障来保持,并且湿气管理通过对芯匣中的传感器槽或者传感器进行箔片密封来保持。
    图121的实施例是具有下列特性的二次模制的刺血针/芯匣:(i)芯匣被模制;(ii)插入导致刺血针被抓紧;(iii)箔片用于无菌和湿气密封;作为插入/采集的一部分,刺血针移动到位用于测试;在使用后,刺血针被重新安放在芯匣中,等等。
    在制造的一个实施例中,对于多个传感器进行模制直到形成链,并且提供模制-插入刺血针-箔片-消毒-附着传感器-独立。图121实施例的一个优点在于刺血针对传感器的精确的对准。
    图122的具有箔片密封的二次模制的刺血针芯匣提供了作为模制芯匣的一部分的二次模制的刺血针。该刺血针被保持在芯匣中,直到随模制幅板一 起使用。在使用时,幅板被破坏,释放出刺血针。无菌密封通过芯匣上的箔片屏障完成。
    图122实施例具有以下特性:(i)单件模制;(ii)插入导致刺血针的释放;(ii)箔片用于无菌和湿气密封;作为插入/采集的一部分,刺血针移动到位用于测试;在使用之后,刺血针被封装在芯匣中,等等。
    在制造的一个实施例中,许多传感器被模制直至形成链,并且提供模制-箔片-消毒-附着传感器-独立。
    图123实施例提供了作为模制芯匣的一部分的二次模制的刺血针。刺血针的无菌密封是二次模制件/芯匣的一部分。在使用中,刺血针从无菌密封件移除并且被定位以供使用。附接有传感器的密封件被定位用于测量。
    图123实施例的特性包括:单件模制;插入导致刺血针从前方件被释放以及定位传感器以便可以使用;(iii)提供二次模制用于无菌密封,而在刺血针上箔片;(iv)作为插入/采集的一部分,刺血针移动到位用于测试;(v)传感器被个体地用箔片保护,或者芯匣装在管理湿气的主包装中被运送;(vi)在使用之后,刺血针被嵌入传感器件以防止用户暴露于尖端等等。
    图123实施例能够通过如下方式制造:模制多个件直至形成链;使用模制-消毒-附着传感器-独立,等等。
    图124实施例提供了作为模制芯匣的一部分的二次模制的刺血针。刺血针的无菌密封是二次模制件/芯匣的一部分。在使用中,芯匣由用户插入并且无菌密封/把柄被除去,从而暴露刺血针。作为闭合装置的一部分,传感器被转动到位,并且被定位用于测量。可选地,如果芯匣贮存在无湿气管理的主包装中,则传感器的湿气密封能够在闭合装置期间来管理或者根本不管理。
    图124实施例的特性包括:(i)单件二次模制的刺血针/组件;(ii)插入导致刺血针从无菌状态被释放以及定位传感器使之与刺血针对齐以便可以使用;(iii)二次模制用于无菌密封,而在刺血针上无箔片;(iv)作为插入的一部分,刺血针移动到位用于测试,并且用户破坏无菌密封,(v)传感器被个体地用箔片保护,或者芯匣装在管理湿气的主包装中被运送;(vi)在使用之后,刺血针被嵌入传感器壳体件中以保护用户免受尖端伤害。
    图124实施例能够通过如下方式制造:模制多个件直至形成链;模制-消毒-附着传感器-独立等等。
    在本发明的另一实施例中,提供了体液测试装置,其是被整合的、由电 池供电、便携的,并且提供了穿刺和被分析物测量;多传感器测试带以及关联的配件。提供了测试带,如图125中所示,具有多个传感器以便每个测试带执行一个用户测试。测试带由以带形式布置的层压材料构成,能够易于由用户操纵。
    多传感器测试带具有多个传感器(A),图125示出了五个传感器,带有整合的样品收集结构和相关联的电触点。所述带具有卸载结构(B)以便于替换用户安装的刺血针。测试带能够具有基准特征以用于精确地在装置中定位测试带以用于每一体液,包括但不限于葡萄糖,测量。
