本发明涉及一种新型C型肝炎病毒(KHCV)cDNA的寡核苷酸及由此编码的多肽和针对多肽的抗体;以及利用这些活性制剂,即寡核苷酸、多肽和抗体,制备的诊断产品和疫苗。 大家知道通常病毒性肝炎是指由各种肝炎病毒诱发的疾病,包括A型肝炎病毒、B型肝炎病毒、δ型肝炎病毒和E型肝炎病毒、巨细胞病毒和E-B病毒。自从1980年以来,这些病毒的基因类型已经搞清,为开发诊断制剂,疫苗和治疗制剂提供了方便。
进而业已发现一种被称为非A非B型或C型新型肝炎,其中80%-90%的病例是由输血引起的[Lancet,2,838-841(1975)],往往这种输入型肝炎大约50%可发展成肝硬化或肝癌。
病人血中存在的C型肝炎病毒(HCV)的数量通常非常少。与HCV相关的抗原抗体系统的特性还不为人们完全理解,因此,开发治疗和诊断制剂还有许多困难。
后来,许多科学家对HCV的研究非常重视(Alter H.J.et al.,Lancet,459-463(1978);Tabor,E.et al.,Lanet,463-466(1978);Hollinger F.B.et al.,Intervirology,10,60-68(1978);Wyke,R.J.et al.,Lancet,520-524(1979);Bradley,D.W.et al.,J.Med.Virol.,9,253-269(1979)]。
Bradley等[Gastroenterology,88,773-779(1985)]确定了HCV的部分生化和生物物理特性。他们用一个C型肝炎病人的血清感染了一只猩猩(champanzee),从而获得了许多血清;再从这些血清中提取了HCV病毒,对此病毒进行了分析和研究。
自那以后,采用Bradley方法分离HCV病毒用于开发诊断、预防或/和治疗C型肝炎的制剂的研究非常多。
Choo等用C型肝炎病人的血清感染猩猩之后,从其血清中分离出HCV病毒,并对其部分cDNA片段进行了克隆。证明在大肠肝菌和酵母菌体内由这段cDNA表达产品的蛋白质能和C型肝炎病人血清中的抗体发生免疫活性反应。(Science,244,359-362(1989)]。
Kuo等(Science,244,362-364(1989)]由美国Chiron公司鉴定的部分HCV cDNA片段和超氧化物歧化酶(SOD)基因融合在酵母细胞中表达了C100-3蛋白质。该蛋白质与C型肝炎病人血清有免疫学反应,也能与70%地输入型肝炎病人血清反应。
Houghton等进一步描述了HCV抗原的用处,特别是C100-3蛋白,它是从患C型肝炎猩猩体内分离出的HCV基因序列所编码的。因此,称其为美洲型HCV。用此抗原去制备疫苗和能检测HCV抗体的诊断试剂(CT WO 89/04669;WO 90/11089);建立一种用这类抗原(如,C100-3)参与的酶免疫测定诊断法。
以上述为基础,美国Ortho诊断系统公司在1990年开发并检测HCV抗体的诊断产品。可是,所说的C100-3抗原在用于诊断制剂中活性成份时仅与慢性C型肝炎病人抗体反应,不和急性期病人特别是疾病早期阶段的血清反应。此外,由于该蛋白中融合有SOD因而常出现一些假阳性结果[Shimizu,Y.K.et al,Proc.Natl.Acad.Sci U.S.A,86,6441(1990)]。
另一方面,按Houghton等人的方法,部分HCV cDNA克隆也被得到。HCV病毒是从收集的日本C型肝炎病人血清中得到的,包括5′-末端区和编码核心蛋白和外膜蛋白的结构基因。已经确定了其cDNA克隆的核苷序列,结果发现该序列与美洲型HCV有约10-15%的不同。这表明的确出现了一种新型,称为日本型[kubo,Y,et al;Nucl.Acid.Res,17,10367-10372(1989);Kato,N.et al.,Proc.Japan Acd.,65,219-223(1990);Kaneko,S.et al.,Lancet,335,976(1990);Takenchi,K.et al.,Gene,91,287-291(1990);Tekenchi,K.et al.,Nucl.Acid.Res,18,4626(1990);Takamizawa,A et al.,J.Virol.65,1105-1113(1991)];由日本型HCV得到的抗原制备的疫苗和针对日本型HCV的诊断制剂也已有报导[Okamoto H.et al.,Japan J.Exp Med.60,167-177(1990)]。
Harada等[J.virol.65,3015(1991)]的报告指出当编码结构基因5′-末端的核心抗原被用于疑为HCV感染的病人核品中,诊断HCV的抗体时,该法可能要比用C100-3蛋白检测抗体提早6-8周。
Lesniewski等[欧洲专利公开号72534(1990)]也介绍了一种采用多种抗原的改进诊断法,该法要比单用C100-3抗原法敏感和特异。Wang在EP公开号442394(1991)上介绍了另一种诊断方法,该法中选用了多种由15-65氨基酸组成的表型决定簇多肽作为抗原检测HCV抗体。这些多肽是从10个不同的HCV表型决定簇中挑选出来的。
上述公开物表明可用携带不同表型决定簇的多肽混和物替代单一种的抗原,从而改进提高HCV的诊断。
然而,以糖蛋白形式存在于病毒表面的外膜蛋白已经显示有可能用于开发疫苗或诊断制品。因为与HCV很相似的黄病毒(flavivirus),已知外膜蛋白和非结构蛋白(ICNS1)在诱导宿主免疫反应中起着重要的作用,而且在把该蛋白结合到宿主细胞受体也起着重要作用。[F.Preugschart,J.Virol.65,4749-4758(1991)]此外,业已报导针对外膜蛋白抗体形式密切与C型肝炎康复有关[Lesniewski,R.et al,P59;Watanabe et al.,p82,the 3rd International HCV Symposium,Strasbourg,France(1991)]。
进一步Houghton等携测外膜2蛋白(E2)很可能证明是一种重要的抗原用于制备C型肝炎疫苗,为此,所说的E2蛋白质有人认为与免疫反应机制有密切的关系。因为E2蛋白的氨基端表明的了显著的种导质性(The 3rd International HCV Symposium,p20,Strasbourg,France,1991);对日本型和美洲型HCV基因型的核酸序列比较后发现,虽然编码核心蛋白的序列有约91%的同源性,但编码外膜蛋白的同源性反约74%[Takeuchi,K.et al.,J.Gen.Virol.,71,3027-3033(1990)]。
如前所述,HCV病毒在许多不同国家被发现并表现出地区异质性,而这种异质性可能在决定疫苗的效力和诊断制剂的敏感性和准确性上都是非常重要的因素。
据此,本发明仅涉及从朝鲜C型肝炎病人(KHCV)分离出的新型HCV的分离和鉴定,不同于已发现的HCV包括美洲型和日本型。
需倍加说明,本发明提供了已知KHCV全序列分析cDNA和几株HCV变异株cDNA的部分定序。从KHCV的部分cDNA序列被用于诊断假定样品中病毒存在的探针或前导序列(Primer,是指用于PCR检测中的引物DNA-译者注)。使用这种核苷酸序列的诊断试剂盒(kit)和方法也组成了本发明的内容。
除此之外,本发明提供了由上述cDNA编码的多肽,这在诊断试验试剂或/和疫苗组成中非常有用。
所说的多肽是指一大类各种不同的多肽,其中包含有重组多肽,如带有一个非HCV蛋白的融合多肽所构成的KHCV的表型抗原决定簇以及由此而来的各种纯化产品。
本发明另一方面涉及一个重组表达载体,该载体是由KHCV cDNA的一个敞开阅读框架(ORF)组成。而这个ORF完全能被自由地联接到一个能与目的宿主微生物相容的调节序列。这种载体可包括:一段编码一种非KHCV蛋白的核苷酸序列以用于制备一种与来自KHCV或其它型病毒蛋白或多肽的多核苷酸的融合片段;一株用这种重组表达载体转化的宿主细胞;以及由此而产生出的多肽。
本发明进一步所涉及的内容就是生产含有KHCV表型决定簇多肽的方法,即:培养含有表达载体转化的宿主细胞,该载体内含有编码KHCV表型决定簇多肽的一段序列;以及由此而生产出的含有KHCV表型决定簇多肽。
本发明还包括针对KHCV表型决定簇的单克隆抗体和生产这种单克隆抗体的杂交瘤细胞。
由一种以上多肽,其中包含一种以上KHCV表型决定簇组成的诊断制剂作为活性成份用于检测假定样品中KHCV抗体以及由这些试剂构成的诊断试剂盒也属于本发明的范围。
由一种或多种针对KHCV抗原作为活性成份用于检测假定样品中HCV抗原的诊断制剂以及由此而构成的诊断试剂盒又是本发明的另一个方面。
本发明还需提及的内容就是用于治疗或/和预防HCV感染的一种疫苗,它是由含有KHCV表型决定簇的多肽和灭活或致弱的HCV组成。
附图简要说明
本发明可通过附图更易理解,其中:
图1表明在KHCV-LBC1上各种KHCV cDNA克隆的相对位置。
图2-1到2-16说明了KHCV-LBC1的核苷酸序列和由此编码的多肽的氨基酸序列。
图3给出了在KHCV-LBC1上每一个cDNA克隆开始的核苷酸数和结束核苷酸数。
图4比较分析了KHCV-LBC1与美洲型和日本型HCV基因组的核苷酸序列。
图5比较分析了由KHCV-LBC1和美洲型和日本型HCV编码的氨基酸序列。
图6比较分析了KHCV-LBC1和美洲型和日本型HCV基因组中5′-末端区的核苷酸序列。
图7示cDNA片段NS2-LBC2核苷酸序列和由此编码的多肽氨基酸序列。
图8示cDNA NS2-LBC3片段的核苷酸序列和由此编码的多肽氨基酸序列。
图9示cDNA NS2-LBC20片段的核苷酸序列和由此编码的多肽氨基酸序列。
图10示cDNA NS2-LBC21片段的核苷酸序列和由此编码的多肽氨基酸序列。
图11示cDNA NS2-LBC23片段的核苷酸序列和由此编码的多肽氨基酸序列。
图12示cDNA NS2-LBC25片段的核苷酸序列和由此编码的多肽氨基酸序列。
图13示cDNA NS2-LBC26片段的核苷酸序列和由此编码的多肽氨基酸序列。
图14示cDNA NS2-LBC27片段的核苷酸序列和由此编码的多肽氨基酸序列。
图15示cDNA NS2-LBC28片段的核苷酸序列和由此编码的多肽氨基酸序列。
图16示cDNA NS2-LBC29片段的核苷酸序列和由此编码的多肽氨基酸序列。
图17示cDNA NS2-LBC30片段的核苷酸序列和由此编码的多肽氨基酸序列。
图18示cDNA NS2-LBC31片段的核苷酸序列和由此编码的多肽氨基酸序列。
图19示cDNA NS2-LBC32片段的核苷酸序列和由此编码的多肽氨基酸序列。
图20示cDNA NS5-LBC20片段的核苷酸序列和由此编码的多肽氨基酸序列。
图21示cDNA NS5-LBC21片段的核苷酸序列和由此编码的多肽氨基酸序列。
图22示cDNA NS5-LBC22片段的核苷酸序列和由此编码的多肽氨基酸序列。
图23示cDNA NS5-LBC25片段的核苷酸序列和由此编码的多肽氨基酸序列。
图24示cDNA NS5-LBC27片段的核苷酸序列和由此编码的多肽氨基酸序列。
图25示cDNA NS5-LBC28片段的核苷酸序列和由此编码的多肽氨基酸序列。
图26比较分析了包括在KHCV-L1或KHCV-L2亚型中的KHCV变异体cDNA的NS2区所编码的多肽的氨基酸序列。
图27比较分析包括在KHCV-L1中的KHCV变异体cDNA NS2区的核苷酸序列。
图28比较分析包括在KHCV-L2中的KHCV变异体cDNA NS2区的核苷酸序列。
图29分别比较分析包括在KHCV-L1和KHCV-L2中的KHCV变异体cDNA NS5区的核苷酸序列。
图30示为在酵母细胞中表达一段KHCV cDNA片段而构建的表达载体。
图31A表明KHCV cDNA片段在酵母细胞中表达后进行的SDS聚丙烯酰胺凝胶电泳(SDS-PAGE)结果。
图31B示图31A胶上的蛋白印迹分析结果。
图32示在酵母细胞上生产的KHCV E2N和E2C多肽的SDS-PAGE(图31A)和蛋白印迹分析(图31B)的结果。
图33示化学合成的ubiquitine基因核苷酸序列。
图34示一个含有trp启动子(promotor)用于在大肠杆菌中表达一段KHCV cDNA片段的表达载体。
图35示一个含有tac启动子(promotor)用于在大肠杆菌中表达一段KHCV cDNA片段的表达载体。
图36至38示在大肠杆菌中表达一段KHCV cDNA片段后SDS-PAGE结果。
图39至41示图36-38凝胶上的蛋白印迹分析结果。
图42示在大肠杆菌内由tac启动子控制下KHCV cDNA片段与MBP基因融合基因表达后SDS-PAGE结果。
图43示图42凝胶上的蛋白印迹分析结果。
图44示酶免疫测定法(EIA)标准曲线,随用于检测样品中HCV抗体使用抗原浓度而变化。
图45示用单克隆抗体作为样品中KHCV抗原浓度的函数进行EIA的一条标准曲线。
所有此中所引述的参考文献在整个文章所需引述都已标出。
所有文中使用的下列术语都应具有下列意义:
“C型肝炎病毒”是指一种引起非A非B型肝炎或C型肝炎的病毒。HCV和NANBV,以及NANB肝炎(NANBH)和C型肝炎可对应互换。
“朝鲜型C型肝炎病毒”或“KHCV”是指一种新型的HCV,它是从朝鲜的C型肝炎病人体上分离而得。它的cDNA有一个核苷酸序列的敞开的阅读框架,该序列编码的氨基酸序列中在842,849和853位置上的氨基酸分别为苯丙氨酸、亮氨酸和苏氨酸;或分别为亮氨酸、苯丙氨酸和丙氨酸。
“表型决定簇”是指一个多肽的抗原决定簇,它能诱发免疫学上担负的宿主动物的免疫应答或/和能特异性将自身连接到相应的抗体。本发明的表型决定簇通常至少由6个氨基酸组成,最好是7或8个氨基酸。
“片段”意味着多核苷酸或多肽,它们由本发明中cDNA或蛋白的亚序列组成。这些片段可以由酶切大分子而产生。限制性内切酶用于DNA,蛋白酶用于蛋白质分子。可是,本发明的片段没限制来自任何特殊形式的酶切产品;可能包括亚序列、它们的终点不与任何酶切点相对应。根据文中提供的序列资料,这些片段也可由化学合成法获得。蛋白片段可由编码这些蛋白片段的DNA片段表达而得。本发明中如果这些蛋白片段包含有足够多的氨基酸残基构成一个免疫活性决定簇和/或抗原决定簇,那么它们就非常有用了。
“敞开阅读框架”是指一段寡核苷酸序列的区域,在此区域中连接核苷酸三联序列可做为密码子进行阅读,它们代表着特殊的氨基酸编码出一个多肽。
“表达载体”是指一个克隆运载体,通常被设计用于启动寡核苷酸插入物表达的启动。
“调节序列:是指一段DNA序列涉及一段寡核苷酸序列表达的调节,例如,调节序列是指启动子,核糖体联结位点以及终止子。
“重组KHCV多肽”是指一段多肽,由图2-1到2-16和图7至25中KHCV cDNA编码的至少包含6个氨基酸,同时它也可连接到除在KHCV cDNA上编码的多肽上以外的氨基酸上。
“纯化的KHCV多肽”是指KHCV多肽或片段,它们实际上是纯一或均质的,是从天然存在的细胞组份中分离而得。通常,一种纯化的KHCV多肽是由超过70-90%的这种多肽组成,更好的纯化物则至少高于95%。
其它用于该文中的术语,正如现有技术中所用有正常和方便的意义。
本发明在下面将更专门地加以演示。
KHCV cDNA的克隆
KHCV cDNA文库的制备如下:
HCV病毒子是用超离心沉淀法从患C型肝炎的朝鲜病人血清中分离而得。再以HCV中抽提出HCV RNA;用一个随机前导片段或寡d(T)前导片段和反转录酶从HCV RNA中合成了双股cDNAs;用PCR扩增后进行克隆或直接克隆到UNI-ZAPXR载体(Stratagene CO.11099 N.Torrey,Pines Rood,CA,USA),给这个载体上接上一个Eco RI接头后,包装成病毒颗粒制备出cDNA文库[Saiki et al.,Science,230,1350(1985)]。
通常,肝炎病毒颗粒可从感染肝炎的病人或猩猩肝或血清中分离出。在本发明中,HCV是从C型肝炎病人血清分离而得,HCV总RNA是先用超离心沉淀的病毒颗粒,再以酚抽提和酒精沉淀而得。
之后,所说的HCV总NRA所用作制备cDNA的模板。在此反应中使用了一个Zap-cDNA合成试剂盒(Cat.No.200400,Stratagene Co.,11099 N.Torrey Pines Rd.,La Jolla,CA 92037,USA)。
所说的cDNA是由反转录酶反应合成的,这期间使用了总NRA和随机前导引物序列RANPSHCV或寡聚d(T)前导引物,这里RNAPSHCV引物(5′-TTTTTCATGATTGGTGGTGGAACTGGACCGTCTCGAGNNNNNN-3′,其中的N系指A、G、T或C)和寡聚d(T)引物(5′-GAGAGAGAGAGAGAGAGAGAACTAGTCTCGAG(T)18-3′)是由6个随机核苷酸片段(RANPSHCV引物)或18T[寡聚d(T)引物]组成cDNA的3′末端区,其中有一个Xho Ⅰ限制性内切酶识别位点。
为了引入一个Eco RI(5′-GAATTC-3′)酶识别位点到合成的cDNA以方便克隆,Eco RI接头
(5’-CCCCCCGAATTCGGCACGAG-3’)
(3’-GGGGGGCTTAAGCCGTGCTC-5’)
被连接到合成的cDNA片段上。之后,cDNA片段在引物PSHCV(5′-TTTTCATGATTGGTGGTGGA-3′)和Eco RI引物(Eco RI接头的上面一段,即5′-3′)存在下进行PCR扩增;cDNA片段用限制性核酸内切酶Eco RI和Xho Ⅰ部分酶切;消化后的cDNA用UNI-ZAPXR载体连接,这种载体是一株λgt 11的变异体,先经Eco RI和Xho Ⅰ酶切后与cDNA消化片段对接。连接后的DNA用Gigapack Ⅱ Gole Packaging试剂盒在体外包装成λ噬菌体颗粒(Cat.No.200214,Stratagene Co.,USA)感染大肠杆菌进一步增殖后即制备出cDNA文库。
cDNA文库平覆于大肠杆菌的平皿上以形成噬菌斑,然后用免疫学方法[Huynh,DNA Cloning:A Practical Approach,Vol.1,pp.49-78,IRL Press,UK(1985)]进行筛选,选出能和C型肝炎病人血清抗体反应的噬菌体克隆株。这就提示可能会生产出源自KHCV cDNA的多肽产品。
另一方面,UNI-ZAPXR载体能够在大肠杆菌内进一步产生噬菌体质粒(phagemid)-pBluescript,它含有KHCV cDNA片段[Short et al.,Nucl.Acid.Res.,16,7583-7600(1988)],这种质粒可以更容易象一个正常质粒一样操纵。进一步pBluescript可以任意获得其单股或双股形式,因为它既有Col E1源又有f1复制源。
从阳性噬斑感染大肠杆菌中分离出的双股pBuescript DNA用限制性内切酶Eco RI和Xho Ⅰ消化后用凝胶电泳以确定插入在Eco RI和Xho Ⅰ识别位点之间KHCV cDNA的存在和长度。用Sanger的方法[Proc.Natl.Acad.Sci.U.S.A.,74,5463(1977)]进行cDNA片段的核苷酸测序。
后面,我们可以按照cDNA克隆已确定的核苷酸序列合成一些新的寡核苷酸探针以检测cDNA文库用以获得全部KHCV cDNA其余部分,随后,用这样获得的新cDNA克隆再次用于检测筛选,以获得KHCV cDNA克隆。同时,KHCV cDNA一部分可以用早期确定的KHCV cDNA序列合成的引物,进行PCR扩增后获得。
重叠的cDNA片段可以相连,这样就确定KHCV cDNA的全长序列和一个敞开阅读框架随后就可推出。
