本发明涉及气体混合物的低温分离。 低温工艺已被大规模用于回收气体碳氢化合物组分,诸如来自各种来源的C1-C2烷烃和烯烃,包括天然气、石油精炼、煤和其他矿物燃料。从裂解碳氢化合物废流中的其他气相组分中分离高纯度乙烯已成为塑料工业的主要化学原料来源。通常包含少于1%其他材料的聚合物级乙烯可由许多工业生产流中获得。碳氢化合物的热裂解和加氢裂解被广泛地用于石油的精炼以及对来自天然气或类似的C+2可冷凝湿气体的利用中。一般在高温下将低成本碳氢化合物裂解,从而得到一批有价值的产物,诸如热解汽油、低级烯烃和LPG,以及副产物甲烷和氢气。在常温和常压附近进行的常规分离工艺可通过顺序液化、蒸馏、附着等回收许多裂解流出物组分。然而,从更有价值的C+2脂族化合物(特别是乙烯和乙烷)中分离甲烷和氢气要求有较昂贵的设备和处理能量。
在许多出版物中,特别是Perry′s Chemical Engineering Handbook第5版)和其他蒸馏工艺方面的论文中,揭示了多阶段精馏和低温冷却列。最近的商业应用已将分馏柱型精馏单元用于冷却列,并在气体混合物的脱甲烷作用中作为回流冷凝器装置。典型的精馏单元在美国专利第2,582,068(Roberts)、4,002,042、4,270,940、4,519,825、4,732,598(Rowles等)和4,657,571(Gazzi)号中得到了描述。典型以前的脱甲烷塔单元需要供应极大量的超低温致冷剂和特殊的构造材料,以提供C1-C2二元混合物或更复杂的组成物的充分分离。如Kaiser等在Hydro Carbon Processing Nov.1988,PP57-61中所报道的那样,具有改进地效率的更佳乙烯分离装置可采用多个脱甲烷塔,希望做到至少99%的乙烯回收,这就要求冷却列中基本上全部C+2馏分的冷凝物以供给蒸馏塔。已知可在前置脱乙烷塔中去除较重的C+3组分,诸如丙烯;然而,这种手段可能比这里所用的较佳分离工艺效率低。
本发明的一个目的是提供一种能效高、低温设备投资少的用于在低温下分离轻质气体的改进的冷分馏系统。
因此,在一方面,本发明的性质在于一种用于从包括甲烷、乙烯和乙烷的烃原料气中回收乙烯的低温分离法,其中在许多顺序安排的分离单元中分离冷加压气流,各个所述分离单元在操作上相连接,从而通过来自上部垂直分离器部分利用重力流动将冷凝的液体积聚在较低的蓄液器部分,来自较低蓄液器部分的气体经由上部垂直分离器部分以向上方向通过并冷却,由此使向上流动的气体在所述分离器部分中部分冷凝,从而形成与向上流动气流直接接触的回流液体;该方法包括下列步骤:
(a)将原料气导入初级分离区,该区具有许多连续连接的逐冷的分离单元,以将原料气分离成在低温下回收的初级富甲烷气流和至少一个富C2烃组分的包含微量甲烷的初级液体冷凝物流;
(b)将所述至少一个初级液体冷凝物流从初级分离区传送至具有连续连接的脱甲烷塔区的分馏系统,其中在第一脱甲烷塔分馏区中采用适中的低温,以从初级液体冷凝物流中回收大量作为第一脱甲烷塔塔顶馏出物蒸气流的甲烷,并回收富乙烷和乙烯的基本上无甲烷的第一液体脱甲烷底部流;以及
(c)在一超低温第二脱甲烷塔区中将至少一部分第一脱甲烷塔塔顶馏出物蒸气流进一步分离,从而回收第一液态富乙烯C2烃粗产物流和基本上无C2烃的第二脱甲烷塔超低温塔顶馏出物蒸气流。
在另一方面,本发明的性质在于一种用于从包括甲烷、乙烷和乙烯的碳氢化合物原料气中回收乙烯的低温分离系统,所述系统包括:
适中低温致冷剂和超低温致冷剂源;
一个包括在操作上与中级和末级分馏柱单元有连续流动关系连接的初级分馏柱单元的顺序冷却剂,其中在一系列分馏柱单元中,冷加压气流得到分离,各个所述分馏柱单元具有将来自上部分馏柱热交换器的富较高沸点组分的冷凝液体蓄聚在下部分馏柱桶中的装置,其中向上流动的气体被部分冷凝,从而形成一种与上流气体直接接触的回流液体,由此提供了向下流动的较冷液体冷凝流,并逐步使冷凝分馏柱液体富含C2烃;
用于将加压原料送至初级分馏柱单元以用于顺序冷却的装置,从而将原料混合物分离成在大约为初级致冷剂温度下回收的富甲烷初级气流及富C2烃的包含少量甲烷的初级液体冷凝物流;
用于将初级液体冷凝物流从初级分馏柱单元传送至低温脱甲烷塔分馏系统的流体处理装置,从而从冷凝的液体中回收冷凝的低沸点组分,所述分馏系统具有一包括在操作上与适中低温致冷剂源连接的第一回流冷凝器装置的第一分馏区,以在第一分馏塔塔顶馏出物蒸气流中,由初级液体冷凝物流中回收大部分低沸点组分,并回收基本上无低沸点组分的第一液体分馏塔底部流;
所述分馏系统具有一包括在操作上与超低温致冷剂源连接的第二回流冷凝器装置的第二分馏区,从而回收主要由高沸点组分构成的液体产物流以及第二分馏塔超低温塔顶分馏物蒸气流;和
用于将由至少一个中间分馏柱单元冷凝而成的中级液流传送至第二分馏区的中间阶段的装置。
在本说明书中,参照逐冷的适中低温的致冷剂和超低温致冷剂源,其温度范围通常被认为分别是约235°K至290°K和低于约235°K。尽管在较佳实施例中采用至少三种不同的制冷环路,专业精炼厂可有4-8种在这些温度范围内或与这些温度范围重叠的环路。
本方法可用于主要分离含有大量乙烯、乙烷和甲烷的C1-C2气体混合物。大量的氢气通常伴随着裂解的烃气,以及少量C+3烃、氮气、二氧化碳和乙炔。可在低温操作之前或之后去除乙炔组分,然而,在末级乙烯产物分馏前将脱乙烷的C2流催化氢化以使乙炔转变是有利的。一般的石油精炼废气或石蜡裂解流出物通常经过预处理,以去除任何酸气,并在吸水分子筛上干燥至约145°K的露点,以制备低温原料混合物。典型的原料气包括含有10%至50%(摩尔)乙烯、5至20%乙烷、10至40%甲烷、10至40%氢气以及不大于10%C3烃的裂解气体。
在一较佳实施例中,在室温或低于室温的、工艺压力为至少2500K Pa(350Psig)、较佳为约3700K Pa(37.1Kgf/cm2,520Psig)的干燥压缩裂解原料气在冷却列中被分离成多个液流和气相甲烷/氢气流。更有价值的乙烯流以高纯度回收,它适用于常规聚合作用。
现在将参照附图对本发明作更详细的描述。
图1是描述一典型的利用裂解和冷分馏来生产乙烯的烃生产工厂的单元操作配置的工艺流程图;
图2是表示许多冷却列和利用分馏柱的双脱甲烷塔分离系统的详细过程和设备图。
参照图1,在一示意图中描述了用于从烃原料气中回收提纯乙烯的低温分离系统。一种常规的烃裂解单元10使新鲜料转变,诸如乙烷、丙烷、石脑油或重质料12以及选择性的再循环烃13,从而提供一种裂解的烃流出物流。由常规工艺在分离单元15中将裂解单元流出物分离,从而提供液体产物15L、C3-C4石油气15p和裂解的轻质气流15G,它们主要由甲烷、乙烯和乙烷构成,并有可变量的氢气、乙炔和C+2组分。由压缩机装置16使裂解轻质气体达到工艺压力,并由热交换装置17、18将其冷却至低于室温,从而提供此处所述的用于低温分离的原料。
