分离的铁板钛矿相复合材料及其制备方法本申请根据35U.S.C.§119要求2014年05月30日提交的美国临时申请系列第62/
005,023号的优先权,本文以该申请的内容为基础并通过参考将其完整地结合于此。
本文所述的出版物、专利和专利文献的全文内容通过参考结合于本文。
背景
本发明涉及铁板钛矿(pseudobrookite)结构的耐火复合材料。
概述
在一些实施方式中,本发明提供组合物和制备铁板钛矿相耐火复合材料的方法,
所述铁板钛矿相耐火复合材料具有含有铁板钛矿结构的相,例如分离的铁板钛矿相或在连
续的第二相之内的具有铁板钛矿状微观结构的离散相。
附图简要说明
在本发明的实施方式中:
图1显示本发明的示例性(不成比例)陶瓷复合材料组合物的示意图,其具有如本
文所限定的离散相和连续相。
图2-8显示使用背散射电子检测器的选定组成的扫描电子显微照片(SEM)。
详细描述
下面将参考附图(如果有)详细描述本发明的各种实施方式。对各种实施方式的参
考不限制本发明的范围,本发明范围仅受所附权利要求书的范围的限制。此外,在本说明书
中列出的任何实施例都不是限制性的,且仅列出要求保护的本发明的诸多可能实施方式中
的一些实施方式。
定义
“铁板钛矿离散第一相”指在烧制批料之后具有铁板钛矿状结构的包括固溶体(或
“匀称相(straight phase)”)的离散相。
“连续第二相”或“互连相”指环绕离散第一相的材料。
“烧结的耐火陶瓷组合物”指烧制之后的复合材料。
“耐火源材料”指在材料烧制之前的铁板钛矿的固溶体(或匀称相)。
“填料材料”或“填料”指较小粒度的材料,其在加工过程中绕着耐火源材料填充或
环绕耐火源材料,且变成或变为连续第二相的部分。
“热活化(Thermal activating)”或“热活化(thermal activation)”和类似术语
指其中在烧制过程中温度高到足以使得至少一些原子在复合材料之内扩散例如从离散相
扩散到连续相的条件。
“包括”、“包含”或类似术语意为包括但不限于,即内含而非排它。
用来描述本发明实施方式的修饰例如组合物中成分的量、浓度、体积、加工温度、
加工时间、产量、流速、压力、粘度等数值及它们的范围或者组分的尺寸等数值以及它们的
范围的“约”指数量的变化,可发生在例如:制备材料、组合物、复合物、浓缩物、组分零件、制
品制造或应用制剂的典型测定和处理步骤中;这些步骤中的无意误差;制造、来源或用来实
施所述方法的原料或成分的纯度方面的差异中;以及类似考虑因素中。术语“约”还包括由
于具有特定初始浓度或混合物的组合物或制剂的老化而不同的量,以及由于混合或加工具
有特定初始浓度或混合物的组合物或制剂而不同的量。
“任选的”或“任选地”意指随后描述的事件或情况可能发生或可能不发生,描述内
容包括事件或情况发生的场合以及事件或情况没有发生的场合。
除非另外说明,否则,本文所用的不定冠词“一个”或“一种”及其相应的定冠词
“该”表示至少一(个/种),或者一(个/种)或多(个/种)。
可采用本领域普通技术人员熟知的缩写(例如,表示小时的“h”或“hr”,表示克的
“g”或“gm”,表示毫升的“mL”,表示室温的“rt”,表示纳米的“nm”以及类似缩写)。
在组分、成分、添加剂、尺度、条件、时间和类似方面公开的具体和优选的数值及其
范围仅用于说明,它们不排除其他限定数值或限定范围内的其他数值。本发明的组合物和
方法可包括本文所述的任何数值或数值、具体数值、更具体的数值和优选数值的任何组合,
包括明示或暗示的中间值和范围。