    图226中的整合的穿刺和葡萄糖测量装置被布置成容纳多传感器测试带、用户可替换刺血针,并且具有用于穿刺、样品收集和传送以及葡萄糖测量的关键部件,这些部件在结构上被紧密地流体联接和/或紧密邻近以便于出血-读取。该装置是便携式的、手持的、以电池供电的电子装置,带有用户显示器和控制器。
    该装置具有用于用户放置手指以用于葡萄糖测量的特征,手指前端(E),带插入口(A),带移除口(B),用于装入和推进多传感器测试带的把手(C),用于移动MSTS用于带安装、使用和移除的机构,用于用户进入以清洁的可移除前“盖”(H),用户控制器(F)和显示器。装置进一步具有允许用户能够容易地以不拆卸方式替换刺血针的特征。实现该目的的一种方式是通过刺血针更换控制器(当被按压时)进行,其使得安装的MSTS移开并且允许用户通过前端更换刺血针。
    参考图127,测试带上的每个传感器结构、样品收集、血传送和传感器能够具有管理湿气进入的结构。在三个位置处必须解决湿气管理密封:(i)传感器挡块接合处;(ii)基底中的穿刺孔以及(iii)盖片中的样品收集孔。在准备测试时,装置自动地破坏湿气密封并且暴露新的传感器用于测试。在图127中,示出了用于覆盖样品收集孔和传感器挡块接合部的密封(A),以及用于穿刺孔的第二密封(B)。
    在MSTS安装的一个实施例中,采取下列步骤:(i)用户从容器去除MSTS;(ii)用户然后将MSTS插入装置上的带入口(A)直至其完全插入;(iii)用户显示器指示剩余的测试数。
    在执行测试中,装置首先被打开。用户通过转动传感器推进把手(C)将MSTS推进到第一个或者下一个可用传感器。把手能够是棘爪把手。当被适 当地推进时,MSTS将不进一步推进并且不会行进越过准备使用的位置。该器械被打开并且显示器指示准备测试。
    用户将其手指放在手指前端(E)上,施加小量的压力。通过按压按钮(F),用户启动测量序列。然后,结果呈现在显示器上。
    当MSTS上的全部传感器均已被使用时,显示器指示需要对其进行更换。用户推进带推进把手并且用过的MSTS从带出口孔(B)退出。用户拾取耗尽的MSTS,将其从装置除去,并且安全地丢弃。
    刺血针更换能够在用户期望的任意时刻进行。用户按压可位于装置背部的刺血针接近按钮。测试带自动地由装置排出,使得刺血针在缺口(B)处离开测试带。使用刺血针把柄,用户通过穿刺孔去除用过的刺血针,用户通过将新的刺血针插入穿刺孔来安装新的刺血针。
    在另一实施例中,提供带有被分析物传感器的腔室。被分析物传感器测量体液中的被分析物的量。所述腔室以堆叠方式存储多个被分析物传感器。干燥剂被整合到腔室中,以保持干燥气氛。腔室的顶部被密封至旋转盖,该盖制造有一次容纳一个传感器的杯部。随着盖旋转,新的传感器被载运到感测位置,在该位置,其血加注口伸出超过腔室壳体的边缘并且电连接到感测电子部件。用过的传感器或者由用户在使用后立即移除,或者在加载下一传感器时通过旋转的盖顶出。
    图128示出了带有密封腔室的壳体,该密封腔室容纳有一叠血糖传感器。图129是壳体的透视图,示出了所述一叠传感器以及将传感器压靠于盖(未示出)的压缩弹簧。
    图130示出了到位的盖。盖支撑在使用中提供与传感器的电连接的电接触指。图134是盖的透视图,示出了被塞入位于盖的密封面中的凹槽内的所述堆叠中的顶部传感器。还能够看到推压指。随着盖旋转,推压指将用过的传感器顶出,如果该用过的传感器仍位于工作位置中。
    图135示出了顺时针转动的盖。工作传感器由旋转的盖载运到工作位置。所述堆叠中的下一传感器仍未被提升,因为其正压靠盖的平滑底面。
    图136示出了处于工作位置中的工作传感器。盖中的弹簧(未示出)将传感器压入壳体顶部中的槽口。