在冷却列中,冷加压气流在系列安置的精馏单元中冷却和部分冷凝,各个所述精馏单元在操作上相互连接,从而由来自上部垂直精馏器部分的重力流动而将冷凝液体蓄集在下部液体蓄集器部分,来自下部蓄集器部分的气体以向上方向通过所述上部垂直精馏器部分,以用于所述精馏器部分中的直接气-液接触交换,由此通过冷回流液体与向上流动气流的直接接触而使向上流动的富甲烷气体部分冷凝在所述精馏器部分中,从而提供一种向下流动的冷液体冷凝流,并由此使冷凝液体逐渐富含乙烯和乙烷组分。较佳的是,精馏单元中的至少有一个单元包括一分馏柱型精馏单元;然而,在冷却列中可由填充柱或塔盘接触单元代替。分馏柱热交换单元一般是具有内部垂直通道的铝芯结构,所述垂直通道是采用已知构造方法通过将金属成型和钎焊来形成的。
所述冷加压气体原料流是在诸如连续安置的分馏柱型精馏单元20、24中进行分离的。各个这些精馏单元在操作上相互连接,以通过来自包括多个垂直放置的间接热交换通道的上部精馏器热交换部分20R、24R的重力流动而将冷凝液体蓄集在下部桶部分20D、24D中,来自下部桶部分的气体向上方向通过所述热交换通道,通过热交换通道中的间接热交换,由低温致冷剂流体或其他冷却介质使气体冷却。向上流动的富甲烷气体部分冷凝在热交换通道的垂直表面上,从而形成与向上流动气流直接接触的回流液体,从而提供一种向上流动的较冷液体冷凝流,由此使冷凝液体逐步富含乙烯和乙烷组分。
改进的系统提供了将干原料气导入初级精馏区或具有许多连续连接的、逐渐变冷的精馏单元的冷却剂,以将原料气分离成在低温下回收的初级富甲烷气流20V以及包含少量甲烷的富C2烃组分的至少一个初级液体冷凝物流22。
通过使至少一个初级液体冷凝物流从初级精馏区送至具有顺序连接的脱甲烷塔区30、34的分馏系统来将冷凝液体22提纯,以去除甲烷。在热交换器31中采用适中的低温,以致冷来自第一脱甲烷塔分馏区30的塔顶馏出物,从而从第一脱甲烷塔塔顶馏出物蒸气流32中的初级液体冷凝物流中回收大部分甲烷,并回收基本上无甲烷的富乙烷和乙烯的第一液体脱甲烷底部流30L。有利的是,第一脱甲烷塔塔顶馏出物蒸气是由适中低温的致冷剂冷却的,诸如可由丙烯致冷剂环获得的,从而提供用于再循环至第一脱甲烷塔区30的顶部的液体回流30R。
通过在一超低温末级脱甲烷塔区34中进一步将至少一部分第一脱甲烷塔塔顶蒸气流分离来回收液态第一富乙烯烃粗产物流34L和末级脱甲烷塔超低温塔顶蒸气流34V,从而获得一种富乙烯流。通过将末级脱甲烷塔塔顶蒸气34V经超低温热交换器36送至末级精馏单元38来回收残余的乙烯,从而获得用于再循环至末级脱甲烷塔分馏器顶端的末级超低温液体回流38R。回收得基本上无C+2烃的富甲烷末级精馏塔顶蒸气流38V。利用双脱甲烷塔工艺,大部分脱甲烷热交换任务是由单元31中的适中低温的致冷剂提供的。用于从甲烷和较轻质组分中分离C+2烃的致冷全部能量减少了。通过从脱乙烷塔分馏塔40中的第一脱甲烷塔区进一步分馏C+2底部液流30L,以将C3和较重质烃去除在C+3流40L中,并提供第二粗乙烯流40V,从而达到所要求的乙烯产物纯度。
通过将第二粗乙烯流40V和第一富乙烯烃粗产物流34L共分馏以获得一种提纯的乙烯产物,从C2产物分离塔50中经塔顶50V回收到纯乙烯。可将乙烷底部流50L与C+2流40L一起再循环至裂解单元10,并通过与交换器17、18和/或20R中的适中冷却的原料间的间接热交换来回收热值。