这样获得的有全长cDNA序列的KHCV cDNA被称为KHCV-LBC1,它已经在1991年5月14日库藏入美国菌种保藏中心(ATCC),其编号为ATCC 75008。这是在关于为专利程序目的国际微生物保藏鉴别的《布达佩斯条件》的条款下进行上述手续的。
KHCV-LBC1的全部核苷酸序列和其编码的蛋白氨基酸序列描述在图2-1至2-11。在KHCV-LBC1序列上的每一个cDNA克隆的位置在图1和图3中加以表明。KHCV-LBC1有一个长的敞开的阅读框架,它由9030核苷酸碱基组成,5′端计数,从第343个核苷酸(A)开始直至单9372个核苷酸(G)为止。
给定氨基酸的鉴定数已经被确定,这主要依赖从5′-3′端方向由上述9030核苷酸编码的多肽中氨基酸的位置所决定。
在KHCV-LBC1的5′-末端区,按照本发明,已经发现要比日本型HCV多出13以上的核苷酸残基[Kato,N.et al,Proc.Natl.Acad.Sci.U.S.A.87,95224(1990)]。象在图6中所述,和美洲型HCV相比,发现有一个核苷酸以上以及在5′-末端区构建一个发卡结构的22个核苷酸上有3个核苷酸已确定是不同的。5′-末端区通常在病毒基因表达和调节中起一个很重要的作用,组成22个核苷酸的发卡结构据认为是复制酶和核心蛋白的识别位点。因此,即使在此区上有一个细小的结构差异。可能在它的作用或特异性上会出现明显的和本质上的差别。
相似的,KHCV-LBC1的全长核苷酸序列和由此编码的氨基酸序列都和美洲型和日本型HCV进行了比较,结果表明,以美洲型为例,与KHCV-LBC1核苷酸序列的同源性高达约78.3%,氨基酸序列大约84.2%同源。以日本型HCV为例,与KHCV-LBC1有90.9%核酸序列同源,氨基酸序列为93%(参见图4至图6)。上述结果清楚地表明KHCV-LBC1是一种新型HCV的cDNA,它完全不同于已经鉴定的HCV病毒。
KHCV变异株部分酶切cDNA片段的制备
从C型肝炎病人血清中分离出的所说的KHCV中抽提出KHCV RNA,每一个KHCV RNA的cDNA通过PCR合成得到,相对应于NS2区域NS5区域的cDNA片段。每一个这样获得的cDNA片段的长度是大约分别为340 bp(NS2)和320 bp(NS5)(bp是base pair的缩写形式,意为碱基对)。
然后将这些cDNA片段插入到M13mp18载体中[Cat,No.408,New England Biolabs,32Tozer Road Beverly,MA 01915-5599,U.S.A.),以确定它们的核苷酸序列(参见图7至图25)。它们的NS2区的核苷酸序列有91至94%同源性(参见图27和28)。NS5区表明96至99%同源性(图29)而编码在NS2和NS5区的氨基酸序列分别有90-94%和93-99%的同源性(参见图26)。
然而,也已发现,依照NS2区编码的842,849和853位的氨基酸数,KHCV可以被分成2个亚型,即KHCV-L1和KHCV-L2包括在KHCV-L1中的KHCV的cDNA编码苯丙氨酸、亮氨酸和苏氨酸分别作为842,849和853位鉴定氨基酸,而包括在KHCV-L2的cDNA分别编码亮氨酸、苯丙氨酸和丙氨酸。作为KHCV-L1亚型,还包括:KHCV-LBC1,KHCV-LBC20,KHCV-LBC23,KHCV-LBC26和KHCV-LBC32,而KHCV-L2亚型包括:KHCV-LBC2,KHCV-LBC3,KHCV-LBC21,KHCV-LBC25,KHCV-LBC27,KHCV-LBC28,KHCV-LBC29,KHCV-LBC30和KHCV-LBC31。
应该值得注意的是上述那些特征没能在美洲型HCV中发现,这几处的氨基酸为半胱氨酸、苯丙氨酸和缬氨酸。可是,日本型与KHCV-L2有相同的特征,即在上述位置中的氨基酸分别为亮氨酸,苯丙氨酸和丙氨酸。M13噬菌体群(M13mp 18-NS2L1)内含M13mp18噬菌体,它由不包括KHCV-LBC1但包括在KHCV-L1在内的每一个cDNA组成,即KHCV-LBC20,KHCV-LBC23,KHCV-LBC26和KHCV-LBC32在1992年3月13日存入美国菌种保藏中心(ATCC),并编号ATCC75211。内含M13mp噬菌体的M13噬菌体群(M13mp18-NS2L2),它们是由包括在KHCV-L2以内每一个cDNA组成,即,KHCV-LBC2,KHCV-LBC3,LHCV-LBC21,KHCV-LBC25,KHCV-LBC27,KHCV-LBC28,KHCV-LBC29,KHCV-LBC30和KHCV-LBC31都在上述同一天存入ATCC,编号为ATCC 75212。
本发明cDNA除了在例子中给的方法之外,即在图2-1至图2-16和图7至25中所提供的核苷酸序列资料,可以采用化学合成。这种化学合成可用已知的象磷胺-固相支持法[Matteucci,J.An.Chem.Soc.,103,3185(1991)]来进行。
然而,由于遗传密码的简并性(degeneracy),可以理解有许多潜在核苷酸序列能够编码在图2-1至图2-16和图7至图25的氨基酸序列。
构建表达载体和生产蛋白质
按照本发明各种表达系统可以用于制备含有KHCV cDNA片段的表达载体,包括能指导生产和其它多肽在一起的融合蛋白而不仅仅是KHCV的蛋白。
例如,通过采用一种最常用的表达系统可构建这样一种载体系统。在酵母细胞,ubiquitine已知由ubiquitinase酶在离Arg-Gly-Gly非常近的那个位点上被切除了[Ozkaynak et al.,Nature,312,663-666(1987)]。Bachmair[Sience,234,178-186(1986)]报道一个融合有ubiquitine的外源蛋白也可在离ubiquitine的Arg-Gly-Gly上进行切除。
据此,一个目的KHCV蛋白可通过在酵母表达KHCV cDNA片段和ubiquitine基因的融合寡聚核苷酸而获得。因为融合的蛋白可用ubiquitinase酶被切除从酵母细胞中移去ubiquitine,结果,仍仅留下KHCV蛋白。
进一步,如果,这个含有KHCV cDNA片段和ubiquitine基因的融合寡聚核苷酸在大肠杆菌中表达,则内含有ubiquitine的融合蛋白将会得到。然而,ubiquitine在体外就可用ubiquitinase酶将其切除。并可获得无ubiquitinaes酶污染的KHCV蛋白。当然,融合蛋白本身就能达到本发明的目的。只要KHCV仍保持有该蛋白必要的特征,如抗原性,它本身就可被使用。
有效地使用上述表达系统,若出现目的蛋白不稳定和易在宿主细胞内被蛋白酶降解,则选用ubiquitine作为融合蛋白则可使目的蛋白免遭蛋白酶的攻击并可稳定目的蛋白。
使用ubiquitine系统的表达载体可通过将KHCV cDNA片段插入到含有ubiquitine基因的表达载体上而得到。
另一方面,用麦芽糖连接蛋白(MBP)系统的融合表达载体也可用于本发明作为表达载体。在这个系统中,KHCV cDNA片段被连接到编码MBP的mal E1基因下游。就可生产出这种MBP和KHCV的融合蛋白[Guam et al.,Gene,67,21-30(1987);Maina et al.,Gene,74,369-373(1988);Amann et al.,Gene,40,183-190(1985);Duplay et al.,J.Biol.Chem.,256,10606-10613(1984)]。
上述的MBP表达系统非常方便,其原因是含有MBP的融合蛋白可以很容易将MBP亲和到麦芽糖上而加以纯化;MBP在C末端区有一个可被蛋白酶因子Xa切除的位点,这使得KHCV蛋白脱离MBP。
为了获得KHCV目的蛋白,可用含有KHCV cDNA片段的表达载体转化相容的宿主细胞。转化的细胞在允许表达的条件下进行培养。
一个用于表达的KHCV cDNA片段可用限制性核酸内切酶或核酸酶制备对较大的片段或KHCV-LBC进行酶切而制备,也可通过以KHCV-LBC1或其它片段作为模板,加入引物后进行PCR扩增而制备出。每一个引物的长度和核苷酸序列可按要表达的KHCV cDNA位置和长度进行确定。引物完全或部分互补于双股KHCV cDNA的任何一股。
一旦本发明KHCV cDNA被制备好和分离出,则进一步插入于一个适当的表达转移载体上,它含有插入基因序列转录和转译所必需的结构组成。有用的克隆载体可由其它非KHCV多核苷酸片段包括化学合成的DNA序列(各种已知细菌质粒、噬菌体DNA以及被修饰用于噬菌体DNA或其它表达控制序列或酵母质粒的组合物)等组成。
选择一个合适宿主表达微生物受许多已知因素的影响。例如,这些因素包括所选载体的相容性,由重组质粒编码蛋白的毒性,目的蛋白可复性难易程度、蛋白特征、生物安全性和费用。必须考虑平衡这些因素,也必须理解不是所有的宿主都对表达一个特定的重组DNA分子有效。
用在本发明中的合适的宿主生物包括,但不仅限于,植物,哺乳动物或昆虫细胞或酵母细胞和像大肠杆菌类的细菌。
来自KHCV cDNA的多肽包括所有的核心蛋白,非结构蛋白和外膜蛋白和一种能用于制备诊断制剂和以一种或多种混合制备疫苗的蛋白质。在宿主细胞内生产的多核苷酸可结合使用常规方法,如细胞破碎、离心、透析、脱盐、层析、凝胶过滤、电泳和电洗脱等,进行分离和纯化。
本发明的多核苷酸也可以KHCV病毒子中分离制备,或采用合适的方法,如,排除固相合成法、部分固相法、片段凝缩或传统溶液法,进行化学合成。最好采用Merrifield(J.Am.Chem.Soc.85,2149(1963)]所介绍的固相合成法。
另一方面,对蛋白质进行氨基酸替换并不改变其生物学和免疫学活性。这已由Neurath等对此进行了描述(The Proteins,Academic Press,New York(1979)],这一点特别在图6上出现。最常见的氨基酸替换是Ala/Ser,Val/Ile/ASP/Glu,Thr/Ser,Ala/Gly,Ala/Thr,Ser/Asn,Ala/Val,Ser/Gly,Thr/Phe,Ala/Pro,Lys/Arg,Asp/Asn,Leu/Ile,Leu/Val,Ala/Glu,Asp/Gly,以及反过来也是如此。
这种功能上对等的氨基酸替换是本发明曲型的体现,也是本发明范围之内。无论如何,只要最终产品仍保留一个或更多KHCV抗原决定簇即可。
在这种专门的情况下,标准的单字母或三字母缩写用于代表核苷酸和氨基酸。这些缩写的意义可以在标准的生化教科书上找到,如,生物化学原理(Lehninger,Worth Publishers Inc.,New York,pp.96,798(1984)]。
应用C型肝炎KHCV多肽抗原建立的诊断方法检测KHCV抗体。
本发明也涉及一个诊断方法,该法中使用一个或更多KHCV抗原表型决定簇的KHCV多肽作为诊断试剂。这种采用KHCV多肽的诊断方法在检测C型肝炎患者血清样品中KHCV抗体时,比任何其它现有的方法都特异和准确。
新的诊断方法包括以下各步:
首先,含有一个或更多KHCV多肽的诊断试剂被加到一个固相支持物上,例如,微量反应板孔可使已知KHCV抗原吸附到孔表面。
其次,将假定血清样品用稀释液稀释后加到抗原包被孔内,如果样品中有KHCV抗体,则可形成抗原抗体复合物。
再次,酶(如辣过氧化物酶HRP)标抗人IgG加入孔内让HRP-抗人IgG接合到在第二步中形成的复合物上。
最后,加入酶的底物,如,过氧化物酶的底物为邻本二胺盐酸盐(OPD)和过氧化氢,使孔内出现颜色反应。当样品中含有KHCV抗体时,就会出现酶和底物的反应,结果出现颜色。加入稀硫酸终止颜色反应。
颜色的强弱程度可用微孔板酶标读数仪测出,依此,可测出HCV抗体的存在。诊断方法的固相支持物可以是聚乙烯珠或硝酸纤维素膜。
本发明进一步提供了C型肝炎诊断试剂盒,它由必要的试剂组成来进行上述过程,特别含有KHCV多肽并带有一个或更多KHCV表型决定簇的诊断试剂。
抗体的制备
本发明提供针对源自KHCV cDNA多肽的抗体。简单地说,选出适当的动物进行目的免疫,一定时间后,动物脾脏被切割取出,在选定的条件下将单个脾细胞和骨髓瘤细胞融合。之后,进行细胞的克隆化,将每个克隆上清液进行检测看是否分泌针对抗原目的区域特异的抗体。
这种动物,例如小鼠,可按下述常规方法进行免疫:
大量纯化抗原采用肌肉内,腹腔内,皮内或静脉内注入小鼠。每只注入总量为100至200g的量,间隔14至21天,可再进行几次这样的免疫。如有必要,可同时使用常规弗氏完全或不完全佐剂。在末次免疫后的第三天,移去小鼠脾细胞和存活率高于95%处于对数生长期的小鼠骨髓瘤细胞融合。
细胞融合按已知的方法进行,如Lovborg所述的方法(″单克隆抗体:生产和保存,William Heinemann,Medical Books Ltd.(1982))。
这样获得的融合细胞用已知的方法进行系列稀释(“免疫学的现代策略”,Wiley Interscience(1991))以检测出分泌目的抗体的克隆。
目的克隆可由一个常规的方法,如酶免疫测定法、空斑法,斑点法,Ouchelny法和放射免疫法(“杂交瘤技术与单克隆抗体”,Research and Development Press,pp 30-53(1982))进行筛选。
一个技术熟练人员可以很容易从克隆后的抗体产生细胞系获得目的单克隆抗体,进一步用象亲和层析的常规方法进行纯化。
这些抗体对纯化KHCV抗原和开发改良的诊断方法检测样品中KHCV抗原非常有用。
诊断性寡聚核苷酸探针和试剂盒的制备
以图2-1至2-16和图7至25所示KHCV cDNA已确定的核苷酸序列为基础,至少有8个互补于KHCV cDNA双股中任何一股的核苷酸片段可通过酶切或人工合成而制备出。寡核苷酸在标记后可作为杂交探针,例如:用放射性同位素标记,或以KHCV cDNAs为模板,此寡核苷酸为引物PCR来检测血清样品中的KHCV。
寡核苷酸既可完全或部分互补于一股KHCV cDNA,这依照具体情况而定。
寡核苷酸应该至少有8个核苷酸,最好为10-12个,共有20个左右则更好了。
疫苗的制备和注射方式
选用一种已知方法制备灭活或致弱KHCV以及由本发明中KHCV cDNA片段所编码的一种或更多的多肽,加入生理上可接受的介质液体即可制成疫苗。适宜的介质液体包括:0.01M至0.1M中性pH的磷酸缓冲液或生理盐水。
抵抗HCV的强免疫力可通过给疫苗加入一种佐剂或免疫增强剂,或以一种更大形式的多肽,这既包括交叉连接成的复合物或将多肽偶联到成载体状形式。
免疫接种适宜的佐剂包括,但并不仅限于,佐剂65(含有花生油,mannide单油酸盐和单硬脂酸铝):矿物胶,如氢氧化铝、磷酸铝和铝胶;表面活性剂,如十六(烷)基胺(hexadecylamine),十八(烷)基胺(octadecylamine),溶血卵磷脂(lysolecithin),二甲基双十八(烷)基-氨溴化物(dimethyldioctadecylammonium bromide),N,N-双十八(烷)基-N′,N′-双(2-羟甲基)丙二胺(N,N-dioctadecyl-N′,N′-bis(2-hydroxymethyl)propanediamine),methoxyhexadecyclglycerd和普卢兰尼克多烃基化合物(pluronic polyols;聚阴离子,如吡喃,葡聚糖硫酸盐(dextran sulfate),poly IC,聚丙酸,carbopol;肽,如胞壁酰二肽,二甲基甘氨酸和tuftsin;和油乳剂。本发明中的蛋白质在它们制成脂质体或其它微载体时也可进行预防注射。
本发明中蛋白的免疫原性,特别是较小的片段,可以通过交互联结或通过偶联到一个免疫原载体分子(如:有能在宿主动物体上独立激发免疫应答性质的大分子物,这些分子可将本发明的蛋白质或其片段共价连接)。交互联结或偶联到一个载体分子可能是很必要的,因为小的蛋白片段有时象半抗原(该分子能特异性接合到抗体上,但不能诱发抗体产生,即它们没有免疫原性。这种半抗原偶联到免疫载体分子后就可通过通常称作的“载体效应”,赋与这些半抗原有免疫原性。
适宜的载体分子包括蛋白南和天然的或合成的多聚体化合物(多肽、多糖、脂多糖等)。有用的载体之一是被称作Quil A的糖甙类物,这是由Morein等介绍的Quil A特别适合蛋白分子(Nature,308,457(1984)),包括(但不仅限于此)哺乳动物血清蛋白,如钥孔血蓝素,人和牛的γ球蛋白,人、牛或兔血清白蛋白,甲基化的这些蛋白质或其衍生物。其它能用的蛋白质载体将很明显是由操作熟练的人员自行选择。
用各种已知的方法可将半抗原分子共价偶联到载体分子上,准确有选择要由使用的载体分子的性质来决定。当载体分子是一个蛋白分子,则本发明中的蛋白质或片段可以由水溶性碳化二亚胺(双环己基碳化二亚胺)或戊二醛偶联到这样的载体上。
象这样的偶联剂还可被用于交互联结自身蛋白质或片段,结果避免了使用单独的载体分子。在蛋白质或其片段间的这种交互联结成的聚集物也可增加其免疫原性。
掺入到脂质体或其它微载体,可提供了在更长时间内释放疫苗的效应。
这种疫苗可采用单一剂量接种,或最好采用多剂量接种。在疫苗配方中多肽的有效剂量范围为约5-200μg,这依照要免疫者的体重,这个人免疫系统产生抗体的能力,以及所期望达到的免疫力程度,初次免疫后1至数月,最好进行再次加强免疫,也可反复多次接种。标准的接种途径是皮下,皮内,肌肉内或静脉内注射。
下面给出的例子企图在不限制本发明的范围内以特别事例说明本发明。例中使用的试验方法完全按照下面给出的参考例子进行,除非有特别说明。
如果不另外特别指出,在固体混合物中固体物,液体中的液体物,液体中的固体物在上面所给的百分比分别表示wt/wt,vol/vol和wt/vol。
参考例1:限制性核酸内切酶消化DNA
限制性酶和反应缓冲液是从NEB(New England Biolabs,Jolla,MA,U.S.A)公司购到。
反应通常在灭菌的埃朋导夫管内进行。反应体积在50-100μl之间,反应温度和时间分别为370℃和1-2小时。之后,反应物在65℃热处理15分钟(或在热抗性内切酶情况下用酚抽提和乙醇沉淀)以灭活限制性核酸内切酶。
用于限制性核酸内切酶反应的10倍反应缓冲液有下列配方:
10×NEB反应缓冲液1:100mM Tris-HCl,100mM MgCl2,10mM DTT,pH 7.0
10×NEB反应缓冲液2:100mM Tris-HCl,100mM MgCl2,500mM NaCl,10mM DTT,pH 7.0
10×NEB反应缓冲液3:100mM Tris-HCl,100mM MgCl2,1000mM NaCl,10mM DTT,pH 7.0
10×NEB反应缓冲液4:200mM Tris-乙酸盐,100mM乙酸镁,500mM乙酸钾,10mM DTT,pH 7.0。
参考例2:酚抽提和乙醇沉淀
在完成酶反应后,反应混合物用酚抽提,其目的是灭活酶活性或从反应混合物中恢复DNA,这里使用的酚用前先用含有10mM Tris-HCl(pH 8.0)和1mM EDTA缓冲液进行平衡。酚抽提即将等体积样品和酚溶液混合,用力震摇,15,000rpm离心5分钟,将上层水相移入新试管中。重复进行上述过程2~3次。
最后,水相同等体积氯仿(氯仿∶异戊醇=24∶1)抽提,再一次分离水相。3M乙酸钠(0.1个体积)和乙醇(2.5体积)加入分离水相中,置-70℃ 30分钟或-20℃ 12小时,再将该混合物在4℃ 15,000rpm离心20分钟以恢复原核酸。
参考例3:连接反应
DNA的连接反应是用T4连接酶进行的,10×连接反应缓冲液(0.5M Tris-HCl,0.1M MgCl2,0.2M DTT,10mM ATP,0.5mg/ml牛血清白蛋白(BSA)观自NEB。反应体积通常是20μl,10单位T4连接酶用于连接DNA的粘性末端,而100单位用于连接平端DNA。