多篇专利或专利公开提及堇青石复合材料(参见例如,US 20130210608(钛酸铝复
合材料),US 8394167(钛酸镁铝复合材料),和US 2013011862(钛酸铝复合材料))。其它专
利或专利公开提及例如制备钛酸镁铝的方法(US 8383534),放入基质颗粒的较大玻璃陶瓷
或耐火颗粒的应用(US 20120316053),以及具有在微观裂纹化陶瓷中分散的非微观裂纹化
颗粒的微观裂纹化陶瓷(US 7960009)。
在一些实施方式中,本发明提供一种用于制造含有分离的铁板钛矿相的烧结的耐
火无机非金属(即,陶瓷材料,且不是例如离散金属相)复合材料的方法。本发明的复合材料
可从初始耐火粉末前体制备,所述初始耐火粉末前体包括至少一种元素例如镁、铝、硅或其
混合物,且其可为开采的或通过化学方法制备的。
在一些实施方式中,初始耐火粉末前体可适当地定型(sized),例如通过直接形成
方法或通过例如粉碎、研磨或碾磨。
在一些实施方式中,耐火粉末前体材料可随后与化学合适的填料材料进行混合。
所述填料具有小于所得生坯(green)状态陶瓷制品中的耐火铁板钛矿相的粒度,且所述填
料在混合物中具有足够大的体积分数,从而在所得生坯状态陶瓷制品中包封耐火铁板钛矿
相。
在一些实施方式中,随后可将混合物加热到温度来:热力学地活化耐火前体粉末
材料的组分之间的反应;以及提供足够的能量来允许至少一些可动原子从耐火铁板钛矿离
散第一相扩散进入环绕离散第一相的填料或连续相。
在一些实施方式中,本文所述的制备方法允许例如在离散第一相中的Mg原子扩散
进入连续第二相。
填料相可为或包括例如堇青石前体,其得到和提供具有优异热机械性质和性能的
低热膨胀相。
在一些实施方式中,本发明提供具有例如微观裂纹化颗粒和/或非微观裂纹化颗
粒的分散颗粒的非微观裂纹化陶瓷,且所述分散颗粒具有铁板钛矿相结构。
在一些实施方式中,本文所述的陶瓷复合材料组合物提供高度耐热冲击的陶瓷材
料,其具有高强度,且可用于例如催化转化器和颗粒过滤器应用,例如二氧化钛-多铝红柱
石(mullite)组合物。
在一些实施方式中,本发明提供烧结的耐火陶瓷组合物,其包含:
铁板钛矿结构离散第一相;和
连续第二相。
连续第二相基本上或完全包封离散第一相。
在一些实施方式中,烧结的耐火陶瓷组合物可包括铝-镁-钛氧化物陶瓷。
在一些实施方式中,铁板钛矿结构离散第一相可包括铝-镁-钛氧化物,连续第二
相包括堇青石、尖晶石、锶钙铝硅氧化物(strontium calcium aluminum silicon oxide)、
无定形相(例如包括或包含玻璃)或其混合物。
在一些实施方式中,烧结的耐火陶瓷组合物包括例如约50-90重量%的铁板钛矿
结构离散第一相,和约10-50重量%的连续第二相。在一些实施方式中,例如在实施例8中,
烧结的耐火陶瓷组合物包括60体积%或65重量%的镁铝钛氧化物(magnesium aluminum
titanium oxide)的离散相,和37体积%或31重量%堇青石的连续第二相,以及其它微量氧
化物相来平衡。
在一些实施方式中,铁板钛矿结构离散第一相和/或连续第二相可具有例如微观
裂纹,不含微观裂纹,或具有它们的组合,即一个相可为微观裂纹化的且另一个相可不含微
观裂纹。
在一些实施方式中,以组合物的总重量为基准计,连续第二相可包含例如约10-50
重量%的堇青石。
在一些实施方式中,本发明提供一种制备如上所述的烧结的耐火陶瓷组合物的方
法,所述方法包括:
形成批料混合物,所述批料混合物包含:当烧制时形成离散第一相的耐火源材料,