可选择的是,可将富甲烷塔顶馏出物24送至氢气回收单元(没示出),以用作燃料等。如这里进一步描述的那样,可将所有或一部分该气体流与其他甲烷蒸气一起在超低温下在精馏单元38中进一步冷却,以去除残留乙烯。在该工艺改进中,所述连续连接的精馏单元在末级连续精馏单元之前,还包括至少一个中间精馏单元用来部分冷凝来自初级精馏塔顶蒸气20V的中级液流24L。通过将至少一部分所述第一脱甲烷塔塔顶蒸气流32与所述中级液流24L接触,可显著地节省低温热交换责任。这可以是如图1所示的间接热交换单元33H。在一操作上连接在初级和第二脱甲烷塔区之间的逆流接触区中,将这些流与来自所述逆流接触区的导至第二脱甲烷塔区下部的去甲烷液体和来自所述逆流接触区的导至第二脱甲烷塔区上部的富甲烷蒸气直接接触也是可行的。
可以理解,在本发明构思范围内,可采用各种不同的可供选择的单元操作配置。例如,可将初级冷却列20、24等扩展到四个或更多个顺序连接的冷凝温度逐渐变冷的分馏柱单元。作为末级精馏步骤,通过经输入管道38F传送该塔顶蒸气流24F而将其骤冷,在操作上,和末级连续分馏柱型精馏单元连接作为末级脱甲烷塔精馏单元,由此获得用于循环至末级脱甲烷塔分馏器顶部的末级超低温液体回流。
在有些分离系统中,在预分离操作15中,采用一前端脱乙烷塔单元,从而在进入低温冷却列之前,去除重质组分。在该配置中,来自初级冷却器的选择性液流22A提供了一种用于作为回流再循环至前端脱乙烷塔顶部的富乙烷和乙烯液体。该工艺允许省去向下流脱乙烷塔,诸如单元40,从而初级脱甲烷塔底部流30L可被送至产物分离器50。
本工艺配置的另一个可供选择的特点是乙炔氢化单元60,连接该单元是为了接收至少一个包含未回收乙炔的富乙烯流,乙炔可在末级乙烯产物分馏之前与氢发生催化反应。
一种采用与多区脱甲烷塔分馏系统相结合的顺序排列的多个分馏柱的改进冷却列如图2所示,其中序号相应于它们在图1中的对应设备。在该实施例中,采用多个低温致冷剂源。由于在一般精炼厂中很容易得到合适的致冷剂流体,较佳的适中低温的外部致冷环是一封闭循环丙烯系统(C3R),它具有低至约235°K(-37F)的冷却温度。由于该致冷剂的压缩、冷凝和蒸发的能量要求较低,另外根据可用于该设备的构造材料考虑,使用C3R环致冷剂是经济的。普通的碳钢可用于构造所述初级脱甲烷塔柱和相应的回流设备,它是本发明双脱甲烷塔分系统中较大的单元操作。C3R致冷剂是合适的用于使初级和第二脱甲烷塔区中底部流(残渣)重沸的能量来源,并由第二重沸器单元中回收到较冷的丙烯。相比之下,较佳的超低温外部致冷环是一封闭循环乙烯系统(C2R),它具有低至约172°K(-150F)的冷却温度,这就要求很低温度的冷凝器单元和昂贵的Cr-Ni钢合金作为该超低温度下的安全构造材料。通过分开超低温第二级脱甲烷作用的温度和材料要求,将较贵的单元操作保持在较小规模,从而使低温操作的总成本显著降低。分馏柱冷却列的起始阶段可采用常规的封闭致冷剂系统,冷乙烯产物或由乙烯产物分离的冷乙烷最好以与原料气体呈热交换关系在初级分馏单元中通过,从而从中回收热量。