在16℃反应进行5小时,在4℃进行14个多小时,反应完成后,反应混合物加热到65℃并维持15分钟灭活T4 DNA连接酶。
参考例4:转化大肠杆菌
用于该例中的大肠杆菌菌株包括HB101(ATCC 33694),W3110(ATCC 27325),JM 101(ATCC 33876)和JM 105(ATCC 47016)。用一个已知的方法进行大肠杆菌的转化(Maniatis et al.,in Moleaclar Cloning:A Laboratory Manual,Cold Spring Harbor Press,N.Y.(1982);或Cohen,Proc,Natl.Acad.Sci.U.S.A,69,2110(1972))。
参考例5:转化酵母菌
酵母转化按下面两属文献介绍的方法进行。Beggs,Nature,275,104(1978)和Hinnen et al,Proc,Natl,Acad.Sci,U.S.A.,75,1929(1978)。
参考例6:寡核苷酸合成
用DNA合成仪(Applied Biosystems Inc.,380B,U.S.A)采用自动固相磷酰胺化学法进行寡核苷酸合成。
用变性聚丙烯酰胺凝胶电泳(2M脲,12%丙烯酰胺和双叉丙烯酰胺(29∶1),50mM Tris,50mM硼酸,1mM EDTA)t SEP-PAK(Waters Inc.,U.S.A)柱层析纯化合成的寡核苷酸;在260nm处测量O.D.值来确定量。
参考例7:聚合酶链反应(PCR)
向10-100ng模板DNA混合物中加入10μl 10×Taq聚合酶反应缓冲液(10mM Tris-HCl,500mM KCl,15mM MgCl2,0.1%(W/V)明胶,pH8.3),10μl d NTP混合液(d GTP,d ATP,d TTP和d CTP每一样均为2mM),每一个引物2μg(通常,在一个反应中用两个引物,为防止万一,也可用3个,位于中间部分的引物可用0.02μg)。0.5μl Ampli Taq聚合酶(Perkin Elmer Cetus,U.S.A.)加入蒸馏水中使最终体积达到100μl,再加入50μl矿物油以防止反应混合物的蒸发。
PCR是在一个热循环仪(Perkin Elmer Cetus,U.S.A)中进行。热循环按程序重复25次或更多次。循环程序为:95℃1分钟→55℃1分钟→72℃2分钟,最后反应在72℃中进行10分钟。
在反应被完成后,混合物用酚抽提,用乙醇沉淀法复原收储PCR产物。将沉淀物溶解在20μl TE缓冲液中(10mM Tris-HCl,1mM EDTA,pH7.5)。
例1:制备KHCV CDNA KHCV-LBC1。
(1-A):从朝鲜C型肝炎病人血清中分离HCV并进一步抽提出病毒基因组RNA。
从患慢性C型肝炎的朝鲜病人体内取血清50ml(ALT<60IU,由朝鲜大学医院和在朝鲜的基督教大学提供),进一步超速离心沉淀出HCV颗粒。这是按Bradley.D.W.,等推荐的方法进行的(Gastroenterology,88,773(1985))。50ml血清用TENB缓冲液(0.05 M Tris.pH8.0,0.001M EDTA,0.1M NaCl)稀释6倍,在28,000 rpm室温下离心6小时,使用Beckman转头SW28(Beckman Inc.,Model L8-80M)。
从沉淀的病毒颗粒中抽提出病毒基因RNA是按Cholozynski P.,和Sacchi,N.介绍的方法进行的(Anal Biochem.,162,pp 156-159(1987))。沉淀的病毒颗粒悬浮在8ml RNA抽提液中(4M硫氰胍,24mM柠檬酸的,pH7.0,0.5% Sarcosyl,0.1M 2-巯基乙醇),再加入0.8ml 2M乙酸钠(pH 4.0),8ml酚(BRL Inc,U.S.A,用蒸馏水事先饱和)和1.6ml氯仿-异戊醇(49∶1,V/V),并将该混合物以12,000×g 4℃离心15分钟。上清液吸到一支新管中再加入同样体积量的异丙醇和糖原(2μg/ml上清液)作为载体,在冷冻盒(-20℃)停留1小时,然后,以12,000×g 4℃离心20分钟获得RNA沉淀物。该沉淀物悬浮于75%乙醇,以上述同样方式离心,然后在真空泵中抽干10分钟。病毒RNA沉淀溶解在400μl TE缓冲液(10mM Tris,pH 7.5,1mM EDTA),用于下一步骤。以后使用的病毒RNA可以-70℃保存。
(1-B):KHCV cDNA文库的建立
(1-B-1):KHCV cDNA的制备
为了制备cDNA,使用了Zap-cDNA合成试验盒(Stratagene Inc.,U.S.A)。C型肝炎病毒RNA按例(1-A)制备,用于反转录酶的模板,用DNA合成的寡聚d(T)引物具有5′-GAGAGAGAGAGAGAGAGAGAACTAGTCTCGAG(T)18-3′序列和一个随机引物具有5′-TTTTTCATGATTGGTGGTGGTGGAACTGGACCGTCTCGAGNNNNNN-3′序列(在此处N可以是相同的或不同的A,T,C或G,这里被称为“RANPSHCV”)用在该试验中。
cDNA的第一股制备如下:取在例(1-A)中制备的肝炎病毒RNA溶液18μl加入2μl 0.1M CH3Hg OH,该混合物在室温中放置10分钟使二级RNA结构松散,再加入2μl1M的β-巯基乙醇,其混合物室温下放置5分钟。之后加入5μl反转录酶反应缓冲液(500mM Tris-HCl,pH8.3,750mM KCl,30mM MgCl2,10mM DTT),2.5μl10mM dATP,dGTP,dTTP和5-甲基-dCTP,2μl寡-d(T)引物(1.4μg/μl)或2μl PANPSHCV(1.0μg/μl),15μl用DEPC处理过的蒸馏水和1.0μl RNase抑制剂(1单位/μl,Promega,Inc.,U.S.A.),依次加入;然后在室温下放10分钟使引物与模板相连,然后加入2.5μMMLV反转录酶(18单位/μl,超录RNA酶H-反转录酶,BRL.Inc.,Cat,No.8853SA),反应混合物温育1小时(在37℃)以合成cDNA的第一股。
cDNA第二股制备如下:40μl 10倍第二股反应缓冲液(188mM Tris-HCl,pH6.9,906mM KCl2,46mM MgCl2,1.5mM β-NAD,100mM(NH4)2SO4),加入45μl上述获得的第1股溶液中,再加入6.0μl 10mM dNTP混合液(10mM dATP,dCTP,dTTP和dGTP)和298μl蒸馏水,最后沿管壁滴下1.0μl RNase H(4单位/μl)和10.0μl DNA聚合酶Ⅰ(11单位/μl),不断混合,在16℃反应2.5小时。
该反应液中加入等体积的酚-氯仿(1∶1,V/V),酚事先已用0.5M Tris-Hcl(pH 7.5)和0.1%(V/V)β-巯基乙醇饱和过。抽提三次。上层水相吸出,加入0.1体积3M乙酸和2倍体积100%乙醇,-20℃过夜,4℃12,000×g离心20分钟,收集沉淀。
(1-B-2):cDNA文库的建立
为了使在例(1-B-1)中制备的双股cDNA变成平头,cDNA沉淀物溶解在43.5μl蒸馏水中,取39μlcDNA液加入5.0μl T 4DNA聚合酶反应液(670mM Tris-HCl,pH 8.8,166mM(NH4)2SO4,67mM MgCl2,100mM β-巯基乙醇,67μM EDTA),2.5μl 2.5mM dNTP混合液和3.5μl T 4DNA聚合酶(2.9单位/μl),反应混合物在37℃放30分钟,最终产品用酚-氯仿抽提,乙醇沉淀,其方法同例(1-B-1)。
为了在5′端引入一个限制性酶EcoRI识别位点,上述制备的平头双股cDNA按以下方法处理:给平头cDNA中加入7.0μl EcoRI接头(Stratagene Inc.,Zap-cDNA合成试剂盒Cat.No.200400,CA.U.S.A),1.0μl10倍连接缓冲液,1.0μl T 4DNA连接酶(1000单位/μl)和1.0μ10mM ATP,置4℃过夜,最终产物加热70℃10分钟以灭活连接酶。
这样获得的cDNA可直接用于克隆,可是在这个例子所述的cDNA被进一步扩增然后用于克隆步骤。
为了扩增cDNA,按下述方法进行扩增。向cDNA溶液中加入10μl 10×PCR缓冲液(200mM Tris-HCl,pH 8.3,15mM MgCl2,250mM kCl,0.5% Tween 20,1mg/ml明胶),10μl 2mM dNTP混合物,5μl PSHCV含有5′-TTTTTCATGATTGGTGGTGGA-3′的序列的引物和5μl Eco RI接头的上股(5′-CCCCCCGAATTCGGCACGAG-3′),1μl(2.5单位)Taq DNA多聚酶(Parkin Elmer-Cetus.Inc.761Main Avenue,Norwalk,CT 06859-0010,U.S.A.)和69μl蒸馏水。然后用热循环仪(Perkin Elmer-Cetus Inc.U.S.A)进行PCR扩增。它的程序为重复循环25次;每次为:95℃ 30秒→55℃30秒→72℃2分钟,在完成这个反应后,残留引物和dNTP用Centricon 100(Amicon Inc.,Cat,No.4200,P.O.Box 91954,Chicago,IL 60693,U.S.A.)除去。最后获得的产品用氯仿-酚抽提,用乙醇沉淀,然后溶解在16μl TE缓冲液中。
再向最终溶液中加入2μl 10×缓冲液(0.5M NaCl,0.5M Tris-HCl,50mM MgCl2,5mM DTT,pH7.9),1μl Eco RI和1μl Xho I(New England Biolabs Inc.,30 Tozer Rd.,Berverly,MA,U.S.A.)。然后反应液置37℃10分钟部份消化cDNA,cDNA片段用氯仿-酚抽提,用乙醇沉淀然后溶解在TE缓冲液中。
这样制备的cDNA片段被克隆到UNI-ZAPXR载体的过程如下:向10μl Eco RI Xho I消化的cDNA片段液中加入2.0μl 10×连续液冲液,2.0μl 10mM ATP,4.0μl事先已用Eco RI/Xho I处理过的UNI-ZAPXR载体溶液(1μg/μl)和2.0μl T4 DNA连接酶(4 Weiss单位/μl)然后在16℃反应10个小时。
(1-B-3):体外包装含有cDNA的载体成噬菌体,扩增cDNA文库
为了将按例(1-B-2)制备的连接好的DNA成为噬菌体,将在例(1-B-2)中获得的最终溶液10μl加入Gigapack Ⅱ Gold Packaging Extract(Stratagene Inc.,U.S.A.)中,在室温下放2小时。
再向该溶液中加入500μl噬菌体稀释液(5.8g NaCl,2.0g MgSO4·7H2O,50ml 1M Tris-HCl,pH7.5,5ml 2%明胶加至1升水中)和20μl氯仿(参见kretz et al.,Nucl.Acid.Res.,17,5409(1989))。
按下述方法进行感染和扩增。PLK-F′(Stratagene Inc.,Zap-cDNA合成试剂盒Cat.No.200400),大肠杆菌mer A-和mer B-菌株在LB培养基(10g Bactotrypton,5g酵母浸膏,10gNaCl溶至1升水中)上培养至O.D.600值至1.0。取600μl该菌液和200μl包装混合物,混加在一起,37℃15分钟使噬菌体感染大肠杆菌。再向大肠杆菌液中加入6.5ml 0.7%NZY融化后保持在48℃的琼脂(7gNZ胺,5g NaCl,2g MgSO4·7H2O,5g酵母浸膏,16g琼脂加水至1升)37℃ 5-8小时以产生噬菌斑。
10ml噬菌体稀释液倾入该板,在4℃轻晃15分钟以溶噬菌体至该溶液中,该混合物经4,000×g离心沉淀出E.coli菌,收集上清液,向其中加入0.3%氯仿,cDNA文库的滴度测量后约为1010-1013PFC(噬斑形成单位)/ml。再向该cDNA文库液中加入100%二甲基亚砜(DMSO)使最终浓度为7%(V/V),然后保存于-70℃。
(1-C):用免疫学方法筛选cDNA文库和测cDNA序列。
用免疫学方法筛选cDNA文库是按Huynh,T.V.等介绍的方法进行(DNA Cloning Techniques:A Practical Approach(D.M.Glover ed),pp.49-78,IRL Press,Oxford(1985))从例(1-A)制备的6倍稀释血清经离心后上清液经过蛋白G亲和层析柱(Genex Inc.,U.S.A.)纯化获得HCV抗体。
按例(1-B-3)制备的cDNA文库溶液稀释成每个150mm直径的平皿上出现5万个PFU,再将该液和600μl按例(1-B-2)同样方法制备的大肠杆菌XL-1 Blue培养液(O.D.600=0.5以及6.5ml 0.7% NYZ琼脂混合,每一个培养材料平铺40个NZY琼脂平皿,37℃培养12小时,产生2×106噬菌斑。
此后,将噬菌斑吸附到137mm直径的尼龙滤膜(Bio-Rad Inc.,Cat.No162-163,U.S.A.)上,再用10mM IPTG(isopropyl-3-D-thiogalactopyranoside)溶液浸透然后在Whatman 3 MM滤膜上吸干。每一张滤膜都放在一个平皿琼脂培养,37℃3.5小时。用噬菌斑印迹的每一个滤膜用15ml洗液(10mM Tris-HCl,pH8.0,150mM NaCl,0.05% Tween 20)洗。然后向滤膜中加入15ml封闭液(1%牛血清白蛋白,20mM Tris-HCl,pH7.5,150mM NaCl),在室温下轻轻振荡1小时。之后,每一张滤膜在室温下用TBST缓冲液(20mM Tris-HCl,pH7.5,150mM NaCl,0.05%(V/V)Tween-20)轻轻振荡洗5次,每一次5分钟。再将滤膜放在15ml稀释过的纯化MCV抗体溶液中(最终蛋白浓度为8.2mg/ml)。该抗体溶液的稀释度为1∶200,稀释液为TBS缓冲液(20mMTris-HCl,pH7.5,150mM NaCl)并含有1%(V/V)FBS(胎牛血清)。在室温下轻轻振荡1小时,再用TBST缓冲液洗5次,每张滤膜放入15ml用含有1%(V/V)FBS的TBS稀释的生物素化山半抗人IgG和1∶2000稀释的亲和素碱性磷酸酶结合物(Pierce Inc.,U.S.A.Cat.Nos.3177OC,21321C)室温下轻晃1小时,再用TBST洗膜5次。然后在whatman 3MM滤膜上吸干。
为显色,每张滤膜放入15ml显色液(100mM Tris-HCl,pH 9.5,100mM NaCl,5mMMgCl25mg硝基蓝四氮唑,2.5mg 5-溴-4-氯-3-吲哚磷酸盐),暗处室温显色30分钟。紫色的阳性噬菌斑可用肉眼确定,这表明表达了编码重组HCV抗原的cDNA。每张滤膜用TBS缓冲液洗一次,加入颜色终止液(20mM Tris-HCl,pH 2.9,1mM EDTA)以终止显色。在室温下自然干燥后用类极膜(Polaroid film)记录结果。
分离出的阳性噬菌放入噬菌体稀释液(10mM Tris-HCl,pH 7.5,10mM MgCl2)中,在室温放1-2小时重复进行上述免疫筛选测定从而获得单一噬菌体噬菌斑的克隆。
象过多花精力确定重组HCV基因一样,确定的每一个噬菌斑都放入一个灭菌的微型离心管中,内含500μl SM缓冲液(5.8g NaCl,2.0g MgSO4,50μl 1M Tris-HCl,pH 7.5,5ml 2%明胶,加水至1升),再加20μl的氯仿,然后在室温下振荡培养1-2小时。200μl(>1×105噬菌体粒子)这样获得的溶液与1μl辅助性噬菌体R408(>1×106PFU/ml,Stratagene Inc.,U.S.A.)和20μl大肠杆菌XL-1细胞悬液(O.D.600=1.0)混合,然后在37℃培养15分钟。之后,再加入5ml 2×YT培养基(10gNaCl,10g酵母浸液,16g细菌蛋白胨于1升水中),并在37℃振荡培养3小时,加温至70℃维持20分钟,进一步做1∶100倍稀释,200μl稀释后该液和200μl大肠杆菌XLl-Blue细胞悬液(O.D.600=1.0)混合。在37℃培养1小时后,取100μl该培养液加入含有氨苄青霉素(50μg/ml)的LB培养基平皿中。37℃10小时以获得pBluescript噬菌体质粒(phagemid)菌落拥有双股cDNA。
为了制备单股DNA,pBluescript菌落被培养在含有抗生素四环素(12.5μg/ml)的LB培养基内,再进一步筛选出阳性菌落,如此获得的阳性单一菌落置四环素+LB肉汤培养基(2-3ml)过夜。再加入0.3ml超级液体培养基(35g细菌蛋白胨,20g酵母浸液,5g NaCl,用NaOH调整至pH7.5)37℃振荡培养,这样,该培养物就被辅助性噬菌体R感染。培养8小时,直至O.D.600达到0.3。
在完成这个感染时,噬菌体/细菌的比大大依赖于cDNA在pBluescript定居的类型。可能是20∶1,10∶1,1∶1或1∶10。单股DNA可从后来获得的上清培养液中抽提而得。
分离和纯化双股噬菌体质粒和单股噬菌体质粒可按Sambrook,J.等介绍的方法进行(Molecular Cloning,1,2.73-2.81,Cold Spring Harbor,N.Y.(1989))。
包含在一个克隆中的cDNA长度可用Eco RI和Xho I酶切消化双股噬菌体质粒而确定。3个有cDNA片段和不等长的克隆也已得到。
3个重组cDNA核苷酸序列用纯化的单股重组pBluescript噬菌体质粒或双股pBluescript噬菌体质粒作为模板以及由M13-20聚体,T7引物,KS引物,SK引物或T3引物(Strategene Inc.U.S.A)按Sanger方法(Proc.Natl.Acad.Sci,U.S.A.,74,5405(1977))进行了测定,其中得到的cDNA片段分别被命名为KHCV426,KHCV 425和KHCV403(参见图1-3)。
(1-D):用寡核苷酸探针筛选包含有KHCV cDNA的重组噬菌体和核酸定序
(1-D-1):分离和KHCV 652重叠的cDNA克隆
为了筛选那些不能用免疫学方法筛选的含HCV cDNA的重组噬菌体,用Benton,W.D.,等介绍的方法进行了噬菌斑杂交(Benton,W.D.,et al.,Science,196,180(1977);Connor,B.J.,et al.,Proc.Natl.Acad,Sci.U.S.A,80,278(1983)和Jacob,K.,et al,Nature,313,805(1985))。在这个试验中使用了二个寡核苷酸片段P 652a(5′-TTCATACCCGTTGAGTCTATGGAAACTACT-3′)和P652b(5′-GCCATTCCAAGAAGAAGTGTGCGAACTCG-3′)作为探针,这两个片段的核苷酸序列是选自例(1-C)所确定cDNA KHCV 652的核苷酸序列。
按例(1-B)制备含5万PFU的噬菌体文库溶液,然后和600μl按例(1-B-3)制备的大肠杆菌XL1-BLue(稀释到O.D.600为0.5)混合,再与0.7% NZY琼脂凝胶混合,混合物倒入150mm NZY平皿内,37℃ 12小时。从30个平皿中可获得1.5×106噬菌斑。
之后,将137mm直径尼龙膜仔细地贴在平皿面上,印迹噬菌斑到膜上。然后移去尼龙膜自然干燥。