即当烧制时转化成铁板钛矿结构离散第一相的耐火粉末前体,以及当烧制时形成连续第二
相的填料材料,
所述填料材料具有小于耐火源材料的粒度,且所述填料材料具有足以包封所述耐
火源材料的混合物的体积分数;以及
在1200-1500℃下将所述批料混合物烧制5-20小时,例如5-15小时、10-15小时、
10-12小时且包括中间值和范围,从而形成烧结的耐火陶瓷组合物。
在一些实施方式中,所述方法还可包括以例如0.1-3重量%、0.05-2.5重量%、
0.06-2.0重量%等量且包括中间值和范围的量,将掺杂剂添加到所述批料混合物。所述掺
杂剂例如可选自下述至少一种的来源:硅、铁、锂、钠、钾、钙、硼、磷、银、铜、或其组合。以摩
尔%计的掺杂剂的量可转换成重量%,且可包括在组分A的总重量%中。
在一些实施方式中,所述烧制的耐火陶瓷组合物可包括在固溶体中的离散第一
相,所述离散第一相可包含例如1-4个相,如2个或3个相,且所述固溶体可包括镁原子、铝原
子、钛原子或其组合中的至少一种。
在一些实施方式中,所述烧制的耐火陶瓷组合物包括铁板钛矿结构离散第一相和
包封离散第一相的连续第二相。
在一些实施方式中,活化的烧结的耐火陶瓷组合物具有足以从耐火源材料吸附镁
原子、铝原子、硅原子或其混合物的化学电势,从而绕着所得铁板钛矿结构离散第一相形成
连续第二相。
在一些实施方式中,耐火源材料具有粒度,其中95%的粒径小于20微米(即,D95小
于20微米)和90%的粒径大于1.4微米(即,D90大于1.4微米)。
在一些实施方式中,耐火源材料具有粒度,其中95%的粒径小于51微米(即,D95小
于51微米)和90%的粒径大于5.8微米(即,D90大于5.8微米)。
在一些实施方式中,填料材料具有粒度,其中90%的粒径小于14微米(即,D95小于
14微米)和90%的粒径大于3微米(即,D90大于3微米)。例如,其它粒度粒径量度可包括:d10,
3.08;d20,4.17;d30,5.14;d40,6.06;d50,7.01;d60 8.04;d70,9.24;d80,10.84;d90,13.58;和
d95,16.64微米。
在一些实施方式中,填料材料可选自例如滑石、锶钙铝硅氧化物或其混合物中的
至少一种。
在一些实施方式中,所述填料材料可通过325目的网筛进行筛滤,即该网筛通过直
径小于44微米的颗粒。
在一些实施方式中,所述组合物可具有例如1.5-2.5W/(m*K)的高绝热性质,和例
如700-800℃的高热冲击性质。
制备方法
烧制之前的配料阶段包括混合组分A和组分B,所述组分A是初始耐火粉末前体且
包括例如在堇青石中存在的至少一种元素(镁、铝和准金属硅),所述组分B是化学适用的填
料材料并具有小于耐火制品的粒度和具有足够大的混合物的体积分数从而在复合材料中
包封耐火材料。
烧制之后的材料包括含铁板钛矿结构离散第一相的组分A,以及环绕或包封离散
第一相的含互连或连续第二相的组分B。例如,组分B可为堇青石等材料。所得铁板钛矿离散
第一相可任选地进行微观裂纹化。
一般制备步骤
制备批料,其包括提供用于如本文所定义和证实的离散第一相的来源的成分,以
及用于如本文所定义和证实的连续第二相的来源的成分。
组分A可包括例如来自下述的铝、镁、钛、和氧原子:例如,化学加工原材料,如金属
铝、金属镁、金属钛、氧化铝、氧化镁、氧化钛、氢氧化铝、氢氧化镁、金属卤化物(如二氯化
钛)或其组合,例如,镁铝氧化物、镁钛氧化物、铝钛氧化物和镁铝钛化物;或来自下述:例
如,天然的原材料如铝土矿、三水铝矿、金红石砂、白云石、菱镁矿、水镁石、光卤石、橄榄石