参照图2,干燥压缩原料在工艺压力(3700 KPa)下通过一系列热交换器117、118,并被导入冷却列。顺序连接的精馏单元120、124、126、128各有一相应的下部桶部分120D、124D和上部精馏热交换部分120R、124R等。较佳的致冷列包括在末级连续精馏单元128之前的、用于将分别来自初级精馏塔顶蒸气流120V的第一和第二渐冷中间液流部分冷凝的至少两个中级精馏单元。将第一中间液流124L在初级脱甲烷塔区130中分馏,然后将第二中间液流126L在次级脱甲烷塔区134中分馏,这是比较有利的。分馏柱顺序以及双脱甲烷塔关系与图1类似,然而,中级液气接触塔133(诸如-填充柱)提供了中级液流126L和初级脱甲烷塔塔顶蒸气132间的逆流方式热交换和质量输送操作,从而提供了一种送至次级脱甲烷塔134的中间阶段的富乙烯液流133L,它进一步缺乏甲烷。富甲烷蒸气流133V通过超低温交换器133H,从而在塔134塔的较高阶段中分馏之前进行预冷。可供选择的是,可通过将气体和液流间接交换来提供由单元133提供的热交换作用。向次级脱甲烷塔的较冷输入减小了其冷凝任务。除了蒸气134V在交换器136中的超低温冷凝提供了次级脱甲烷塔回流138R外,分馏柱单元138将任何残留的乙烯冷凝,从而提供了一个末级脱甲烷塔顶蒸气流138V,与来自流128V的甲烷和氢气相结合,在中级分馏柱126R、124R中与冷却列流进入热交换关系。作为在单元138的精馏部分中的辅助致冷剂通过后,将其送至次级脱甲烷塔134的上部阶段,由此从末级冷却列冷凝物128L中回收乙烯。较纯的C2液流134L是从分馏系统回收的,它一般基本上由乙烯和乙烷构成,其摩尔比为约3∶1至8∶1,较佳为每摩尔乙烷对至少7摩尔乙烯。由于其乙烯含量高,可在一较小的C2产物分离柱中将该流更经济地提纯。由于基本上无任何丙烯或其他较高沸点组分,富乙烯流134L可绕过常规脱乙烷塔步骤而被直接送至最后产物分馏塔中。通过保持两个送至乙烯产物塔的分立料流,与常规单料分馏器相比,其尺寸和使用要求显著下降。在现代烯烃回收工厂中,该常规产物分馏器通常是致冷能量的最大消耗者。
在本发明构思范围内,可对该系统作出许多改进,例如,可采用一种结构来将全部脱甲烷塔功能安置在一单独的多区蒸馏塔中。该技术适用于翻新改进已有的低温工厂或新的农业地区的安装。固定滑履单元对有些工厂场地来说是所希望的。
在下列表中给出了图2所示工艺的材料对照表。所有单元都是以稳定态连续流条件为基准的,各流中组分的相对量是以原始原料中的100千克摩尔乙烯为基准的。主要单元操作的能量要求也是通过提供流的焓来给出的。
低温工程领域的技术人员可以预料到,与现有技术中的单个回流脱甲烷塔构造相比,本单元操作的配置使得回流冷却要求减少。超低温C2R致冷剂的使用减至最少,或在有些原料情况下,在其最低172°K温度水平下,全部省去了该致冷剂。
材料对照表
流号 115 130R 122 120V
温度℃ 16.1 -34.4 -18.3 -34.4
压力(Kgf/cm2) 37.1 31.9 36.8 36.6
焓(KCal,MM) 3.1447 0.4455 0.2721
2.1873
蒸气mol分数 1.0 0 0 1.0
流量(KG-mol)
总值 299.15 9.16 65.69 233.45
氢气(H2) 79.02 .23 .67 78.45
甲烷(CH4) 62.85 1.48 4.64 58.20
乙炔(C2H2) 1.3 .69 .48 .81
乙烯(C2H4) 100.0 5.94 27.36 72.63
乙烷(C2H6) 32.4 1.64 12.63 19.79
丙炔(C3H4) .45 0 .43 .22
丙烯(C3H6) 12.8 .58 10.53 2.30
丙烷(C3H8) 5.8 0 5.02 .77
1,3-丁二烯(C4H6) 2.0 0 1.98 .16