每一个膜放在已用0.2M NaOH/1.5M Nacl浸泡过的whatman 3MM滤膜上1-2分钟,再转放到用0.4M Tris-HCl,pH 7.6和2×SSC(SSC:17.53g NaCl,8.82g柠檬酸钠,pH 7.0溶至1升水中)浸泡过的滤膜上1-2分钟。最后在真空加热器80℃2小时干燥尼龙膜。
干燥后,尼龙膜在室温下用500ml 3×SSC/0.1%SDS溶液洗3-4次。再用同样溶液65℃洗2小时。每一块尼龙膜放入500ml预杂交溶液(6×SSC,5×Denhardt液,100μg/ml酵母tRNA,0.05%焦磷酸钠);标记32P的P652a和P652b各30ng加入该溶液中,杂交在48℃进行24小时。
上述所用探针的标记如下:先将32ng探针混合物中加入7.5μl 10×T4 Kination缓冲液(0.5M Tris-HCl,pH 7.5,0.1 M MgCl2,50mM DTT,0.5mg/mlBSA),100μCi(γ-32P)ATP和50单位的T4核苷酸激酶用蒸馏水补至总体积75μl,激发反应在37℃进行30分钟。
在完成杂交后,膜用6×SSC/0.05%焦磷酸钠溶液在室温下洗5次,共10分钟,用同样溶液在60℃洗30分钟。进一步洗膜,每15分钟升温2℃,直至膜用Geiger计数器(Ludlum Model 13)检测确定完全洗净为止。洗过的膜用X线胶片(Kadak X-Omat AR)在-70℃曝光24-48小时。
用上述描述的同一方法把确定为阳性的噬斑挑选出来,获得一个单一噬菌斑的噬斑来。
从获得的阳性噬斑,制备出双股噬菌体质粒和单股噬菌体质粒,用例(1-C)定序。
和KHCV652重叠的cDNA克隆被命名为KHCV752和KHCV675。它们的长度、位置、核酸序列和编码的氨基酸序列参见图1至3。
(1-D-2):分离与KHCV426重叠的cDNA
模仿例(1-C)获得的KHCV426cDNA的核酸序列,合成了寡核苷酸P426a(5′-ACGAGACCTCCCGGGGCACTCGCAAGCACC-3′)和P426b(5′-CGTAATTTGGGTAAGGTCATCGACACCCTC-3′)两个片段。将上述两片段作为探针,以例(1-D-1)同样的方式进行噬斑杂交。与KHCV426重叠的cDNA克隆按例(1-C)法检测出来,命名为KHCV240,它的长度、位置和核苷酸序列以及所编码的氨基酸序列参见图1至3。
(1-D-3):分离与KHCV240重叠的cDNA
模仿例(1-D-2)获得的KHCV240的核酸序列合成了寡核苷酸P240b(5′-GTCCGGGTGCTGGAGGACGGCGTGAACTA-3′)。用P240b作为探针,对从例(1-B)制备的cDNA文库按例(1-D-1)方式进行筛选。这样获得的含约110核苷酸与KHCV240重叠的cDNA克隆称为KHCV513,它的测序是按Sanger方法进行的,其长度、位置和序列以及编码的蛋白质氨基酸序列都列在图1至3。
(1-D-4):分离与KHCV513重叠的cDNA
模仿例(1-D-3)确定的KHCV513序列合成了寡核苷酸P513b(5′-CGCATGGCCTGGGATATGATGATGAACTGG-3′)。以此片段P513b为探针,对从例(1-B)制备的cDNA文库按例(1-D-1)方式进行筛选。与KHCV513重叠130bp的810bp cDNA克隆命名为KHCV810;测序是按Sagner法。其长度、位置和KHCV810核酸序列以及编码的氨基酸序列参见图1至3。
(1-D-5):分离与KHCV 810重叠的cDNA
模仿例(1-D-4)确定的KHCV810序列合成了P810b寡核苷酸(5′-AAATGAGACGGACGTGCTGCTCCTTAAC-3′)。以此片段P810b为探针,对从例(1-B)制备的cDNA文库按例(1-D-1)方式进行筛选。与KHCV 810重叠的650bp cDNA克隆命名为KHCV 798,它的测序是按Sanger法。其长度、位置和KHCV798的核酸序列以及编码的氨基酸序列参见图1至3。
(1-D-6):分离与KHCV 403重叠的cDNA
模仿例(1-D-5)KHCV 403序列合成了P403A(5′-GAGAAGAATTCGGGGGCCGGAACCTGGCAT-3′)和P403B(5′-GCTGACCTCATTGAGGCCAACCTCTTGT-3′)两个片段。以此两个片段P403A和P403B为探针,对从例(1-B)获得的cDNA文库按例(1-D-1)方式进行筛选。与KHCV403重叠的160bp cDNA克隆被命名为KHCV932,它的测序是按Sanger法进行。其长度、位置和KHCV 932的核酸序更以及编码的氨基酸序列见图1至3。
(1-D-7):分离与KHCV932重叠的cDNA
模仿例(1-D-6)KHCV932序列合成了P932b(5′-CCGGGACGTGCTTAAGGAGATGAAGGCGAA-3′)作为探针,对从例(1-B)获得的cDNA文库按例(1-D-1)方式进行筛选。与KHCV932重叠的185 bP cDNA克隆命名为KHCV496,它的测序是按Sanger法进行。其长度、位置和KHCV496的核酸序列以及编码的氨基酸序列参见图1至3。
(1-D-8):分离与KHCV 496重叠的cDNA
模仿例(1-D-7)KHCV496序列合成了P496b片段(5′-CGTGTATGCGAGAAGATGGCCCTTTATGAC-3′)作为探针,对例(1-B)获得的cDNA文库按例(1-D-1)方式进行筛选。与KHCV 496重叠的160bp共847bp cDNA克隆命名为KHCV 847,测序是按Sanger法进行。其长度、位置和KHCV847的核酸序列以及编码的氨基酸序列参见图1至3。
(1-D-9):分离与KHCV 847重叠的cDNA
模仿例(1-D-8)KHCV 847 DNA3′端的序列合成了P847b(5′-TGCGTGGGAGACAGCTAGACACACTCCAG-3′)片段作为探针对例(1-B)获得的cDNA文库按例(1-D-1)方式进行筛选。与KHCV847重叠的94bp的共494bp的cDNA克隆称为KHCV 494;测序是按Sanger法进行,其长度,位置和KHCV 494的核酸序列以及编码的氨基酸序列参见图1至3。
(1-E):用PCR制备cDNA
(1-E-1):在KHCV 798和KHCV752之间制备KHCV cDNA
为了在KHCV 798的3′端和KHCV 752 5′端克隆HCV cDNA,按KHCV 798 3′端序列合成了引物P798b(5′-CTGGTTCCCGGAGCGGCATAC-3′)和按KHCV 7525′端序列合成了引物P752a(5′-CCAGGTGATGACTTTGGTCTCCAT-3′)。用P798b和P752a作为引物和用例(1-B-1)中以RANPSHCV为引物制备的cDNA文库,按参考例7那样进行聚合酶链反应(PCR)。反应结束后,将一部份反应物加入5%聚丙烯酰胺凝胶电泳(PAGE)以确定cDNA的扩增情况。给剩余部分中加入10单位的Klenow片段和DNA聚合酶,该反应物37℃30分钟使之两端平齐。再做PAGE,并电洗脱出DNA以分离得到纯DNA。纯化的DNA片段克隆到M13mp18噬菌体并测定序列。这样获得的DNA称为KHCV 570,它的核酸序列和其编码的氨基酸序列参见图1至3。
例(1-D-2)制备的KHCV 240,例(1-D-3)制备的KHCV 513,例(1-D-4)制备的KHCV 810,例(1-D-5)制备的KHCV 798和用上述方法制备的KHCV 570都相互有部分重叠。因此,它们可以连成一个长的敞开阅读的框架,命名为KHCV 2661。
(1-E-2):制备KHCV 403和KHCV 675之间的KHCV cDNA
为了克隆处于例(1-C)制备的KHCV 403和例(1-D-1)制备的KHCV 675之间的HCV cDNA,按KHCV 675的3′端序列合成了两段引物P675b(5′-TCGATTCTTCGGTCCTGTGTGAGTGT-3′)和P675b2(5′-AAAAAGAATTCGGATCCATGACGCGGGTTGTGCGTGGTAC-3′),按KHCV 403 5′端序列合成了P403a2引物(5′-CCCCCTCAGAGTCGACTCACTTCACGTTGTCAGTGGTCAT-3′)。用上述制备的P675b,P675b2和P403a2以及例(1-D-6)制备的P403a,按下列程序进行PCR。
0.2μg P674b,0.2μg P403a,2μl例(1-B-1)制备的cDNA,加上随机引物RANPSHCV中加入10μl 10×PCR反应缓冲液,10μl 2mM dNTP的混合物及2.5单位Taq聚合酶,加蒸馏水至100μl,第一步PCR重复循环10次,即:95℃2分钟-55℃2分钟-72℃3分钟的循环。在加入2μg P675b2和2μg P403a于混合物以后,第二步PCR按上述温度循环重复20次。
反应完成后,cDNA扩增确定下来,按例(1-E-1)的同样方法测序。这样获得的cDNA称为KHCV1774,它的核酸序列和编码的氨基酸序列参见图1至3。
(1-E-3):克隆KHCV cDNA 3′端区并测序
为了克隆对应于HCV基因的3′端区的cDNA,用引物RANPSHCV和DA17PSHCV(5′-TGGTGGTGGAACTGGACCGTA1,-3′)的PCR如下进行。
PSHCVSL引物(5′-AAAAGTCGACTGGTGGTGGAACTGGACCGT-3′)含有21个例(1-B-1)引物RANPSHCV或者DA17PSHCV的固定核苷酸和SalⅠ酶识别位点(5′-GTCGAC-3′);而KHCVR60引物(5′-GTGTCCGCGCTAAGCTACTGTCC-3′)含有那些来自例(1-D-9)KHCV 494 3′端区核苷酸序列。在第一步PCR使用PSHCV和KHCVR60引物,按参考例7中的方法进行。
在第二步PCR,合成KHCVR6引物(5′-TGTGGCAAGTACCTCTTCAACTGG-3′)该引物是互补于KHCV 494 3′端区的核苷酸序列并与KHCVR60靠得更近。
10μl KHCVR61加至第一步PCR的混合物中,然后按参考例7相同的方法进行第二步PCR。
完成反应后,明确cDNA扩增,用例(1-E-1)相同的方法测序。这样获得的cDNA有266,称为KHCV266,它的位置和核酸序列以及所编码的核酸序列参见图1至3。在KHCV 266的序列中,发现了二个末端终止密码子,但没有poly(A)+尾序。
(1-E-4):克隆KHCV cDNA 5′端区并测序
使用按例(1-C)制备的KHCV 426 5′端侧面序列合成了引物KHCVL 69(5′-GTCCTGTGGGCGGCGGTTGGTGTTACG-3′)制备出单股cDNA,这是按例(1-B-1)相同的方法进行的。从上述获得的50μl混合物,用1ml TE缓冲液(10mM Tris-HCl,pH7.5,1mM EDTA)透析。透析后的溶液用Centricon 100(Amicon Inc.,U.S.A.,#4200)浓缩至10μl,结果移出剩余的引物和dNTPs。
为了制备polyd(T)接尾的cDNA或者polyd(G)接尾的cDNA向上述获得的cDNA溶液10μl中加入4μl5×接尾缓冲液(0.5M二甲胂酸钾,pH7.2,10mM CoCl2,1mM DTT),4μl 1mM dTTp或4μl的1mMdGTP和10单位末端脱氧核苷转移酶(BRL Inc.,U.S.A.,#80085B);最后加蒸馏水至50μl总体积。反应混合物置37℃30分钟,然后65℃加热5分钟。
这样得到的接有polyd(T)+尾序的cDNA或polyd(G)尾序的cDNA,在引物KHCVL70(5′-TTGAGGTTTAGGATTCGTGCTCAT-3′),或dC12R1RO:5′-AAGGATCCGTCGACATCGATAATACGACTCTATAGGGACCC)-3dT17RIRO(5′-AAGGATCCGTCGACATCGATAATACGACTCACTATAGGGA(T)17-3′),RO(5′-AAGGATCCGTCGACATC-3′)和R1(5′-GACATCGATAATACGACTCAC-3′)的存在下用PCR进行扩增。这些引物均按例(1-C)制备的KHCV 426序列合成的。
在2μl cDNA溶液中加入5μl 10×Taq多聚酶缓冲液(100mM Tris-HCl,pH 8.3,500mM KCl,15mM Mgcl2,0.1%明胶),5μl 1.5mM dNTPs混合物,2.0μg KHCVL 69和2.0μg dT17R1RO,再加蒸馏水至总体积50μl。在95℃7分钟后冷至75℃,加入2.5单位Taq DNA聚合酶和30μl矿物油以防蒸发。将反应混合物冷至45℃2分钟让引物与单股cDNA互补结合,72℃ 22分钟。第一步PCR重复30次循环,即:95℃45秒-50℃ 25秒-72℃15分钟。
2μg R0(或R1)引物和2μg KHCVL70加到从上述得到的10μl混合物中。第二步PCR和上述同样循环进行30次。完成反应后,有380bp的cDNA扩增经确定进一步按例(1-E-1)相同的方法进行测序。这样获得的cDNA克隆称为KHCV 366,其位置和序列以及编码的氨基酸序列参见图1至3。
将例1获得的所有KHCV cNDA克隆连接可得到有9372bp的全长KHCV cNDA称为KHCV-LBC1,它已于1991年5月14日保藏于ATCC,编号为75008。
例2:制备HCV亚型cDNA
(2-A):RNA的抽提
从13个患C型肝炎朝鲜病人收集的血清样品(样品#2,#3,#20,#21,#23,#25,#26,#27,#28,#29,#30,#31和#32)各取100μl加入300μl RNA zol B(Cinna/Biotecx,P.O.Box 1421,Friendwood,Texas,U.S.A.)用以破碎细胞,然后按例(1-A)同样的方式抽提出KHCV RNAs。13个样品的KHCV RNAs分别命名为LBC2,LBC3,LBC20,LBC21,LBC23,LBC25,LBC26,LBC27,LBC28,LBC29,LBC30,LBC31和LBC32。
(2-B):cDNA的制备
以例(2-A)制备的HCV RNAs为模板,随机引物(5′-NNNNNN-3′,这里N可能相同,也可能不同,可以具有相同比例的G,A,T或C)作为反转录酶的引物,按例(1-B-1)相同的方式制备HCV cDNA。这样获得的cDNA分别命名为:KHCV-LBC2 cDNA,KHCV-LBC3 cDNA,KHCV-LBC20 cDNA,KHCV-LBC21 cDNA,KHCV-LBC23 cDNA,KHCV-LBC25 cDNA,KHCV-LBC26 cDNA,KHCV-LBC26,KHCV-LBC27 cDNA,KHCV-LBC28 cDNA,KHCV-LBC29 cDNA,KHCV-LBC30 cDNA,KHCV-LBC31 cDNA,KHCV-LBC32 cDNA。
(2-C):以PCR扩增KHCV cNDA
(2-C-1):引物的设计
HCV cDNA NS2和NS5区扩增引物设计是按日本型、美洲型病毒和例1制备的KHCV-LBC1核酸序列中共同存的区进行的(kato,etal.,Proc.Natl.Acad.Sci.USA,87,9524-9528(1990)和Takamizawa et al.,J.Virol.,65,1105-1113(1991);Choo et al.,Science,244,359-363(1989))。以KHCV-LBC1的核酸序列为基础,给上述制备的核酸序列位置编码。
HCV cNDA NS2区扩增的引物
NS2S1(5′-CGGGAGATGGCCGCATCGTG-3′)对应于KHCV-LBC1第2776至2795号核酸序列片段的一股,NS2N1(5′-ACCTGCTAGTGCGGCCAGCTTCAT-3′)对应于KHCV-LBC1第3180至3157号核酸序列片段的互补股。这些都用在HCV cNDA NS2区第一步扩增。NS2S2(5′-TTTTGGATCCGCGGTTTTTGTAGGTCTGGT-3′)对应于KHCV-LBC1第2803至2822号核酸序列片段的一股,这个片段为方便克隆是BamH Ⅰ识别位点,NS2N2(5′-AAAGTCGACATGAAGACCATTTGGAC-3′)对应于KHCV-LBC1第3159至3142号核酸序列片段的互补股,它也为克隆方便在5′端有一个Sal Ⅰ酶识别位点。NS2S2和NS2N2用于第二步PCR扩增。
扩增HCV cDNA NS5区的引物
NS5S1(5′-ATGGGGATCCATATGACACCCGCTG(T/C)TTTGA-3′)这段中T/C表示胸腺核苷和胞核苷以1∶1比例混合存在)片段,从5′端第10个核苷酸开始至3′端末与KHCV-LBC1第8252至8273片段对应。在NS5N1(5′-CCCCGTCGACCTAGTCATAGCCTCCGTGAA-3′)片段中,从5′端第9个核苷酸开始至3′端末与KHCV-LBC1第8635至8614片段的互补对应。NS5N1引物用于第一步PCR扩增NS5区。
在NS5S2(5′-TTTGAGGATCCACGGTCACTGAGAA(T/C)GACAT-3′,其中T/C与上述出现过的情况一致)片段中,从第12个至3′端末的序列与KHCV-LBC1的第8278至8297核苷酸片段相对应。在NS5S2的5′端有BamH Ⅰ识别位点。NS5S2引物用于第二步PCR扩增。
上述引物是采用自动固相磷酰胺化学法在DNA合成仪中合成的(Applied Biosystems Inc.,Model 380 B,USA)用变性聚丙烯酰胺凝胶电泳分离合成引物(2M脲,12%丙烯酰胺和双叉丙烯酰胺(29∶1,w/w)溶在50mM Tris,50mM硼酸,1mM EDTA-Na2)。通过C18层析柱以乙腈-水(50∶50,v/v)为洗脱液进行纯化。每一个引物的浓度用O.D.260测定。
(2-C-2):PCR扩增KHCV cDNA NS2区
第一步PCR按下述方法进行:按例(2-B)制备的cDNA(KHCV-LBC2,KHCV-LBC3,KHCV-LBC20,KHCV-LBC21,KHCV-LBC23,KHCV-LBC25,KHCV-LBC26,KHCV-LBC27,KHCV-LBC28,KHCV-LBC29,KHCV-LBC30,KHCV-LBC31和KHCV-LBC32)如例(2-B)各取5μl,其内加入10μl 10×Taq聚合酶缓冲液(10mM Tris-HCl,pH8.3,500mM HCl,15mM MgCl2,0.1%(w/v)明胶),10μl 2mM dNTP混合物,0.2μg NS2S1,0.2μg NS2N1和0.5μl Ampli Taq DNA聚合酶(Perkin Elmer-Cetus,USA),加蒸馏水至最终体积100μl。这样的溶液每一份各加50μl矿物油以免蒸发。第一步PCR按温度循环进行40次,其顺序为:95℃ 2分钟-55℃2分钟-72℃3分钟。用1ml第一步PCR产物以及2μgNS2S2/NS2N2引物反复25次制备第二步PCR。
最终反应物加入等体积酚/氯仿溶液,离心除去残留的酶,每一份上清液中加入0.1体积的3M乙酸钠和2.5倍体积的纯乙醇。然后离心获得340bp双股DNA。