(olvine)等材料,及其混合物。
取决于目标的连续第二相,组分B可包括例如选自原材料的广泛列表的一种或多
种材料。例如,目标连续第二相的示例可包括通过添加预先反应的锶钙铝硅氧化物材料(填
料1)或者反应形成的锶钙铝硅氧化物材料(填料5)来获得的耐火锶钙铝硅酸盐相。目标连
续第二相的其它例子可包括例如天然粘土(例如,膨润土(bentonite)、高岭土或其混合物)
和其它化合物(例如填料2和填料3),和其它目标的堇青石结晶相组分,例如滑石(例如填料
3和填料6)。
在一些实施方式中,镁源可以是任意的含镁化合物,例如滑石,绿泥石,镁橄榄石,
顽辉石,阳起石,蛇纹岩,尖晶石,蓝宝石或氧化镁形成源等,以及类似的化合物或材料,和
它们的煅烧产物。形成氧化镁的源是能够在加热的情况下转化为氧化镁(MgO)的任意镁源,
例如氧化镁,氢氧化镁,碳酸镁和类似化合物或材料。
在一些实施方式中,铝源可为包含铝的任意化合物,例如形成氧化铝的源,高岭
土,叶蜡石,蓝晶石,富铝红柱石,硅线石,红柱石,铝酸镁尖晶石,蓝宝石,绿泥石,和类似化
合物或材料,以及它们的煅烧产物。形成氧化铝的源可为例如能够在加热的情况下转化为
氧化铝(Al2O3)的化合物,例如刚玉;过渡型氧化铝,例如γ-、θ-、χ-或ρ-氧化铝;氢氧化铝
(也称为三水合铝或者水铝矿);或者羟基氧化铝,例如勃姆石或水铝石。
在一些实施方式中,硅源可为在加热时形成二氧化硅(SiO2)的任意化合物。例如,
硅源或二氧化硅源可以是石英、方石英,鳞石英,硅藻土二氧化硅,燧石,熔凝二氧化硅,胶
体或其它无定形二氧化硅。在一些实施方式中,所述二氧化硅源可以是晶体二氧化硅,例如
沸石、石英或方石英。在一些实施方式中,硅源可为形成二氧化硅的源,且可为非结晶二氧
化硅,例如熔凝石英或溶胶-凝胶二氧化硅、硅酮树脂、硅藻土二氧化硅和类似材料。在一种
实施方式中,形成二氧化硅的源可包括加热时能形成游离二氧化硅的化合物,例如,硅酸或
硅有机金属化合物。
在一些实施方式中,形成堇青石的无机粉末批料混合物可包括例如选自下组的至
少一种硅酸铝源:多铝红柱石、蓝晶石、煅烧蓝晶石、硅线石、煅烧硅线石、红柱石、煅烧红柱
石或其组合。在一些实施方式中,所述形成堇青石的无机粉末批料混合物包括高岭土,可以
是生高岭土或煅烧的高岭土,还包含选自铝酸镁尖晶石和/或形成氧化镁的源的至少一种
镁源。
在一些实施方式中,镁源可为铝酸镁尖晶石,且可任选地包括致孔剂(porogen)、
挤出助剂和类似的加工性能增强添加剂。
在一些实施方式中,例如,可采用任何已知的形成陶瓷的常规方法,对批料组合物
进行成形,制成生坯,所述常规方法包括例如:挤出(例如实施例1-6),注塑,粉浆浇铸,流延
浇铸(tape casting),离心浇铸,加压浇铸,干压制(例如实施例7)等类似技术。在一些实施
方式中,挤出可以利用增塑的批料且使用例如液压油缸挤出压机,或两段排气单钻挤出机,
或在出料端连接模头组件的双螺杆混合机和类似的设备或其组合来进行。在双螺杆混合机
中,可以根据材料因素和其他工艺条件选择适当的螺杆元件,以形成足够的压力,迫使批料
材料通过模头。可在合适的炉子中,使用表1的条件例如1340-1450℃且保持15-20小时,来
烧制、烧结和活化挤出的批料材料。
实施例
下面的实施例表明根据如上所述的一般步骤来制备、使用和分析本文所述的复合
材料。下面的实施例还表明控制离散第一相和连续第二相的组成的能力。
耐火前体 每一实施例中用作组分A的是具有粒度的铝镁钛氧化物陶瓷粉末,其具