    图137示出了盖,其中盖的空的传送槽处于回到起动位置的半程,其中下一传感器被迫使进入到传送槽。随着盖旋转到起动位置,电接触指经过葡 萄糖传感器的碳触点滑动到位。
    图138示出了从壳体侧面伸出准备接收小的血滴的葡萄糖传感器。盖处于起动位置,并且电触点与传感器的连接突片对准。顶推器指已经行进至传感器上方,将传感器压靠于壳体顶部中的槽口的侧面。顶推器指现在到位,以在随后加载下一传感器时从工作位置清除用过的传感器。盖中的肋还将工作传感器在接触指作用下捕获在正确位置。
    图139以除去盖的透视图示出了壳体、盖以及处于工作位置的传感器。可观察到围绕腔室顶部的弹性密封,该腔室安放有新的葡萄糖传感器。当盖处于“闭合”或者工作位置时,该密封保持与盖的底面接触。在加载周期期间,最小量的环境空气被传送透过密封,导致更低的湿气被施加于干燥剂。该更低湿气暴露意味着干燥剂的延长寿命,或者需要的干燥剂量的较小。
    在本发明的另一实施例中,提供带有被分析物传感器的另一腔室。被分析物传感器测量体液中的被分析物的量。腔室以堆叠方式存储多个被分析物传感器,包括但不限于葡萄糖传感器。干燥剂被整合到腔室中以保持干燥气氛。腔室的顶部被密封至旋转盖,该盖制造有一次容纳一个传感器的杯部。随着盖旋转,新的传感器被载运到感测位置,在该位置,其血加注口伸出超过腔室壳体的边缘并且电连接到感测电子部件。用过的传感器或者由用户在使用后立即移除,或者在加载下一传感器时通过旋转的盖顶出。
    在该实施例中,配送动作是线性滑动而非旋转盖。提供被分析物测试带的盒子,所述测试带包括但不限于葡萄糖测试带,该盒子能够被装入测试仪器,以使所述带能够通过简单地滑动注射器把柄而被分度以便使用。
    图140和142示出了被预加载的盒子,其要滑动到右方被锁定在测试带接触组件中。该滑动件覆盖盒子并且提供了防止湿气接触测试带的密封。滑动件通过致动把柄下方的小的突片被锁定到盒子。该突片在滑动件的首次使用时被破坏,从而允许滑动件打开测试带储存室并且选择第一个测试带。用过的测试带显示为处于连接器组件中的位置中。在使用后,用过的测试带能够由用户除去并且丢弃,或者用过的测试带能够由下一测试带在其由滑动器加载时被顶出。
    图143示出了在测试带接触组件中锁定到位的盒子。
    图144示出了完全地退回、在破坏锁定突片之后的并且准备插入来自盒子的下一个测试带的滑动件。
    图145是准备插入下一测试带的滑动件的截面图。测试带的堆叠能够在盒子中看到,此外能够看到将测试带压入到在滑动件退回时形成的腔室内的弹簧。滑动件上的锁定突片能够被看到,即使其通常在此时被破坏掉。
    图146示出了将新的测试带滑动到测试带连接器的电触点下方之后回动至其原始位置的滑动件。测试带现在准备测试血糖。滑动件与盒子顶部重新建立密封。弹力密封(未示出)被建立到盒子顶部中。
    盒子/连接器组件的长度,即从把柄端部至测试带口的表面的长度,对于27mm长的测试带是近似55mm。
    考虑到本文公开的本发明的说明书和实践,本发明的其它实施例对于本领域技术人员将是清楚的。本说明书和示例旨在被视为仅是示例性的,本发明的真实范围和精神由所附权利要求书给出。

    关 键  词:
    组织 穿透 装置
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:组织穿透装置.pdf
    链接地址:https://www.zhuanlichaxun.net/p-5603506.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1