13个不同模板的DNA片段分别命名为:NS2-LBC2,NS2-LBC3,NS2-LBC20,NS2-LBC21,NS2-LBC23,NS2-LBC25,NS2-LBC26,NS2-LBC27,NS2-LBC28,NS2-LBC29,NS2-LBC30,NS2-LBC31和NS2-LBC32。
(2-C-3):PCR扩增NS5区HCV cDNA
引物NS5S1和NS5N1用于第一步PCR扩增,NS5S2和NS5S1引物用于第二步PCR扩增其方法同例(2-C-2)以获得320bp DNA片段。
来自KHCV-LBC20 cDNA,KHCV-LBC21 cDNA,KHCV-LBC23 cDNA,KHCV-LBC25 cDNA,KHCV-LBC26 cDNA,KHCV-LBC27 cDNA,KHCV-LBC28 cDNA,KHCV-LBC29 cDNA,KHCV-LBC30 cDNA,KHCV-LBC31 cDNA和KHCV-LBC32 cDNA扩增得到的DNA片段分别命名为NS5-LBC20,NS5-LBC21,NS5-LBC23,NS5-LBC25,NS5-LBC27,NS5-LBC28,NS5-LBC29,NS5-LBC30,NS5-LBC31和NS5-LBC32。
每一片段都用Sal Ⅰ和BamH Ⅰ消化,消化后片段克降到M13 mp 19,按Sanger法进行测序。其核酸序列参见图7至26。
例3:制备在酵母菌表达KHCV cDNA片段的载体
(3-A):扩增KHCV cDNA片段
(3-A-1):K384,K510,K573,K897,K403和K590片段的制备
第1步
为将ubiquitine基因连接到例(1-C)、(1-D)和(1-E)克隆的每一个KHCV cDNA片段上(凡连上ubiquitine基因的KHCV cDNA片段都冠有“UB-KHCV”)并将克隆UB-KHCV到酵母表达载体上,按下述所示合成各种引物。
PCOREUBI引物(5′-CTTGGTGTTGAGACTCCGCGGTGGTATGAGCACGAATCCTAAACC-3′)在5′端有25序列碱基与ubiquitine基因的3′端重叠,其余部分与KHCV-LBC1的第343至360区的片段对应。
PSALCORE14(5′-GGGGTCGACTATTAGCATGTGAGGGTGTGGGATGAC-3′)含有一终止密码,正好在第726位核苷酸处终止翻译,此外,还有一个Sal Ⅰ识别位点。
PSALCORE 17引物(5′-GGGGTCGACTATTAGGGCAGATTCCCTGTTGCATA-3′)含有一终止密码,正好在第852位核苷酸处终止翻译,还有一个Sal Ⅰ识别位点。
PSALCORe 22引物(5′-GGGGTCGACTATTAAGCGGAACTGGGGATGGTCAA-3′)含有一终止密码,正好在第915位核苷酸终止翻译,还有一个Sal Ⅰ识别位点。
PK403UBI引物(5′-CTTGGTGTTGAGACTCCGGTGGTACGGGCATGACCACTGACAA-3′)在5′端有25个核苷酸和PCOREBUI相同,其余核苷酸被设计成启动KHCV-LBC1的第6649处核苷酸的翻译。
PK 573UBI引物(5′-CTTGGTGTTGAGACTCCGGTGCGGTACATGGACAGGCGCCCTGA-3′)在5′端有25个核苷酸与PCOREUBI相同,其余核苷酸被设计成启动KHCV-LBC1的第7612处核苷酸的翻译。
PK403SAL引物(5′-GACTGGTCGACTATTACTCTTGCCGCCACAAGAGGTT-3′)被设计正好在KHCV-LBC1第7050处核苷酸终止翻译。有一个Sal Ⅰ识别位点和2个终止密码子(TAATAG)。
PK 897UBI引物(5′-CTTGGTGTTGAGACTCCGCGGTGGTGCGGTGGAATTCATACCCG-3′)在5′端有25个核苷酸与PCOREUBI相同,其余核苷酸被设计成从KHCV-LBC1的第3916处核苷酸开始启动翻译。
PK897SAL引物(5′-GACTGGTCGATATTAACACGTATTACAGTCGATCAC-3′)正好设计成从KHCV-LBC1第4713处核苷酸终止翻译。有一个Sal Ⅰ酶识别位点,二个终止密码子(TAATAG)。
PK573SAL引物(5′-GACTGGTCGACTATTAGTACTGGAATCCGTATGAGGAG-3′)正好设计为终止KHCV-LBC1第8184处核苷酸以后的翻译,有一个Sal Ⅰ酶识别位点,在3′端有二个终止密码(TAATAG)。
P426B引物(5′-GGGTGGGCAGGATGGCTCCTG-3′)是由KHCV-LBC1的第616到636核苷酸序列区组成。
P240B引物(5′-CCTGTTGCATAGTTCACGCCGT-3′)是由KHCV-LBC1的第842到821核柑酸序列区组成。
P652B引物(5′-GTCATTCCAAGAAGAAATGTGACGAGCTCGCTGCAAAG-3′)是由KHCV-LBC1的第4523至4560核苷酸序列区组成。
P403B引物(5′-GCTGACCTCATTGAGGCCAACCTCTTGT-3′)是由KHCV-LBC1的第7012至7039核苷酸序列区组成。
第2步
从3个克隆(即:KHCV 426,KHCV 240和KHCV513序列相互重叠)按下述方法制备出单一的cDNA片段。向2.0μg PCOREUBI,0.02μg P426B,2μg的P240B和50ng KHCV-LBC1 DNA混合液中加入10μl 10×Taq聚合酶缓冲液,10μl 10mM dNTP混合物和2.5单位Taq聚合酶,补蒸馏水至总体积100μl。按参考例7的热循环重复25次进行第一步PCR。反应产物加样至5%聚丙烯酰胺凝胶电泳分离出500bp的PCR产品(称为“PCR产品A”),之后,用60ng PCR产品A和50ng KHCV-LBC1 DNA作为模板,以2μg PCOREUBI和2μg PSALCORE 22为引物,在与第一步相同的条件下进行第二步PCR。反应产物用5%聚丙烯酰胺凝胶电泳分离出580bp的最终产品(称为“PCR产品B”),然后溶解在50μl TE缓冲液中。
第3步
为了进一步用第二步获得的PCR产品B作为模板进一步进行PCR,准备3支试管,A管含有2μg PCOREUBI和2μg PASALCORE14,B管含有2μg PCOREUBI和2μl PSALCORE 17,C管含有2μg PCOREUBI和2μg PSALCORE22,再往每支试管中加入50ng PCR产品B。
另一方面,为了用KHCV-LBC1 DNA作为PCR的模板,选用另外3个试管,D管含有2μg PK 897 SAL,0.02μg P652B和2μg PK 897 UBI,E管含有2μg PK403SAL和2μg PK 403UBI,F管含有2μg PK573SAL,0.022μg P403B和2μg PK573UBI。此外每管中分别加入50ng KHCV-LBC1 DNA。
以后,A到F管每管都加入10μl 10×Taq聚合酶缓冲液,10μl 10mM dNTP混合物和25单位Taq聚合酶,补足蒸馏水至总体积100μl。在与第二步相同条件下进行PCR扩增。
第4步
在第3步获得的PCR产品加样于5%聚丙烯酰胺凝胶电泳。结果可以确定在A管中生产出384bp DNA片段,B管中生产出510bp DNA,C管为573 bp DNA,D管中为897 bp DNA,E管中403bp DNA,F管中是590bpDNA。按上一步用相同的PAGE纯化DNA片段,并分别命名为K384片段,K510片段,K573片段,K897片段,K403片段和K590片段。
(3-A-2):制备编码KHCV外膜蛋白的cDNA片段
第1步
为了将合成的ubiquitine基因分别与E 2N和E 2C基因相连接,以便分别与酵母菌表达载体克隆,需合成F列引物。E 2N基因对应于KHCV-LBC1的第1510至2010核苷酸区,而E 2C基因是KHCV-LBC1的第2011至2529核苷酸区。
PE2NUBI引物(5′-CTTGGTGTTGAGACTCCGCGGTGGTGGGGCGCAAGGTCGGGCCGCT-3′)在5′端区含有25核苷酸与ubiquitine基因3′重叠,其它核苷酸序列与KHCV-LBC1第1510至1530序列区对应。
PE2NSAL引物(5′-GACTGGACTATTAATTCATCCAGGTACAACCGAACCA-3′)含有一个终止密码正好在KHCV-LBC1的第2010处核苷酸终止密码,有一个Sal Ⅰ酶识别位点。
PE2CUBI引物(5′-CTTGGTGTTGAGACTCCGCGGTGGTGGCACTGGGTTCACCAAGACA-3′)在5′端有25个核苷酸与ubiquitine基因3′端区相同,其余与KHCV-LBC1的第2011至2031核苷酸区段相对应。
PE2CSAL引物(5′-GACTGGACTATTACGCGTCCGCCAGAAGAAGGAAGAG-3′)含有一个终止密码正好在KHCV-LBC1的第2529核苷酸首终止翻译,并有一个SalⅠ酶识别位点。
第2步
A管加入2μg PE2NUBI和2μg PE2NSAL,B管加入2μg PE2CUBI和2μg PE2CSAL,两管中各加入50μg KHCV-LBC1,10μl 10×聚合酶缓冲液,10μl 10mM dNTP混合物和2.5单位Taq聚合酶,补蒸馏水至总体积100μl。按参考例7相同的热循环过程重复25次PCR反应。
第3步
第二步获得的PCR产品上样至5%PAGE电泳,结果可以确定在A管中500bp DNA,B管中520bp DNA得到了扩增。用上述同样PAGE纯化这些DNA并分别命名为E 2N片段和E 2C片段。
(3-B):制备用于酵母的表达载体
(3-B-1):制备pYLBC-A/G-UB-CORE14,pYLBC-A/G-UB-CORE17,pYLBC-A/G-UB-CORE22,
pYLBC-A/G-UB-KHCV897,pYLBC-A/G-UB-KHCV403和pYLBC-UB-KHCV573
在NEB缓冲液3中用PstⅠ和SalⅠ酶完全消化2μg pYLBC-A/G-UB-HGH(ATCC 74071)质粒,而2μg相同的质粒在参考例1NEB缓冲液4中用Pst和SacⅡ完全消化。上样于0.7%琼脂糖凝胶电泳分离出9.8kb和3.4kb片段,并分别命名为PL2和PT2。
在例(3-A-1)制备的K384,K510,K573,K987,K403和K590片段之间,K897,K403和K590片段在NBE缓冲液3中用SalⅠ和SacⅡ完全消化;K384,K510和K573片段在NEB缓冲液3中用SalⅠ完全消化。最后用酚/氯仿抽提,用乙醇沉淀,溶解在20μl TE缓冲液中。K384,K510和K573片段进一步在NBE缓冲液4中用SacⅡ部分酶解10分钟;其后也用酚/氯仿抽提,乙醇沉淀,溶解于20μl TE缓冲液里。
上述制备的片段按下述步骤进行连接反应。连接反应管A含有100ng K384片段、管B含100ng K510片段、管C含100ng K573片段,管D含100ng K897片段,管E含100ng K403片段,管F含100ng 573片段。在上述每管中加入100ng PL2片段,100ng PT2片段,2μl 10×连接缓冲液和10单位T4 DNA连接酶,加蒸馏水至总体积20μl,在16℃12小时进行连接。
连接反应结束后,上述每一个连接后的载体转化大肠杆菌HB101株(ATCC 33694)。
含K384的载体被分离后命名为pYLBC-A/G-UB-CORE14,含K510的载体被分离后命名为pYLBC-A/G-UB-CORE17,含K573的载体被分离后命名为pYLBC-A/G-UB-CORE22,含K897的载体被分离后命名为pYLBC-A/G-UB-KHCV897,含K403的载体被分离后命名为pYLBC-A/G-UB-KHCV403,含K590的载体被分离后命名为pYLBC-A/G-UB-KHCV573。(参见图30)。
(3-B-2):制备pYLBC-A/G-UB-E 2N和pYLBC-A/G-UB-E 2C
取2μg pYLBC-A/G-UB-HGH(ATCC74071)质粒在NEB缓冲液3中用PstⅠ和SalⅠ完全消化,2μg同一质粒在NEB缓冲液4中用PstⅠ和SacⅡ完全消化,然后上样于0.7%琼脂糖凝胶电泳分离出9.8Kb和3.4Kb片段,分别命名为PL2和PT2片段。
在例(3-A-2)中制备的E 2N和E 2C片段各自在NEB缓冲液4中用SacⅡ完全消化,进一步在NEB缓冲液3中用SalⅠ部分消化,各自用酚/氯仿抽提,乙醇沉淀,溶解在20μl TE缓冲液里。这两个片段被分别命名为E 2N-T2/L和E2C-T2/L片段。
在连接反应管G中加入100ng E2N-T2/L、管F中加入100ng E2C-T2/L,每管中各加100ng PL2,100ng PT2,2μl 10×连接反应缓冲液,10个单位的T4 DNA连接酶,补蒸馏水至总体积20μl。该反应在16℃进行12小时。大肠杆菌HB101株(ATCC 33694)用上述连接好的载体分别转化。含有E2N-T2/L片段的载体被称为pYLBC-A/G-UB-E2N,含有E2C-T2/L的被称为pYLBC-A/G-UB-E2C(参见图30)。
(3-C):转化酵母菌进一步生产出蛋白质
用参考例5中的相同方法将例(3-B-2)制备的表达载体转化至酵母菌,在那些转化后的酵母菌中Saccharomyces cerevisiae DC 04经pYLBC-A/G-UB-KHCV403转化后,于1991年6月27日保藏于ATCC编目号为ATCC74079(S.cerevisiae pYLBC-A/G-UB-KHCV403);用pYLBC-A/C-UB-CORE14转化的Saccharomyces cerevisiae DC 04于1991年7月1日保藏,编目号为ATCC 74081(S.cerevisiae DC 04-UB-CORE14);用pYLBC-A/G-UB-E2C转化后的Saccharomyces cerevisiae DC 04于1991年12月11日保藏,编目号为ATCC 74117(S.Cerevisiae DC 04-UB-E2C),上述菌株保藏于ATCC是按国际专利关于识别微生物保藏签订的《布达佩斯公约》的条款进行的。
在转化的酵母菌中,将S.cerevisiae DC 04-UB-KHCV 403在3ml无亮氨酸培养基中置于30℃过夜(6.7g酵母菌无氨基酸氮基菌(Difco Inc.,U.S.A.)2.5g/l无亮氨酸的氨基酸混合物,5%葡萄糖)。然后将培养物转入100yEPD培养基(2%蛋白胨,1%酵母浸膏,2%葡萄糖)30℃过夜以生产出KHCV蛋白质。最终培养液O.D.650约为25。其它转化的酵母细胞用同样的方法培养生产出KHCV其他蛋白质。
上述每一种培养物在达到O.D.650等于10时收集离心。沉淀物悬浮在400μl缓冲液中[10mM Tris-HCl,pH7.5,1mM EDTA,2mM PMSF(phenylmethylsulfonyl fluoride,苯甲硫氟化物)8M脲],然后加入等体积玻璃球(直径0.4mm)剧烈振摇以破坏细胞壁。这样抽提的酵母成分用Laemmli法[Laemmli et al.,Nature,277,680(1970)]在15%+二烷基磺酸钠(SDS)-聚丙烯酰胺凝胶上进行电泳(SDS-PAGE),然后,用考马期亮兰R250染色以确定KHCV蛋白的生产情况(参见图31-A)。
在胶上分离的蛋白质印迹在硝酸纤维素膜上。该膜放在PBS(10mM磷酸盐,pH7.0,0.15M Nacl),含0.2% Tween 20室温振摇2小时以封闭IgG接合到蛋白质之间非特异性吸附。再将滤膜放入稀释的IgG(8.2mg/ml)溶液在室温下轻摇1小时使蛋白质和IgG反应结合。这些稀释的IgG是来自朝鲜病人纯化后血清经200倍PBS稀释(PBS含有0.5%明胶,0.05% Tween 20)。然后将反应的滤膜用含有0.2% Tween 20 PBS洗5分钟,4次。再在膜上加上辣根过氧化物酶(BTO-Rad Lab.,USA,山羊抗人IgG-HRP)标记的抗人IgG(IgG-HRP)室温下振摇1小时。该酶标抗体是用含0.5%明胶和0.05%Tween 20的PBS经200倍稀释后使用的。最后用含0.2% Tween PBS洗膜5分钟,4次。再用50mM pH7.0的Tris缓冲液洗2次。
给膜上加入50mM Tris缓冲液,内含400μg/ml 4-氯-1-萘酚和0.03%过氧化氢以便产生颜色反应。从上述蛋白印迹的结果参见图31-B。在图31-B中,第2条显示由pYLBC-A/G-UB-CORE14转化的酵母菌提取物的结果;第3条是由pYLBC-A/G-UB-KHCV897转化的酵母菌提取物的结果;第5条是pyLBC-A/G-UB-KHCV403转化的酵母菌提取物的结果;第6条是pYLBC-A/G-UB-KHCV573转化的酵母菌提取物的结果。第1和4条表明没有KHCV表达载体的酵母菌提取物的结果;第M条是标准蛋白分子标志物(单位:道尔顿dlt)。
图32表明了SDS-PAGE和蛋白印迹结果确定了E2N和E2C蛋白的产量。在图32中,第1条表明一个质粒转化不带KHCV基因的酵母菌抽提物,第2条表明用pYLBC-A/G-UB-E2N转化的酵母菌提取物。第3至5条表明了pYLBC-A/G-UB-E2N转化的酵母菌提取物;第6条是标准分子量标志物结果,自上而下为:200,97,72,43,29,18和14kd。
例4:制备在大肠杆菌表达KHCV cDNA片段
(4-A):制备含trp启动子的表达载体
(4-A-1):制备KHCV cDNA片段
按例(3-A-1)和(3-A-2)制备的K384,K510,K573,K879,E2N和E2C片段用在本试验中。
外膜1(E1)片段定位于KHCV-LBC1第916至1509号核苷酸区段,采用例(3-A-1)相同的方法和下列引物进行PCR扩增而成。
PEIUB引物(5′-CTTGGTGTTGAGACTCCGCGGTGGTTATGAAGTGGGCAACGCGTCC-3′)在5′端与KHCV-LBC1第916至936区段有25个核苷酸有与ubiquitine基因重叠部分。
PEISAL引物(5′-GACTGGACTATTACCCTGTCACGTGGGTGGTGGTTCC-3′)含有一个终止密码以终止KHCV-LBC1第1509号核苷酸以后的翻译,并有一个SalⅠ识别位点。
(4-A-2):Ubiquitine基因的制备
第一步
三个不同的按下述所示的寡核苷酸是按Ozkaynak等[EMBO.J.6,1429-1439(1987)]报告的Ubiquitine基因资料设计的,用DNA合成仪按以下所示序列合成的:
UBI1:5′-CCCCATATGCAAATTTTCGTCAAAACTCTAACAGGGAAGACTATAACCC TAGAGGTTGAATCTTCCGACACTATTGACAACGTCAA-3′
UBI2:5′-TAGTTGCTTACCAGCAAAAATCAATCTCTGCTGATCCGGAGGGATACCTT
CTTTATCTTTGAATTTTACTTTTGACGTTGTCAATAGTCTC-3′
UBI3:5′-ACCACCGCGGAGTCTCAACACCAAGTGAAGAGTAGATTCCTTTTGGATGT
TGTAGTCAGACAAGGTTCTACCATCTTCTAGTTGCTTACCAGCAAAAA-3′