1-丁烯(C4H8) .66 0 .65 .58
1-丁烷(C4H10) .11 0 .11 .12
1-戊烯(C5H10) .58 0 .58 0
苯(C6H6) .52 0 .51 .12
甲苯(C7H8) .45 0 .45 0
1-己烯(C6H12) .14 0 .14 0
CO2.54 0 0 .53
流号 124L 126L 128V 128R
温度℃ -39.7 -77.6 126.1 99.4
压力(Kgf/cm2) 36.7 36.49 36.1 29.7
焓(KCal,mm) 0.3699 0.9027 0.9259 0.3529
蒸气mol 分数 0 0 1.0 0
流量(KGmol)
总值 86.35 24.14 115.24 7.72
氢气 1.11 .31 76.80 .12
甲烷 9.28 6.12 37.81 4.98
乙炔 .74 .69 0 .11
乙烯 53.89 16.09 .83 2.57
乙烷 18.20 1.54 .11 .48
丙炔 .22 0 0 0
丙烯 2.29 .11 .11 0
丙烷 .77 0 0 0
1,3-丁二烯 .16 0 0 0
1-丁烯 .46 0 .11 0
1-丁烷 .11 0 0 0
1-戊烯 0 0 0 0
苯 0 0 .11 0
甲苯 0 0 0 0
1-己烯 0 0 0 0
CO20 0 .53 0
流号 132 133L 138V 133V
温度℃ -34.4 -36.2 -99.6 -47.4
压力(Kgf/cm2) 31.9 31.8 31.1 31.8
焓(KCal,mm) 0.3132 0.1482 0.2253
0.2549
蒸气mol 分数 1.0 0 1.0 1.0
流量(KGmol)
总值 33.66 30.1 27.16 27.69
氢气 1.79 .79 2.22 2.02
甲烷 13.85 5.05 24.92 14.92
乙炔 .13 .17 0 .30
乙烯 15.05 21.05 .18 10.08
乙烷 2.83 3.75 0 .62
丙炔 0 0 0 0
丙烯 .35 .47 0 0
丙烷 0 0 0 0
1,3-丁二烯 0 0 0 0
1-丁烯 0 0 0 0
1-丁烷 0 0 0 0
1-戊烯 0 0 0 0
苯 0 0 0 0
甲苯 0 0 0 0
1-己烯 0 0 0 0
CO20 0 0 0
流号 134L 134V 138R 103L
温度℃ -9.9 -95.3 -97.8 6.4
压力(Kgf/cm2) 31.6 31.1 31.1 32.5
焓(KGal,mm) 0.2169 0.5295 0.2148 .6486
蒸气mol. 分数 0 1.0 0 0
流量(KGmol)
总值 38.36 63.49 36.3 118.38
氢气 0 2.40 .18 0
甲烷 .37 60.38 35.46 .69
乙炔 .20 0 0 1.10
乙烯 33.69 .70 .68 66.20
乙烷 4.42 .47 .47 28.00
丙炔 0. 0 0 .45
丙烯 .47 0 0 12.83
丙烷 0 0 0 5.80
1,3-丁二烯 0 0 0 2.00
1-丁烯 0 0 0 .65
1-丁烷 0 0 0 .11
1-戊烯 0 0 0 .58
苯 0 0 0 .52
甲苯 0 0 0 .45
1-己烯 0 0 0 .14
CO20 0 0 0