有95%的小于20微米的颗粒和90%的大于1.4微米的颗粒。混合的金属元素摩尔百分比是
52摩尔%铝,40摩尔%钛和8摩尔%镁。近似于初始组分A混合物的目标通式是(3MgTi2O5)·
(10Al2TiO5)。
选择这种陶瓷粉末材料是因为铁板钛矿钛酸镁相(MgTi2O5)和铁板钛矿二氧化钛
相(TiO2)在铁板钛矿钛酸铝(Al2TiO5)中的优异的相溶解度,这使得在复合材料的离散第一
相中形成固溶体。这些相溶解度允许一些镁离子、铝离子、一些掺杂剂,以及在一些情况下,
钛离子来从离散第一相扩散或迁移进入连续第二相并与连续第二相反应。在现有技术的陶
瓷组合物中,已知钛酸铝和钛酸镁铝相的热机械性能具有优异的耐热冲击性。
填料
填料1 锶钙铝硅氧化物粉末,其具有95%的小于16微米的颗粒,和90%的大于
0.71微米的颗粒。
填料2 粒度小于1微米的膨润土粘土。
填料3 滑石,其具有90%的小于14微米的颗粒,和90%的大于3微米的颗粒。
填料4 40摩尔%氢氧化镁、43摩尔%高龄土粘土、13摩尔%多铝红柱石和1摩尔%
氧化钇的混合物。
填料5 20摩尔%碳酸锶、25摩尔%氧化铝、50摩尔%二氧化硅和2摩尔%碳酸钙的
混合物。
致孔剂
致孔剂包括例如石墨、淀粉、以及石墨和淀粉的混合物和在加工过程中可从复合
材料烧掉的类似材料。
挤出助剂
为了在挤出过程中诱导流动,将约4重量%(以干燥组分的重量为基准计)的羟丙
基甲基纤维素和水添加到批料(例如约1:5羟丙基甲基纤维素和水重量比例)。
表1提供本发明的示例性陶瓷复合材料。实施例1和实施例2是本发明的复合材料
的示意图,其适用于例如汽车基材(催化转换器)。实施例4和实施例5是本发明的复合材料
的示意图,其适用于例如柴油基材(颗粒过滤器)。实施例7是本发明的复合材料的示意图,
其具有高密度,例如92%的理论密度的密度,其适用于例如耐火窑具、炊具、加热板和类似
材料。
表1.
1.掺杂剂的量包括在组分A的总重量百分数中,其中“Fe”是Fe3O4(即,FeO·Fe2O3)
且“Si”是二氧化硅。
2.追加,其中组分A和组分B之和是100%,且额外的致孔剂基于该100%。
3.归因于不充分烧结的高孔隙率。
4.E=使用挤出助剂的挤出;BM=球磨。
5.比较例编号=比较例。
制备复合材料的方法
用于制备本文所述的复合材料的一般步骤包括:使用表1所示的方法和成分进行
混合(组分A和组分B,和其它任选的成分,例如致孔剂和挤出助剂)。代表性组分A前体成分
参见表2。
表2.
如表1所示,将共混的混合物在1300-1500℃下烧制约10-24小时。
实施例1
实施例1的产品包括铁板钛矿结构第一离散相,且在连续第二相中含有填料1。基
于X射线衍射分析,在烧制之后,晶体相包括镁铝钛氧化物铁板钛矿结构离散第一相和钙锶
铝硅酸盐连续第二相。扫描电子显微镜(图2)显示被钙锶铝硅酸盐连续第二相环绕的分离
的镁铝钛氧化物离散第一相。连续第二相约为材料相的40%。实施例1具有添加到组分A的
批料混合物的0.14摩尔%的铁。添加的铁源材料是铁(II,III)氧化物,也称作黑色铁氧化
物,并具有通式Fe3O4或FeO·Fe2O3。粉末是325目。可使用其它合适的铁来源。
图2显示用于实施例1的发明性复合材料的SEM图像和分析:作为离散第一相的镁
铝钛氧化物;以及作为连续第二相的钙锶铝硅酸盐。SEM图像显示被硅酸盐连续第二相(浅
灰色)和孔(黑色)环绕的分离或离散镁铝钛酸盐第一相(即,深灰色)。实施例1和实施例2的
铁板钛矿离散第一相组成中的代表性组分参见表3。
表3.