UBI 1被设计成在5′端有一个NdeⅠ(5′-CATATG-3′)并有大约20个核苷酸与UBI2重叠。UBI3被设计了一个SacⅡ识别位点(5′-CCGCGG-3′)但丝毫未能改变所编码的氨基酸序列(参见图33)。
第2步
给2μgUBI1,0.02μg UBI2和2μg UBI3混合物中加入10μl 10×PCR缓冲液,10μl 10mM dNTP混合物和0.5μlTaq聚合酶,加蒸馏水至总体积100μl,按参考例7的相同方式进行PCR扩增。然后将反应混合物上样至5%PAGE分离出240bpDNA,命名为Ub,分离的Ub片段溶解在20μlTE缓冲液中。
(4-A-3)将ubiquitine基因连接到KHCV cDNA
由例(4-A-1)制备的每一种片段按下述方法连接到Ub片段上。
在例(3-A-1)第1步和例(4-A-2)第1步制备的引物被用于PCR引物。
制备以下7支不同的试管:
管A加入50ng K384片段,50ng Ub,2μg UBI1引物和2μg PSALCORE 14引物;管B加入50ng K510片段,50ng Ub,2μg UBI1引物和2μg PSALCORE17引物;管C加入50ng 573片段,50ng Ub,2μg UBI1引物和2μg PSALCORE 22引物,管D中加入50ng K897片段,50ng Ub片段,2μg UBI1引物和2μg PKHCV 897SAL引物;管E中加入50ngE2N片段,50ng Ub,2μg UBI 1引物和2μg PE2NSAL引物;管F中加入5ng E2C片段,50ngUb,2μg UBI1引物和2μg PE2CSAL引物;管G中加入50ng E1片段,50ng Ub片段,2μgUBI1引物和2μg PEISAL引物。
向上述每一管中各加入10μl 10×聚合酶反应缓冲液,10μl 2mM dNTP混合物,0.5μl Taq聚合酶,补蒸馏水至总体积100μl。按例7相同条件进行PCR扩增。每一种PCR扩增产物都用NdeⅠ和SalⅠ酶在NEB缓冲液3中消化,在管A至管G获得的片段分别称为UBCORE14,UBCORE17,UBCORE22,UBKHCV897,UBE2N,UBE2C和UBE1。
(4-A-4):表达载体的制备
第1步
2μg ptrp 332-HGH(参见朝鲜专利公报第91-457,KFCC-10667)用Pstl和SalⅠ完全消化;2μg质粒在NEB缓冲液4中用PstⅠ和NdeⅠ完全消化。产品在0.7%琼脂糖电泳分离出1.5kb和0.8kb片段,分别称为PB和PS。
第2步
在上述第1步和例样(4-A-3)中制备的片段被用于下面的连接反应
连接反应管A中加入100ng UBCORE14,管中加入100ng UBCORE17管C中加入100ngUBCORE22,管D中100ng UBKHCV897,管E中100ng UBE 2N,管F中100ngUBE2C和管G中100ngUBE1,每一管中都加入100ngUBE1,100ngPB,100ng PS,2μl 10×连接反应缓冲液和10单位T4DNA连接酶,补蒸馏水至总体积20μl,反应后16℃进行12小时。分离连接上的每一个载体,分别转化大肠杆菌E.coli HB101株(ATCC 33694)含有UBCORE14的载体分离后称为ptrpH-UB-CORE14;含有UB CORE 17的载体分离后称为ptrpH-UB-CORE17;含有UBE CORE22片段的载体,分离后称为ptrpH-UB-CORE22;含有UBE2N的载体,分离后称为ptrpH-UB-E2N;含有UBKHCV897片段的载体分离后称作ptrpH-UB-KHCV897;含有UBE2C的载体分离后称为ptrpH-UB-E2C;含有UBE1的载体分离后称为ptrpH-UB-E1(参见图34)。
(4-B):制备含有tac启动子pMAL-KHCV载体
(4-B-1):扩增KHCV cDNA片段
第1步
为了在大肠杆菌中因tac启动子表达KHCV cDNA片段成MBP融合蛋白,用DNA合成仪制备出下述引物。
Primer PK426R:5'-CTCCGAATTCGGTGCTTGCGAGTGCCCC-3'
Primer PK426X:5'-CACGCTCGAGGCATGTGAGGGTGTCGATGAC-3'
Primer PSALCORE17:5'-GGGGTCGACTATTAGGGCAGATTCCCTGTTGC-3'
Primer P426B:5'-GGGTGGGCAGGATGGCTCCTG-3'
Primer PK513R:5'-CTCCGAATTCGGCACGAGGCTGGAGGACGGCGTGAACT-3'
Primer PK513X:5'-CACGCTCGAGAGGCGACCAGTTCATCATCAT-3'
Primer PK810R:5′-CTCCGAATTCGGCACGAGGGTTTCCCAGCTGTTCACCTT-3
Primer PK810X:5′-CACGCTCGAGATTCAGCCATGTACAACCGAACC-3′
Primer PK798R:5′-CTGCGAATTCGGCACGAGGGACGTGCTGCTCCTTAAC-3′
Primer PK798X:5′-CACGCTCGAGCAGAAGCAGCGGCCATACGCC-3′
PrimerPK754R:5′-AAAAAGAATTCGGCACGAGGCTGCGAGATTGGGCTCACACG-3
Primer PK754X:5′-AAAAACTCGAGCCGCATAGTAGTTTCCATAGACTCAACGGG-
TATGAATT-3′
Primer PK652R:5′-AAAAAGAATTCGGCACGAGGTTCATACCCGTTGAGTCTATG-
GAA-3′
Primer PK652X:5′-ATTATTGTCGACTATCTATCTACTCGAGTCACAGCTTTGC-
AGCGAGCTCGT-3′
Primer PK403R:5′-AAAAAGAATTCACGGGCATGACCACTGAC-3′
Primer PK403X:5′-ATTATTCTCGAGTATCACTCTTGCCGCCACAAGAG-3′
Primer PK271R:5′-AAAAAGAATTCACTAGCCTTACAGGCCGG-3′
Primer PK271X:5′-CACGCTCGAGTCACGTGACCAGGTAAAGGTC-3′
Primer PK495R:5′-CCCCCGAATTCGGCACGAGCGCTGCGGAGGAAAGCAAGTT-3
Primer PK495X:5′-AAAAACTCGAGGACCACGTCATAAAGGGCCA-3′
Primer PK494R:5′-AAAAGAATTCGGCACGAGCGATGCATCTGGTAAAAGGGT-3
Primer PK494X:5′-AAAACTCGAGATTGGAGTGAGTTTGAGCTT-3′
第2步
11个不同编号的试管准备后按下述加入引物:
管A:2μg PK426R引物,2μg PK426×引物,
管B:2μg PK426R引物,20ng PK426B引物,20μg PSAL CORE17
管C:2μg PK513R引物,2μg PK513×引物,
管D:2μg PK810R引物,2μg PK810×引物,
管E:2μg PK798R引物,2μg PK798×引物,
管F:2μg PK754R引物,2μg PK754×引物,
管G:2μg PK652R引物,2μg PK652×引物,
管H:2μg PK403R引物,2μg PK403×引物,
管I:2μg PK271R引物,2μg PK271×引物,
管J:2μg PK495R引物,2μg PK495×引物,
管K:2μg PK494R引物,2μg PK494×引物,
在上述每一管中加入10ng KHCV-LBC1(ATCC 75008)DNA,10μl 10×聚合酶缓冲液,10μl 10mM dNTP混合物和0.5μl(2单位)Taq聚合酶,加蒸馏水至总体积100μl。
每一个反应混合物都加入50μl矿物油防止蒸发,按参考例样7相同方式进行PLR扩增。
(4-B-2):制备表达载体:
在NEB缓冲液3中用ECORI和Sal Ⅰ完全消化2μgPMAL-CR C New England Bilabs Inc.Cat.No.800 11099 North Torrey Pines Road,La Jolla,CA,U.S.A.)消化物用酚氯仿抽提,乙醇沉淀,溶介在40μlTE缓冲液中。
在例样(4-B-1)第2步中制备的PCR产品用EcoRⅠ和Xho Ⅰ酶按如下过程消化:
在管A和管C至管F,管H和管J至管M中,每管加入PCR产品1μg用EcoRⅠ和XhoⅠ完全消化;在管G和管I中PCR产品加入量为3μg用XhoⅠ酶完全消化,用EcoRⅠ部分消化1μg管C中的PCR产品用EcoRⅠ和SalⅠ完全消化。这样获得的EcoRI-XhoⅠ以及EcoRI-SalⅠ片段分离后溶解在20μl TE缓冲液,方法同参考例样1。
用EcoRI-XhoⅠ和EcoRⅠ以及SalⅠ消化的上述CDNA片段各取5μl,每样中加入2μl10×连接缓冲液,1μl(500ng)用EcoRⅠ和SalⅠ处理的pMal-CR1和10单位T4DNA连接酶;补足蒸馏水至总体积20μl,在16℃反应进行12小时。
连接的每一个载体即重组载体分离后转化大肠杆菌HB101株(ATCC 33694),管A至管K的载体分别称为:PMAL-KHCV426,PMAL-KHCV555,PMAL-KHCV513,PMAL-KHCV810,PMAL-KHCV798,PMAL-KHCV754,PMAL-KHCV652,PMAL-KHCV403,PMAL-KHCV271,PMAL-KHCV495和PMAL-KHCV494。
用上述重组载体的PMAL-CR1载体描述在图35。
(4-C)在大肠杆菌表达KHCV cDNA
(4-C-1):用含有trp启动子的载体表达KHCV cDNA,
第1步
用每一个在例样(4-A)中制备的质粒转化大肠杆菌W3110株(ATCC 38335),在它们中间,用ptrpH-UB-KHCV897转化的大肠杆菌W3110(E.coli W3110 ptroH-UB-KHCV897)于1991年6月27日保藏在ATCC,编目号为ATCC 69640,用ptrpH-UB-CORE17转化的大肠杆菌W3110株(E.Coli W3110 ptrpH-UB-CORE17)也于1991年6月27日保藏于ATCC,编目号为ATCC 68641,用PtrpH-UB-CORE 14转化的大肠杆菌W3110株(E.coli W3110 ptrpH-UB-CORE14)在1991年6月1日保藏,编目号为ATCC 68642,用ptrpH-UB-E,转化的大肠杆菌W3110株(E.coli W3110 ptrpH-UB-E 1)在1991年12月11日保藏,编目号为ATCC68878;用ptrpH-UB-E2N转化的大肠杆菌W3110株(E.coli W3110 ptrpH-UB-E2N)于1992年4月22日保藏,菌种编目号为ATCC 68966,所有保藏均按国际专利微生物保藏识别《布达佩斯协定》所规定的条款进行。
用ptrph-UB-CORE 14转化的大肠杆菌在液体LB培养基(1%细菌蛋白胨,0.5%酵母浸,1% NaCl)并含有50g/ml氨苄青霉素中37℃振荡培养12小时。取5ml上述培养物转入1升M9培养基中(40mM K2HPO4,22mM KH2PO4,8.5mM NaCl,18.7mM NH4Cl,1%葡萄糖,0.1mM MgSO4,0.1mM CaCl2,0.4%酪蛋白水解物,10μl/ml维生素B1,40μg/ml氨苄青霉素),37℃振荡培养3-4小时。当O.D.650值达到0.5时,吲哚丙酸(IAA)加入其内,使IAA的最终浓度达到1.4mM,5小时后,培养物3000rpm离心25分钟收集沉淀的大肠杆菌。
其它重组大肠杆菌按上述相同方式培养以生产出KHCV蛋白质来。
第2步
上述每种细菌细胞悬浮在缓冲液内,然后在15% SDS-PAGE采用Laemmli法[Nature,227,680(1970)]以确定融合ubiquitine的KHCV蛋白的表达情况。结果见图36至38。
在图36,M道是标准蛋白分子量标志,即自上向下72,43,29和18kd;第一道是不带KHCV基因的质粒大肠杆菌产物;第2道是ptrpH-VB-CORE 14转化大肠杆菌,23kd的蛋白质被翻译出来。第三道表明由ptrpH-UB-CORE 17转化的大肠杆菌产物,是一个27 kd蛋白质,第4道是由ptrpH-UB-CORE 22转化大肠杆菌生产的29kd蛋白蛋,第5道是由ptrpH-UB-KHCV 897转化大肠杆菌生产的40kd蛋白质。而第6道是纯化的KHCV 897蛋白质。
在图37,第一道是不带KHCV质粒的大肠杆菌表达的产品,第2至第5道是ptrpH-UB-E1转化的大肠杆菌分别从IAA添加不同时间2,4,6和12小时后收获的产品。第6道是代表着标准分子量大小标志,即:自上而下72,43,29,18和14kd。
在图38,第1道是不带KHCV基因质粒的大肠杆菌产品,第2道是ptrph-UB-E2C转化大肠杆菌的产品,第3道是ptrpH-UB-E2N转化大肠杆菌的产品。
蛋白印迹是按例(3-C)相同的方法进行是为了确定由上述重组大肠杆菌表达产生的蛋白质能否特异性结合KHCV抗体。结果参见图39至图41。
(4-C-2):由含tac启动子的载体表达KHCV cDNA
第1步
按例4相同的方法将例(4-B)制备的每一个质粒转化至大肠杆菌D1210株(ATCC 27325),在它们中间,由pMAL-KHCV 555(E.coli D 1210 pMAL-KHCV 555,)转化的大肠杆菌于1991年6月27日保藏于ATCC其编号为ATCC 68639,这一行动是按国际专利微生物保藏识别鉴定的《布达佩斯协定》的条款下进行的。
在含有50μg/ml氨苄青霉素液体LB培养中振荡培养12小时,取5ml培养物转至1升 M9培养基(在一升溶液中含有6g Na2HPO4,3g KH2PO4,0.5g NaCl;1gNH4Cl,2μl 1M MgSO4,100μl 20%葡萄糖,0.1ml CaCl2)37℃振荡培养3-4小时,当O.D.650到达0.5时,IPTG加入到培养物中使其终浓度为0.2mM,5小时后,培养物在3000rpm离心25分钟收集沉淀的E.coli细胞。
第2步
在缓冲液中悬浮细胞沉淀物用Laemmli法[Nature 227,680(1970)]上样进15%SDS-PADG以确定KHCV蛋白的表达。结果参见图40。在图42中,M道是标准蛋白分子量标志;第1道是pMAL-CR1转化大肠杆菌产生的40kd蛋白质产物;第2道是pMAL-KHCV426转化大肠杆菌产生的65kd蛋白质产物(MBP-KHCV 426蛋白);第3道是pMAL-KHCV 555转化大肠杆菌产生的70kd蛋白质产物(MBP-KHCV 555蛋白质);第4道是pMAL-KHCV 513转化大肠杆菌产生的65kd蛋白质(MBP-KHCV 513蛋白质)产物;第5道是pMAL-KHCV810转化大肠杆菌产生的75kd蛋白质(MBP-KHCV 810蛋白质)产物;第6道是pMAL-KHCV 798转化大肠杆菌产生的72kd蛋白质产物;第7道是pMAL-KHCV271转化大肠杆菌产生的50kd蛋白质产物;第8道是pMAL-KHCV754转化大肠杆菌产生的72kd蛋白质(MBP-KHCV 754蛋白质)产物;第9道是pMAL-KHCV652转化大肠杆菌产生的70kd蛋白质(MBP-KHCV652蛋白质)产物;第10道是pMAL-KHCV403转化大肠杆菌产生的65kd蛋白质(MBP-KHCV403蛋白质)产物;第11道是pMAL-KHCV495转化大肠杆菌产生的70kd蛋白质(MBP-KHCV495蛋白质)产物;第12道是pMAL-KHCV494转化大肠杆菌产生的70kd蛋白质(MBP-KHCV494蛋白质)产物。
蛋白印迹是按例(3-C)相同方式进行的目的是确定上述蛋白质能否特异性的与KHCV抗体结合,结果参见图43。
(4-C-3):从融合蛋白消化去除MBP
MBP融合的每一种蛋白质对Xa因子缓冲液(20mM Tirs-HCl,pH8.0,100mM NaCl,2mM CaCl2,1mM叠氮化钠)透析24小时。0.2μg每一种透析蛋白液(1mg/ml)和0.2μg Xa因子混合(New England Biolabs,Inc.,Cat.#800-10L);反应物室温24小时存放。
每一种上述处理混合物100℃5分钟,按例(1-C)相同方法上样进行SDS-PAGE以确定MBP是否从融合蛋白中移去。移去MBP的蛋白质被分别做:KHCV 426蛋白,KHCV555蛋白,KHCV513蛋白,KHCV810蛋白,KHCV798蛋白,KHCV271蛋白,KHCV754蛋白,KHCV652蛋白,HCV403蛋白,KHCV495蛋白和KHCV494蛋白。
按上述所述,为了制备表达载体各种长度和序列的KHCV cDNA由PCR扩张制备而得,这中间使用了各种各样引物组合。因此,很明显其它相似的KHCV cDNA片断以上述揭示的可以很容易由一个技术熟练的人合成。既然KHCV抗原蛋白依赖着KHCV cDNA,因此很明显其它KHCV抗原蛋白质也可由一位技术熟练的人员很容易的合成。进而,为制备KHCV cDNA和KHCV抗原蛋白质,可能要使用不仅在例中用的酶,接头(Linker)和其它材料,而且也包括它们的对应物(equivalents)。
例5:纯化由酵母细胞表达的KHCV蛋白
(5-A):纯化KHCV 403蛋白
第1步:重组酵母细胞的培养
由含KHCV 403 cDNA片段和ubiquitine基因的载体(PYLBC-A/G-UB-KHCV403)转化的S.cerevisiae DCO4-UB-KHCV403酵母细胞在10ml无亮氨酸培养基中30℃12小时培养(0.67%酵母无氨基酸的氮基质,5%葡萄糖,和0.25%无亮氨酸的氨基酸的混合物)。然后,该培养物转入100ml含5%葡萄糖YEPD培养基(2%蛋白胨,1%酵母浸膏,5%葡萄糖)振荡培养在30℃约6小时,培养物进一步转入一升含5%葡萄糖的YEPD培养基30℃培养6小时。获得了发酵的种子批培养物。
10升含2%葡萄糖的YEPD培养基被装入14升发酵罐(Bench Top Fermentor:NBS Company U.S.A.)随后将种子批培养物接种其中在30℃以250rpm速度振荡培养约48小时,然后在2500rpm下离心20分钟,(BeckmanJ-6B,Rotor JS.4.2)获得重组酵母细胞膏。
第2步:破碎酵母细胞
第1步获得的重组酵母细胞悬浮在500ml缓冲液中(50mM Tris,pH8.5,5mM EDTA,10mM β-巯基乙醇,1mM苯甲硫氟化物,1μg/ml pepstatin A,);加入等体积的0.4mm直径的玻璃珠,用一个匀浆器在4℃处理5分钟(珠破碎器,Biospec Product,U.S.A.)以破坏细胞膜,破碎的细胞通过滤膜(Whatman 3MM,U.S.A.)以移去玻璃珠获得酵母匀浆物。
第3步:鉴定特异性抗原蛋白:
在第2步获得的少量酵母匀浆物进行15%SDS-PAGE。结果表明在细胞内ubiquitines已经被切割下来,从KHCV 403 cDNA表达的蛋白质(又称为KHCV 403蛋白)分子量大约1.7kd。
在胶上分离的蛋白质印迹到硝酸纤维素膜,然后,将该膜放入含有0.5% Tween 20的磷酸缓冲盐水(PBS:10mM磷酸盐,0.15M NaCl,pH7.0)的盘中,轻轻振荡,室温2小时,以封闭IgG非特异性吸附。之后IgG(8.2mg/ml),亲合纯化自一位朝鲜C型肝炎病人血清,用含有0.5%明胶和0.05% Tween 20 PBS以1∶200稀释,稀释后的IgG溶液10ml加入过滤器。室温轻荡盘1小时;用含有0.5%明胶和0.05% Tween 20以1∶200稀释辣根过氧化物酶标记的抗人IgG(Bio Red Lab,山羊抗人IgG-HRP)然后加至膜上。室温下轻荡1小时。用含0.5% Tween 20,PBS洗膜四次,每次5分钟。再用50mM Tris缓冲液(pH7.0)洗2次。加50mM Tris缓冲液(pH7.0)内含400μg/ml 4-氯-1-萘酚和0.03%过氧化氢以便出现颜色反应。结果表明全酵母匀浆物中唯有KHCV 403蛋白能和C型肝炎病人血清进行免疫学反出现一条可见的带,因而,所说的KHCV蛋白是唯一能结合KHCV抗体的免疫活性蛋白。
第4步:除去溶解的杂蛋白
在第二步获得的酵母匀浆物以11000 rpm离心(Beckman,J2-21,Rotor JA14)除去上清液,获得的不溶性沉淀物中,有KHCV 403蛋白。
第5步:用脲溶解和分段分离沉淀物
第4步获得的沉淀物溶在750ml缓冲液中(50mM Tris,pH8.5,5mM EDTA,10mM β-巯基乙醇,1mM苯甲硫氟化物,1μg/ml pepstatin A),其中含有8M脲。该溶液离心移去不溶物,收集上清液。上清液对含有2M脲的缓冲液(10mM Tris,pH9.0,2mM EDTA,5mM β-巯基乙醇),透析,离心除去沉淀,上清液中含有KHCV403蛋白。
第6步:第1次DEAE离子交换层析
第5步获得的上清液通过用含有2M脲的缓冲液(10mM Tris,pH9.0,2mM EDTA,5mM β-巯基乙醇),平衡过的DEAE-Sepharose(琼脂糖珠)柱(Pharmacia,FF,5cm×15cm,U.S.A)。结合在柱上的蛋白质用含0.2M NaCl的750ml缓冲液(10mM Tris,pH9.0,2mM EDTA,5mM β-巯基乙醇)洗脱,分部收集结合蛋白质。
第7步:第2次DEAE离子交换层析
收集含有KHCV 403蛋白的蛋白部分,对缓冲液(10mM Tris,pH9.0,2mM EDTA,5mM β-巯基乙醇),透析以除去脲,然后,通过上述缓冲液平衡过的DEAE-琼脂糖珠柱。加入含有0.1M NaCl缓冲液(10mM Tris pH9.0,2mM EDTA,4mM β-巯基乙醇,以分离出洗脱蛋白;有一个从0.1M到0.2M NaCl的浓度梯度的500ml缓冲液加入,分部分离结合到柱上的蛋白质,各分部收集的蛋白质进行SDS-PAGE,以收集含有高纯度KHCV 403的部分。
第8步:FPLC-苯基层析
第7步获得的分部收集物对含有1.5M NaCl的缓冲液(50mM Tris,pH7.4,2mM EDTA,5mM β-巯基乙醇),透析,然后,通过用所说的缓冲液平衡达的FPLC-苯基superose柱(pharmacia,HR 10/10,1cm×8cm,U.S.A)。含有从1.5到0M NaCl浓度梯度的160ml缓冲液加进柱内分部洗脱蛋白质。每分部收集的蛋白质用SDS-PAGE检查其纯度。含有高纯KHCV 403蛋白的部分,单独收集,以便能获得有95%以上纯度的KHCV403蛋白质。
(5-B):纯化KHCV CORE14蛋白质
第1步:培养重组酵母细胞
酵母菌(Saccharomyces cerevisiae)DCO4-UB-CORE 14是由含有编码KHCV CPRE 14蛋白和ubiquitine基因的载体(pYLBC-A/G-UB-CORE14)转化而得。将该菌培养在无亮氨酸的含5%葡萄糖的培养基中,其过程与例(5-A)中第一步相同。20ml培养物转移至100ml含有4%葡萄糖的YEPD培养基中,30℃振荡6小时,再转入1升含有2%葡萄糖的YEPD培养基30℃24-48小时。离心培养物,收集细胞沉淀。
第2步:破碎酵母细胞
第1步获得的重组酵母的细胞沉淀物重新悬浮在30ml缓冲液中(50mMTris,pH7.5,5mM EDTA,10mMβ-巯基乙醇,1mM苯甲硫氟化物,1μg/ml pepstatin),加入等体积的0.4mm直径的玻璃珠,在4℃由一个匀浆器(Bead Beater,Biospec Product,U.S.A)3次处理5分钟,以破碎细胞膜获得酵母匀浆物。
第3步:鉴定特定的抗原蛋白质
在第2步中获得的酵母匀浆物取少量在15% SDS-PAGE分析,并用考马斯亮兰染色,结果表明ubiquitine已从KHCV上分离开了,KHCV cDNA表达的蛋白质(称为KHCV CORE 14蛋白质)分子量约为16,000道尔顿。
蛋白印迹与例(5-A)第3步相同。结果表明KHCV CORE 14蛋白仅仅能和C型肝炎病人血清进行免疫学反应,显示出一条可见的带。
第4步:去除可溶性蛋白,洗不溶性沉淀物
第2步获得的酵母匀浆物在11,000rpm离心(Beckman,J2-21,Rotor JA-14)去除可溶性蛋白质,收集含有KHCV CORE 14蛋白的不溶性沉淀物。沉淀悬浮在0.5升含有1% Triton-100,1mM EDTA和10mM β-巯基乙醇的PBS中,振荡10分钟,离心,沉淀物再用10mM磷酸盐溶液洗一次(pH6.8)。
第5步:用8M脲溶解沉淀物
在第4步获得的不溶性沉淀物悬浮在含有8M脲,1mM EDTA,10mM β-巯基乙醇,10mM磷酸钠盐溶液(pH6.5),4℃搅拌12小时,溶解出KHCV CORE 14蛋白。该溶液在15,000rpm离心20分钟(Beckman,J2-21,Rotor,JA20),收集上清液。
第6步:羧甲基(CM)离子交换树脂层析
在第5步获得的含KHCV CORE 14的溶液以1ml/min的流量通过装有25ml CM(羧甲基)-Sepharose树脂的2.5cm×10cm的柱(Pharmacia,Sweden),该柱事先用含有6M脲,1mM EDTA,10mM β-巯基乙醇和10mM磷酸盐的缓冲液(pH6.5)平衡过。未吸附到柱上的材料可用所用的平衡缓冲液反复彻底的洗脱而除去。吸附在柱上的蛋白质用500ml已知平衡液,其内NaCl的浓度梯度从0至0.5M,以3ml/min流速洗脱。洗脱液用SDS-PAGE分析检查,结果表明KHCV CORE 14蛋白存在于大约0.3M NaCl溶液中。含有KHCV CORE 14蛋白的分部收集液收集后供下步使用。
第7步:S-200凝胶渗透层析
在第6步收集的那部分溶液通过YM5超滤膜(Amicon,USA)将上述溶液浓缩至10ml。该浓缩液再加入已用含6M脲素,1mM EDTA和10mMβ-巯基乙醇PBS平衡过的S-200Sephacryl柱(Pharmacia,Sweden,2.5cm×100cm)流量为0.5ml/min按分子量大小将蛋白质加以分离。分部收集的蛋白液用15%SDS-PAGE检查,含高纯KHCV CORE14蛋白的那部分收集后在4℃对PBS透析以除去脲素,共获得4mg高纯KHCV CORE14蛋白。应该明白由其它KHCV cDNA编码并由酵母菌表达的蛋白质也可由上述描述的相似过程纯化而得。
例6:纯化在大肠杆菌表达的KHCV蛋白质
(6-A):纯化KHCV UB897蛋白质
第1步:培养重组大肠杆菌
用含有KHCV897cDNA和ubiquitine基因的载体(PtrpH-UB-KHCV897)转化的大肠杆菌(E.coliW3110 ptrpH-KHCV897,ATCC68640)在含有50μg/ml氨苄青霉素的LB培养基中(每升中含有10g Bactotriptone,5g酵母浸膏,10g NaCl)振荡培养12小时。取5ml培养物转移接种至1升含有40μg/ml氨苄青霉素的Mg培养基中(40mM K2HPO4,22mKH2PO4,8.5mM NaCl,18.7mM NH4Cl,1%葡萄糖,0.1mM MgSO4,0.1mM CaCl2,0.4%酪蛋白水解物,10μg/ml维生素B1)37℃震荡培养3-4小时。加入吲哚乙烯酸(IAA)使终浓度为0.14mM,当培养液OD650到达0.5时,说明开始生产了KHCV UB897蛋白。在加入IAA后约5小时,2500rpm离心20分钟(Beckman J-6B,Rotor IS 4.2)收集大肠杆菌细胞沉淀物。用磷酸盐缓冲生理盐水(10mM磷酸盐pH7.0,0.15mM NaCl,)再洗一次沉淀物。
第2步:破碎细胞
在第1步获得的3g大肠杆菌沉淀悬浮在40毫升缓冲液(50mM Tris pH8.5,5mM EDTA,2mM β-巯基乙醇,1mM苯甲硫氟化物,1μg/ml pepstatin A,)。加0.3ml 50mg/ml溶菌酶至悬液中37℃1小时,在冰上进行超声处理约5分钟,超声仪输出功率为70%(Heat System-Ultrasonics,LnS.,W225,USA)这样就使细胞破碎获得大肠杆菌细胞的匀浆成份。。
第3步:鉴定特定的抗原蛋白
第2步中获得的大肠杆菌细胞匀浆物,取少许进行12%SPS-PAGE,结果表明,由所说的载体(涉及KHCV UB897蛋白)表达的KHCV蛋白有3.9kd分子量。
因此,胶上分离的蛋白质转移至硝酸纤维素膜,按例(5-A)第3步相同的方法进行蛋白印迹。结果表明只有KHCVUB897蛋白能和C型肝炎病人血清进行进行免疫学UB897反应并形成一条可见的带。在结果的右侧,可以看到所说表达的KHCV UB 897蛋白是能够和HCV抗体结合的免疫反应蛋白。
第4步:除去可溶性蛋白
在第2步获得的细胞匀浆物以11,000rpm离心25分钟(Beckman J2-21,Rotor JA-14)以除去可溶性蛋白获得不溶性沉淀物。
第5步:用曲拉通X-100和Tris缓冲液洗不溶性沉淀物。
第4步获得的沉淀物悬浮在50ml含1%。曲拉通X-100缓冲液(50mM Tris,5mM EDTA,2mM β-巯基乙醇,pH8.5)中,该悬液在室温下搅拌30分钟后以11,000rpm离心25分钟(Beckman J2-21,Rotor JA14),以除去上清,收集不溶沉淀物。随后,沉淀物悬浮在50ml缓冲液(50mM Tris,5mM EDTA,2mMβ巯基乙醇,pH8.5)中。进一步搅拌离心以除去上清,收集不溶物。
仅仅通过上述简单的洗涤过程,获得的KHCVUB897蛋白,此时至少有60%的纯度。
第6步:用8M脲素溶解不溶性沉淀物
含有在第5步获得的KHCV UB 897蛋白的不溶性沉淀物悬浮在50ml含有8M脲的缓冲液(20mM磷酸盐,pH6.0.2mMEDTA,2mMβ-巯基乙醇,)室温下搅拌1小时,离心除去不溶性沉淀物,收集上清液。
第7步:S-Sepharosse离子交换层析
第6步获得的上清液上样于已用含有4M脲缓冲液(20mM磷酸盐pH6.0,2mM EDTA,2mM β-巯基乙醇),平衡过的S-Sepharose柱(Pharmacia,FF,2.5cm×7cm,U.S.A)、用600mlNaCl浓度梯度从0至0.2M的缓冲液洗脱。有蛋白部分的洗脱液进行SDS-PAGE,收集含有高纯KHCV UB897蛋白的部分。
第8步:去除脲素并进行FPLC-Mono Q离子交换层析
在第7步收集的含有KHCV UB 897蛋白的分部洗出液对缓冲液(10mM Tris pH8.5,2mM EDTA,2mM β-巯基乙醇,)除去脲素,然后加样通过已用缓冲液平衡过的FPLC-Mono Q离子交换树脂柱(Pharmacia,HR5/5)。用40ml有NaCl 0至0.4M浓度梯度的缓冲液洗脱,含有高纯KHCV UB 897蛋白部分被收集以便获得至少90%纯度的KHCV UB 897蛋白。
(6-B):纯化KHCV UB CORE 17蛋白质
第1步:重组大肠杆菌的培养
由含C型肝炎病毒cDNA和Ubiquitine基因的载体(ptrpH-UB-CORE 17)转化的大肠杆菌W3110株ptrpH-UB-CORE17(ATCC 68641)在含50μg/ml的氨苄青霉素,100μg/ml色氨酸的LB培养基上37℃12小时培养;将50ml的培养物转移到1升Mg培养基中,37℃下培养6到8小时。然后收集细胞沉淀物,步骤如例(6-A)的第一步所述。
第2步:破碎细胞
第1步获得的3g大肠杆菌细胞沉淀物在4℃悬浮在20ml缓冲液(50mM Tris,pH7.5,5mM EDTA,10mM β-巯基乙醇,1mM苯甲硫氟化物,1μg/ml pepstatin)。然后加入3mg溶菌酶,搅5分钟。再在冰浴中超声处理20分钟(Heat Systemas-Ultra-sonics,mc.,W225,U.S.A)以破碎细胞获得细胞匀浆。
第3步:鉴定特定抗原蛋白质
在第2步中获得的大肠杆菌匀浆在15%SDS-PAGE电泳,然后用考马斯亮兰染色。结果表明表达产生了分子量约为2.7Kd的蛋白质(即KHCV UB CORE17蛋白。)
其后,将凝胶分开的蛋白质转移至硝酸纤维素膜,与例(5-A)第3步相同方法进行蛋白印迹。结果表明在大肠杆菌匀浆中只有KHCV UB CORE 17蛋白与C型肝炎病人血清有免疫学反应,表现出一条可见的带。
第4步:用脲素处理
在第2步获得的细胞匀浆物经12,000rpm离心20分钟(Beckman J2-21,Rotor JA2)除去不溶性材料,收集上清液。加入9M脲素至终浓度6M,4℃搅12小时。
第5步:酸处理
在第4步获得的溶液中加入1M乙酸钠(pH4.5)至终浓度10mM,用1M乙酸调至pH5,搅1小时后11,000rpm离心(Beckman J2-21,Rotor JA14)除去沉淀,收集上清液。
第6步:Mono-S层析
第5步获得的上清液经过FPLC Mono-S柱层析(HR5/5,Pharmacia,Sweden)可获得纯品,UB-CORE17蛋白溶液通过一个事先用含有8M脲,1mM EDTA,1mMβ-巯基乙醇,10mM乙酸的缓冲液A(pH5.0)平衡的柱子。然后,用已知的缓冲液A洗脱。最后,用含有8M脲,1mM EDTA,1mMβ-巯基乙醇,10mM乙酸和1M NaCL的缓冲液B逐渐加入缓冲液A中。前5分钟,B占A液的17.5%,后来的55分钟占35%,最后10分钟占100%,整个洗脱流速为0.8ml/min,当缓冲液B达到25%,即,NaCl浓度为0.25M时,KHCV UB-CORE 17蛋白质开始洗脱下来。
第7步:S-200凝胶渗透层析
第6步获得的蛋白溶液通过一个用含有6M脲,1mM EDTA和1mM β-巯基乙醇的PBS缓冲液平衡过的S-200 Sephacryl柱(Pharmacia,Sweden,2.5cm×100cm)流速为0.5ml/min,该层析分离是按分子量大小进行分离的。分部收集有蛋白的洗脱物。对含有KHCV UB-CORE 17蛋白的部分进行SDS-PAGE。然后,此部分在4℃对PBS溶液透析以获得4mg KHCV UB-CORE 17蛋白,至少有90%的纯度。
(6-C):纯化UB-E1蛋白
第一步:重组细菌细胞的培养
能够产生KHCVE1蛋白和Ubiquitine(UB)融合蛋白的大肠杆菌W3110ptrpH-UB-E1株(ATCC68878)的培养和收集完全与例(6-A)第一步相同。
第2步:破碎细胞
在第1步获得细菌细胞沉淀重新悬浮在50ml缓冲液中(20mM Tris,pH7.5,1mM EDTA,2mM β-巯基乙醇,1mM苯甲硫氟化物,1μg/mlPepstatin A)。加入溶菌酶至终浓度0.2mg/ml38℃30分钟,并在冰浴中用70%功率超声处理5分钟破碎细胞收集匀浆。
第3步:鉴定特定抗原的表达
第2步获得的匀浆进行15%SDS-PAGE电泳,结果表明有一约2.7Kd(即US-E1蛋白)蛋白由载体表达。
凝胶分离的蛋白质印迹到Immobilon P膜上(MILLIPORE,Cat.NO IPUH OOOIO,孔经0.45μm)并按例(5-A)第3步相同的方式进行免疫印迹。
结果表明在全细胞匀浆中只有UB-E1蛋白能和C型肝炎、病人备清进行免疫学反应并产生一条可见一带。
第4步:制备细胞匀浆以11.000rpm离心25分钟(BeckmanJ2-21,RotorJA14)除去上请收集沉淀物。
第5步:洗不溶性沉淀物
第4步:获得的沉淀物悬浮在30ml含1%曲拉通X-100缓冲液(20m Tris,pH7.5,1mM EDTA,2mMβ-巯基乙醇),室温搅拌30分钟再以11,000rpm离心25分钟(Beckman,J2-21,Rotor JA14)除去溶解在1%曲拉通X-100的可溶性蛋白。沉淀蛋白进一步悬浮在30毫升所述的缓冲液1,搅拌并离心,收集不溶沉淀物。
UB-E1蛋白用这样简单洗涤过程可获得至少60%纯度。
第6步:不溶性沉淀物的溶解和分部分离
在第5步获得的含有UB-E1蛋白不溶性沉淀物悬浮在含8M盐酸胍的50ml缓冲液2中(50mM Tris,pH9.0,1mM EDTA,2mMβ-巯基乙醇)。悬液在室温下搅30分钟后11,000rpm离心25分钟以除去不溶性沉淀物,收集上清液,上清液用缓冲液2稀释至盐酸胍终浓度为0.5M;离心、收集含UM-E1蛋白的沉淀物
第7步:溶解不溶性沉溶物
在第6步获得的含UB-E1蛋白不溶性沉淀物悬浮在20ml含有8M脲的缓冲液3中(50mM碳酸钠,pH9.5,1mM EDTA、2mMβ-巯基乙醇)。室温搅1小时,除去不溶沉淀物经11,000rpm,25分离心(Backman J2-21,Rotor 5A147)收集上清液。
第8步:Q-Sepharose离子交换层析
第7步收集的上清液通过一个事先已用缓冲液平衡过的Q-Sepharose柱(pharmacla,FF,1.2cm x 7cm)。有一个0至0.4M NaCl浓度梯度的100ml缓冲液用于洗脱蛋白,有蛋白的洗出液进行15%SDS-PAGE电泳,收集含有UB-E1蛋白的部分,大约UB-E1蛋白的纯度至少90%。
(6-D):纯化KHCV UB-CORE14蛋白
第1步:重组大肠杆菌的培养
由含有KHCV cDNA和ubiquitine基因的载体(ptrpH-UB-CORE14)转化的大肠杆菌W3110ptr pH-UB-CORE 14株(ATCC68642)在含有50ug/ml氨苄青霉素和100μg/ml色氨酸的LB培养基中37%℃培养12小时;50ml培养物转入1升Mq培养基37℃6-8小时按例(6-A)第1步相同过程收集细菌沉淀物(paste)。
第2步:破碎细胞
4克从第1步中得到的大肠杆菌细胞在4℃悬浮在20ml缓冲液(50mM Tris,pH7.5,5mM EDTA,10mM β-巯基乙醇,1mM苯甲硫氟化物,1μg/ml pepstatin)向其内加入4mg溶菌霉,搅拌5分钟,然后在冰浴中超声处理20分钟以破碎细胞。
第3步:鉴定特定的抗原蛋白
取少量第2步制备的细胞匀浆物进行如前所述的15%SDS-PAGE电泳,用考马斯亮兰染色,结果表明表达载体生产出一个约为2.3Kd蛋白质,以下称为KHCV UB-CORE 14蛋白)。
之后,凝胶分离蛋白转移至硝酸纤维素膜,该膜按例(5-A)相同的方法进行蛋白印迹。结果表明在全大肠杆菌细胞匀浆中只有KHCV UB-CORE 14可以和C型肝炎病人血清起免疫学反应显示出一条可见的带。
第4步:用脲处理
第2步获得的匀浆以12,000rpm离心20分钟(Beckman J2-21,Rotor JA-20)除去不溶性材料收集上清液。再在上清中加入9M脲使终浓度成为8M,室温搅拌12小时。
第5步:用酸处理
在第4步获得的溶液中加入1M乙酸钠(pH4.5)至终浓度为10mM,之后再加入1M乙酸调pH至5.0室温搅拌1小时。然后11,000rpm离心(Bdeckman Js-21,Rotor JA-14)除去沉淀,收集上清液。