热分析 使用膨胀计来进行热分析,从而显示在热循环过程中的滞后。当从室温加
热到1000℃时,这种材料的热膨胀遵循下述曲线:
y=截距+B1*T+B2*T2
其中T是单位为℃的温度,且膨胀以百万分之份数(ppm)计。
当从1000℃室温冷却到50℃时,这种材料的热膨胀遵循下述曲线:
y=截距+B1*T+B2*T2,
截距
–67.40623
B1
1.0072
B2
0.00214
比较例2
比较例2的产品包括含有填料1的铁板钛矿相。基于X射线衍射分析,在烧制之后,
晶体相包括镁铝钛氧化物铁板钛矿相和钙锶铝硅酸盐相(但不是离散的和连续的相)。扫描
电子显微镜显示被钙锶铝硅酸盐相环绕的镁铝钛氧化物相。测定环绕的相约为总材料相的
20体积%。比较例2具有添加到组分A的批料混合物的0.14摩尔%的铁。添加的铁材料是铁
(II,III)氧化物,也称作黑色铁氧化物,并具有通式Fe3O4或FeO·Fe2O3。粉末是325目。图3
显示用于另一复合材料的SEM图像和分析,其具有:镁铝钛氧化物离散第一相;以及作为连
续第二相的钙锶铝硅酸盐。图3的SEM图像与图2的SEM图像相似,且能测定更低量的硅酸盐
连续第二相(浅灰色),因为图2具有比图3更多的亮的相(组分B)。
实施例3-7具有添加到组分A的批料混合物的0.09摩尔%的硅掺杂剂。实施例3-7
中添加的源材料是二氧化硅,也称作氧化硅SiO2,粉末是325目。可使用其它合适的硅源。
热分析 使用膨胀计来进行热分析,从而显示在热循环过程中的滞后。当从室温加
热到1000℃时,这种材料的热膨胀遵循下述曲线:
y=截距+B1*T+B2*T2
其中T是单位为℃的温度,且膨胀以百万分之份数(ppm)计。
截距
66.00887
B1
0.78099
B2
0.00145
当从1000℃室温冷却到50℃时,这种材料的热膨胀遵循下述曲线:
y=截距+B1*T+B2*T2,
截距
0.500008
B1
–0.77677
B2
0.00286
实施例3
实施例3的产品包括铁板钛矿结构第一离散相和包含填料2的连续第二相。基于X
射线衍射分析,在烧制之后,晶体相只包括镁铝钛氧化物铁板钛矿结构离散第一相。扫描电
子显微镜(图4)显示被无定形玻璃连续相环绕的分离的镁铝钛氧化物。连续第二相约为总
材料相的18体积%。图4显示用于复合材料的SEM图像和分析,所述复合材料具有镁铝钛氧
化物离散第一相和玻璃连续第二相。图像分析表明在晶粒中存在微观裂纹。晶粒中的微观
裂纹可通过热分析来表征。在这种复合材料和其它复合材料的离散相中,通过SEM常常可看
见微观裂纹。
热分析 使用膨胀计来进行热分析,从而显示在热循环过程中的滞后。当从室温加
热到980℃时,这种材料的热膨胀遵循下述曲线:
y=截距+B1*T+B2*T2+B3*T3+B4*T4+B5*T5+B6*T6+B7*T7
其中T是单位为℃的温度,且膨胀以百万分之份数(ppm)计。
截距
34.55125
B1
-1.54497
B2
0.00855
B3
-4.65171E-5
B4
1.88358E-7
B5
-3.78853E-10
B6
3.58746E-13
B7
-1.26746E-16
当从1000℃室温冷却到50℃时,这种材料的热膨胀遵循下述曲线:
y=截距+B1*T+B2*T2+B3*T3+B4*T4+B5*T5+B6*T6+B7*T7,
截距
5.95025
B1
0.7159
B2
-0.03866
B3
2.60862E-4
B4
-8.46243E-7
B5
1.38656E-9
B6
-1.08142E-12
B7
3.20628E-16
实施例4
实施例4的产品包括铁板钛矿结构第一离散相,具有包含填料3的连续第二相。基
于X射线衍射分析,在烧制之后,晶体相只包括镁铝钛氧化物铁板钛矿结构离散第一相,含
有堇青石和尖晶石的连续第二相。扫描电子显微镜(图5)显示被连续钙锶铝硅酸盐第二相
环绕的分离的或离散的镁铝钛氧化物第一相。连续第二相约为材料相的30体积%。图5显示
一种复合材料的SEM图像和分析,所述复合材料具有镁铝钛氧化物离散相;以及连续相,该
连续相具有堇青石和尖晶石(即,在连续相中的微量组分)。
热分析 当从室温加热到1000℃时,这种材料的热膨胀遵循下述曲线:
y=截距+B1*T+B2*T2。
截距
-87.2276
B1
2.28706
B2
0.00186
当从1000℃冷却到室温冷却到50℃时,这种材料的热膨胀遵循下述曲线:
y=截距+B1*T+B2*T2+B3*T3+B4*T4+B5*T5+B6*T6+B7*T7。
截距
-23.20962
B1
0.29886
B2
-0.00581
B3
9.25811E-5
B4
-3.59335E-7
B5
6.39832E-10
B6
-5.22497E-13
B7
1.59376E-16
实施例5
实施例5的产品包括铁板钛矿结构第一离散相和包含填料3的连续第二相。基于X
射线衍射分析,在烧制之后,晶体相只包括镁铝钛氧化物铁板钛矿结构离散第一相,以及堇
青石相和尖晶石相。扫描电子显微镜(图6)显示被连续第二堇青石相和尖晶石相环绕的分
离的或离散的镁铝钛氧化物第一相。
比较例6
比较例6的产品包括含有填料5的铁板钛矿相,但没有如表1所示的分离的或离散
的铁板钛矿相。基于X射线衍射分析,在烧制之后,晶体相只包括镁铝钛氧化物铁板钛矿结
构相,以及堇青石相和尖晶石相。扫描电子显微镜(图7)没有显示分离的镁铝钛氧化物离散
第一相,而是显示混合物。
实施例7
耐火源材料包括75重量%的组分A和25重量%的组分B填料材料。在烧制之后,所
得复合材料由58体积%的铁板钛矿离散第一相和42体积%的连续第二相组成,所述连续第
二相由堇青石相、尖晶石相和无定形相组成。
图8显示用于一种复合材料的SEM图像和分析,所述复合材料具有微观裂纹化镁铝
钛氧化物离散第一相以及堇青石和尖晶石的连续的基本上非微观裂纹化第二相。球磨、压
制和烧制这种起始样品或前体样品,这得到具有8体积%孔隙率的复合材料。
热分析 当从室温加热到1000℃时,这种材料的热膨胀遵循下述曲线:
y=截距+B1*T+B2*T2。
截距
-38.51564
B1
1.2335
B2
0.0019
当从1000℃室温冷却到50℃时,这种材料的热膨胀遵循下述曲线:
y=截距+B1*T+B2*T2+B3*T3+B4*T4+B5*T5+B6*T6+B7*T7。
截距
59.70407
B1
-2.75869
B2
0.00753
B3
-9.66157E-6
B4
4.71496E-8
B5
-8.25522E-11
B6
6.18448E-14
B7
-1-.76011E-17
实施例8
绝热和热冲击分析 通过下述来评估本文所述的复合材料的绝热性质:通过挤出
约4平方英寸×约2毫米厚来首先制备样品片材。当将样品片材固定在评估者的裸手的拇指
和食指之间的相对角落中时,使用引导至顶部右边四分之一(quadrant)的丙烷焰(propane
touch),来加热样品片材。FLIR成像仪表明火焰加热的四分之一达到约1100℃的高温,其被
约1000℃-400℃的在该四分之一之内的更冷的区域或部分带梯度环绕。评估者的手指不能
感受样品片材的火焰加热部分的任何温度升高。
通过水淬冷热冲击测试来评估本文所述的实施例7的复合材料的热冲击性质(即,
平均挠曲强度下降至少30%)。根据ASTM标准C1525-02,热冲击温度是750℃。所用测试样条
的样品几何形貌是4.2mm x5.3mm x40mm。实施例7的热导率是2.1W/(m*K)。材料的孔隙率越
高,观察到的热导率数值越低。
已结合各种具体实施方式和技术对本发明进行了描述。但是,应当了解可以在本
发明的范围内做出多种变化和改进。