第6步:CM离子换交层析
在第5步得到的含有KHCV UB-CORE 14溶液,加入到含25ml CM-Sepharose树脂的层析柱中(2.5cm×10cm)(Pharmacia,SWeden)以1ml/min流速流入,该柱事先用含有8M脲1mM EDTA,10mM巯基乙醇,和10mM乙酸盐的缓冲液(pH5.0)平衡过。以自由形式存在在柱中的材料彻底用平衡缓冲液洗。在柱中吸附的蛋白质用500ml有0至0.5MNaCl浓度梯度的平衡缓冲液以流速3ml/min洗脱。洗脱物用SDS-PAGE电泳分析,结果表明在大约0.3MNaCl,浓度时KHCV UB-CORE 14蛋白从柱上洗脱下来。收集这部分含有KHCV UB-CORE 14的蛋白用于下一步。
第7步:S-200凝胶渗透层析
从第6步收集的那部分洗脱蛋白通过YM5超滤膜(Amicon,U.S.A.)浓缩体积至10ml。浓缩物再通过事先已用含有6M脲,1mM EDTA和1mM β-巯基乙醇的PBS平衡过的S-200Sephacryl层析柱(2.5cm×100cm,Pharmacia,Sweden)流速为0.5ml/min。该层析是以分子量大小来分离蛋白质的。收集的具有蛋白质部分进行SD-PAGE电泳。收集含有KHCV UB-CORE14蛋白的那部分洗脱液。
第8步:Mono-S层析
在第7步获得的KHCV UB-CORE 14蛋白液进一步用FPLC Mono-S柱(HR5/5,Pharmacia,Sweden)纯化。该柱事先用含有6M脲,1mM EDTA,1mM β-巯基乙醇和10mM磷酸盐的缓冲液A平衡过(pH7.0),并用相同容积的缓冲液A稀释,然后,加样于柱中,先用缓冲液A洗脱,之后,使含有6M脲,1mM EDTA,1mMβ-巯基乙醇,10mM磷酸盐和0.4M NaCl的缓冲液B在A液中的比例逐渐占35%的混合液洗脱5分钟,提高该比例至70%时洗脱55分钟,最后10分钟,用100%缓冲液2洗脱。流速为0.8ml/min。在缓冲液B占60%时,即氯化钠为0.25M,KHCV UB-CORE14蛋白被洗脱下来。
洗脱下来的这部分蛋白对PBS 4℃透析可获得4mg纯度至少为90%的KHCVUB-CORE 14蛋白。
(6-E):纯化UB-E2N蛋白
第1步:重组细菌细胞的培养
能够产生KHCV E2N和ubiquitine融合蛋白的大肠杆菌W3110 ptrpH-UB-E2N(ATCC 68966)株在含有50μg/ml氨苄青霉素LB培养基振荡培养12小时。取10毫升培养物转至含有2%酪氨酸和10μg/ml色氨酸,1升M9培养基中37℃振荡培养约3小时,向其内加入吲哚丙酸(IAA)至终浓度为50μg/ml,此时的培养基OD650值应达到0.2,IAA能诱导产生重组UB-E2N蛋白。加入IAA5小时后,以3,500rpm离心培养物25分钟(BeckmanJ6,RotorHS4),收集细胞沉淀物,并用PBS离心洗一次。
第2步:鉴定特定抗原
上述制备菌体匀心物经SDS-PAGE(15%)电泳表明表达的UB-E2N分子量大约为28,000道尔顿(28Kd)。
随后,将凝胶分离的蛋白质转移至Immobilone P膜上(Millipore,Cat.No.IPUH00010,孔径0.45μm)。该膜放入含有0.5%Tween20的PBS液中(10mM磷酸盐,pH7.0,0.15MNaCl)室温振荡2小时以封闭IgG的非特异性吸附。用含有0.5%明胶和0.05%Tween20的PBS液以1∶20稀释如前所述的C型肝炎病人血清,然后将10ml该稀释血清与膜进行反应。室温1小时振荡后,用含0.05%Tween20 PBS洗膜4次,每次5分钟。用含0.5%明胶和0.05%Tween20 PBS以1∶1000比例稀释碱性磷酸盐标记的抗人IgG(Boehringer Manheim,Cat.No.605415,抗人IgG-Alp),然后将10ml的稀释液加至膜上。室温振荡反应1小时,用含0.05%Tween20PBS洗四次,再用100mM Tris缓冲液(pH9.5,5mM MgCl2,100mM NaCl)洗二次,每次5分钟。
最后给膜上加入100mM Tris缓冲液,内含125μg/ml硝基蓝四氮唑(Pierce,NBT)和25μg/ml溴氯吲哚磷酸盐(Pierce,BGIP),以便产生颜色反应。结果在全细胞匀浆中只有UB-E2N蛋白能与C型肝炎病人血清进行免疫学反应并出现一条可见的带。
第3步:破碎细胞并除去可溶性蛋白
从第1步估计可获约3克细胞沉淀物,把它们悬浮在50ml缓冲液1中(20mM Tris,pH7.5,1mM EDTA,2mMβ-巯基乙醇,1mM苯甲硫氟化物,1μg/ml pepstatin A);加入溶菌酶使其终浓度为0.2mg/ml,37℃反应30分钟,70%功率冰浴对上述菌悬液进行超声处理5分钟,获得细菌匀浆物。然后以11,000rpm离心25分钟(Beckman J2-21,Rotor JA 14)除去可溶性蛋白,收集不溶沉淀物。
第4步:用曲拉通X-100和Tris缓冲液洗不溶沉淀物
第3步获得的沉淀物悬浮在30ml含1%曲拉通X-100的缓冲液1(20mM Tris,pH7.5,1mM EDTA,2mMβ-巯基乙醇),室温搅拌30分钟后以11,000rpm离心25分钟(Beckman J2-21,RotorJA-14)除去可溶性蛋白,收集沉淀蛋白。沉淀物重新悬浮在30ml缓冲液1中。搅拌后离心收集不溶蛋白质。
通过上述简单的洗洗过程至少有70%纯度的UB-E2N蛋白被获得。
第5步:用8M脲溶解不溶性沉淀物
在第4步获得的含有UB-E2N蛋白不溶性沉淀物悬浮在40ml含8M脲的缓冲液2(50mM Tris,pH9.0,1mM EDTA,2mMβ-巯基乙醇)中。室温下搅拌1小时后,离心除去不溶性沉淀物,收集上清液。
第6步:S-200凝胶渗透层析
在第5步获得的含UB-E2N 40ml 8M脲溶液用超滤膜YM10(Amicon)浓缩至5ml体积。然后通过用含有4M脲的缓冲液2平衡过的S-200树脂柱(2.5cm×90cm,Pharmacia,1USA),流速为每小时40ml,每管收集2毫升。收集各管用SDS-PAGE分析后其中含有UB-E2N蛋白。
第7步:Q-Sepharose离子交换层析
在第6步获得的含UB-E2N蛋白的溶液通过已事先用含4M脲的缓冲液2平衡过的Q-Sepharose柱(FF,1.2cm×7cm,Pharmacia,USA)。150毫升含0至1.0M NaCl浓度梯度的缓冲液洗脱蛋白组份。各收集管用SDS-PAGE检查并UB-E2N纯度至少为80%的组份管。
第8步:除去脲后进行FPLC-苯基层析
在第7步获得的含UB-E2N的4M溶液用YM10超滤膜浓缩至8毫升(Amicon)用透析膜(Spectum,Medical Industries,Inc.,M.W.cut off 6,000~8,000)对缓冲液3透析(20mM Tris,pH9.0,1mM EDTA,2mMβ-巯基乙醇,0.2M NaCl)除去脲。然后在该液中加入氯化钠至终浓度1M。再上样通过FPLC-苯基Sepharose柱(Pharmacia,HR5/5,0.5cm×5cm);40ml含有从1.0至0M的NaCl浓度梯度的缓冲液用于洗脱分离上述蛋白。洗出液进行SDS-PAGE收集含有UB-E2N蛋白的部分,它们的纯度至少为90%。
(6-F):纯化UB-E2C蛋白
第1步:重组细胞的培养
能产生KHCV E2C蛋白和ubiquitine融合蛋白在含有50μg/ml氨苄青霉素LB培养基中12小时。20毫升培养物转入1升含2%酪氨酸和10μg/ml色氨酸M9培养基,振荡培养2小时(37℃),当OD650在室0.3已诱导产生重组UB-E2C蛋白,向培养物中加入吲哚丙酸(IAA)至终浓度50μg/ml。从加入IAA3小时后,以3,500离心培养物25分钟(BEckman J6,Rotor HS-4)收集细胞沉淀,再用PBS洗一次沉淀物。
第2步:鉴定特定抗原
制备少许沉淀物进行15%SDS-PAGE电泳,结果表明UB-E2C蛋白分子量约为25,000道尔顿。
之后,用胶分离的蛋白质转移至Immobilone P膜(Millipore,cat.#.IPUH00010,孔径0.45μm)上,再将膜放置含0.5%Tween20的PBS中,室温振荡2小时封闭IgG非特异性吸附。用含有0.5%明胶和0.05%Tween20的PBS以1∶20比例稀释C型肝炎病人血清10ml加入其中,室温下轻荡1小时后,用含有0.05%Tween20PBS洗膜4次,每次5分钟。经用含0.5%明胶和0.05%Tween20的PBS以1∶500稀释抗人IgG辨根过氧化物酶标记物(Bio-Rad Lab.,抗人IgG-HRP)10ml加在膜上室温振荡反应1小时,用含0.05%Tween20的PBS洗膜4次,再用50mM Tris缓冲液(pH7.0)洗2次,每次洗膜5分钟。
加滤膜中50mM Tris缓冲液,内含400μg/ml4-氯-1-萘酚和0.03%过氧化氢引发展颜色反应。结果只有UB-E2C蛋白在全细胞匀浆中能和C型肝炎病人血清起免疫学反应并出现一条可见的带。
第3步:破碎细胞和除去可溶性蛋白
第1步获得了约1克细胞沉淀物,把它们悬浮在50ml的溶菌缓冲液,内含20mM Tris,pH7.5,1mM EDTA,2mMβ-巯基乙醇,1mM苯甲硫氟化物和1μg/ml pepstatin A,)再向内加入溶菌酶至终浓度0.5μg/ml,37℃30分钟,70%功率,在冰浴中超声处理以破碎细胞以约5分钟,获得匀浆物。最后以11,000rpm离心25分钟移去可溶性蛋白,收集不溶性沉淀。
第4步:用曲拉通X-100和Tris缓冲液洗不溶性沉淀物
以第3步获得的沉淀物悬浮在20ml含10%曲拉通X-100的缓冲液1(20mM Tris,pH7.5,1mM EDTA,2mMβ-巯基乙醇)。悬液室温下30分钟以11,000rpm离心25分钟(Beckman J2-21,RotorJA-14)以除去可溶蛋白获得沉淀蛋白。将沉淀悬浮在30ml缓冲液1中,搅拌后再离心获得不溶性蛋白。
第5步:用8M脲溶解不溶性沉淀物
在第4步中获得的含有UB-E2C蛋白质的不溶性沉淀物悬浮在含有8M脲的20ml缓冲液2中(50mM碳酸盐缓冲液,pH9.5,1mM EDTA,2mMβ-巯基乙醇)。室温搅拌1小时,离心除去沉淀,收集上清液。
第6步:FPLC-MonoQ离子交换层析
第5步获得的上清液通过事先用缓冲液2平衡过的(含有0.1M NaCl)FPLC-MonoQ柱(Pharmacia,HR5/5,0.5cm×5cm,USA)。之后,用含有0.1至0.4MNaCl浓度梯度的缓冲液40ml洗脱结合蛋白。各组份进行SDS-PAGE电泳分析,收集纯度至少为80%的蛋白组份。
第7步:除去脲并进行FPLC-苯基层析
通过YM10超滤膜,可使第6步获得的含有UB-E2C的8M脲溶液浓缩成14ml体积,然后对缓冲液3(20mM Tris,pH9.0,1mM EDTA,2mMβ-巯基乙醇,0.2M NaCl)透析(透析膜:Sepectum Medical Industrieo,Inc.,M.W.cut off截流分子量6,000-8,000)以除去脲。再向该液中加入NaCl使终浓度为1M。再通过FPLC-苯基Sepharose柱(Pharmacia,HR5/5,0.5cm×5cm),用40ml有NaCl浓度梯度1M至0的缓冲液加入洗脱结合蛋白,并对各组分进行SDS-PAGE分析,收集纯度至少为90%含有UB-E2C蛋白的组份。
例7:用KHCV重组蛋白检测KHCV抗体
(7-A):混合阴阳性血清样品对抗原不同浓度的反应性
用50mM硼酸钠缓冲液(pH9.0)对KHCV403、KHCV897,和KHCV UB-CORE 14蛋白分别以下述3种浓度0.25μg/ml,2.0μg/ml和2.0μg/ml为起点2倍倍比系列稀释。稀释的蛋白溶液加入至微量反应板孔(Dynatech,Immunolon type Ⅰ微反应板)、每孔200μl,用封口膜(para-film)将板密封后37℃温育2小时。封膜的目的是防止水份蒸发。
包被2小时的板用含有0.05%(V/V)Tween20的PBS(pH7.4,又称为洗液)洗板一次。然后将含0.1%明胶(V/V)PBS加入板孔,每孔210μl37℃温育2小时,每板孔加入300μl洗液洗2次,再用含0.25%明胶,1mMEDTA,1.0%(V/V)Triton X-100和0.02%硫柳汞的PBS 190μl/孔洗2次,HCV病人阳性血样或阴性血样每孔加入10μl,37℃1小时,再用Ortho公司(Ortho Diagnostic Systems,Raritan,NJ88869,USA)C型肝炎诊断试剂盒检测,该试剂盒使用C-100抗原。血清样品是由朝鲜Yonsei大学附属Severance医院提供血清样品。
37℃反应1小时的板孔用300μl洗液洗孔5次。再加入用含10%胎牛血清,1%Ficoll(Sigma,V/V),0.02%硫柳汞和0.05%Tween20PBS1∶5000倍稀释的抗人IgG r-链标记辨根过氧化物酶标记物(Bio-Rad公司,Richmond,CA94804,USA,0.1mg蛋白/ml),每孔200μl,37℃温育1小时,用洗液洗孔五次。之后,加入200μl邻苯二胺(OPD,Sigma)(以10mg/ml溶解在50mM柠檬酸盐缓冲液,并用磷酸盐缓冲液调pH至5.5)于每个孔中,暗中室温温育30分钟。即刻每孔加入50μl 4N硫酸终止颜色反应。在492nm波长用Dynatech微量反应板读数仪测定每孔的光密度值(参见图19)。
(7-B):制备诊断试剂盒
KHCV UB-CORE 14,KHCV 897和KHCV403蛋白纯化的抗原被用于制备诊断盒。这些抗原都是在前述经过纯化的。将该抗原用50mM硼酸盐缓冲液(pH9.0)或10mM碳酸钠缓冲液(pH9.5)稀释成最适浓度,加至Immolon typel微量反应96孔板各孔中(Dynatech),每孔150μl至200μl,4℃孵育,12-18小时让抗原吸附至板孔中。
对于每个抗原最适浓度KHCV UB-CORE 14蛋白为0.18至0.75μg/ml,KHCV897蛋白为0.06至0.3μg/ml,KHCV 403蛋白为0.12至0.5μg/ml。本例中每一种抗原均使用0.3μg/ml。
用抽吸仪去除每孔内容物。用含0.05%(W/V)Tween20PBS(PBS,pH7.4)洗板再用含0.1%(w/v)明胶缓冲液(210μg/孔,pH7.4)阻断2小时37℃,用洗液洗板三次。板里残留湿气用吸抽装置去除。
每孔加入190μl含有1%牛血清缓冲液(10mM Tris,pH7.5,150mM NaCl,0.2%曲拉通x-100,0.1mM EDTA,0.02%硫柳汞和10μl血清样品,37℃ 60分钟使样品中HCV抗体和吸附在板孔上的抗原结合。用含0.05%Tween20(v/v)的PBS(pH7.4)洗板5次,加入用含10%牛血清白蛋白(w/v)的缓冲液(10mM Tris,PH7.5,150mM NaCl,0.02%硫柳汞,1%聚遮糖(Ficoll))稀释抗人IgG-HRP(山羊抗人IgG-HRP,BIO-Rad Lab;U.S.A)每孔200μl,37℃60分钟,用含0.05%Tween20(v/v)的PBS(pH7.4)洗板孔。加入200μl OPD液于每孔室温30分钟。最后加入50μl 4N硫酸中止反应然后,在OD492波长处测定结果。确定阴阳性标准的OD值称为结果判定值(Cut-off value)已确定为0.4加阴性对照样品的OD值。
对于每一种KHCV蛋白和混合抗原与上述对应的结果列在表1。比较对照用的商品试剂来自Ortho Diagnostic Systoms,使用按制造商说明书。
表1:用酶免疫法确定KHCV蛋白与KHCV抗体的反应性样品号(详见附后的表1)
注:1)++++:判定值+1.5≤光密度吸收值(OD)
+++:判定值+1.0≤OD<判定值+1.5
++:判定值+0.5≤OD<判定值+1.0
+:判定值≤OD<判定值+0.5
-:OD<判定值
2)对于KHCV897抗原的判定值为0.32,对于KHCV UB-CORE 14蛋白为0.27,对于KHCV403蛋白为0.35,对混合抗原为0.483,对ortho诊断试剂盒为0.453
3)Ortho HCV诊断试剂盒来自Ortho Diagnostic Systems,USA的商品。
(7-C):诊断的准确性
为了演示现诊断方法获得结果的准确性,用由Ortho Diagnostic Systems制造和出售的HCV诊断试剂盒确定为阳性的17个血清样品再用本发明诊断试剂盒进行诊断,也用免疫印迹试剂盒检查(Chiron,RIBA HCV Test System,第二代,Ortho诊断Systems制造,产品号933491),该法用来验证,由除SOD对照抗原以外,4种抗原组成(参见Van der Poel,C.L.et al,Lancet,337,317-319(1991)该结果列在表2,表明本发明诊断方法比Ortho HCV诊断试剂盒有较低假阳性结果。
表2.Ortho第二代免疫印迹试剂盒和本发明诊断试剂盒诊断结果比较(详见附后的表2)
*:如果发现有一个以上+,即,表明除OD对照外至少有2个抗原有阳性反应就被判为阳性。
**:以例(7-13)制备的混合抗原用在本试剂中。
例8:用聚合酶链反应和基因探针确定HCV的存在
(8-A):从HCV病毒抽提RNA
向一待检血清100μl加入TNE溶液(100mM TrisHCl,pH8.0,0.2mM EDTA,0.2M NaCl)100μl,RNAzol溶液300μl(TMCinna Scientific,Inc,Texas 77546,USA)和氯仿300μl,彻底摇混。然后,15,000rpm离心5分钟(4℃,Eppendorf离心机)形成沉淀收集上清,用300μl酚和300μl氯仿抽提,离心沉淀,沉淀物用10μlTE缓冲液(10mM Tris-HCl,pH8.0,0.1mM EDTA)溶解负70℃保存。
(8-B):用聚合酶链反应检查HCV的存在
上述抽提的RNA加入4μl蒸馏水和1μl 0.1M CH3HgOH、室温10分钟。然后加入0.5μl 1Mβ-巯基乙醇,10μl RNasin,5μl x RT缓冲液CBRL,Gaitherburg,MD20877,USA),1.25μl d NTP(10mM dGTP,dTTP,dCTP和dATP),1μg随机引物,1.25μl(18单位/μl)SuperscvipTH反向转录酶(BRL.U.S.A)补足蒸馏水至总体积25μl,42℃反应1小时。
反应后,将该反应物加热至65℃维持15分钟以灭活酶和用于PCR.
第一步PCR扩增按下进行:0.5μl Amplitaq DNA聚合酶(Perkin Elmer Cetus,USA)加入10μl 10×Tag聚合酶缓冲液(10mMM Tris-HCl,pH8.3,500mM KCl,155mM MgCl2,0.1%(v/v)明胶),10μl 1.25mM dNTP混合物,2μg引物A(5'1-CATAGTGGTCTGCGGAACCG-3'),2μg引物B(5'-TTG-AGGTTTAGGATTCGTGC-3')和75μl蒸馏水。加入50μl矿物油以防溶液的蒸发。以下面温度循环重复40次进行第一步PCR:96℃2分钟→55℃2分钟→72℃3分钟。
第2步PCR是在取第1步PCR产品1μl加入1μg引物C(5'-TACACCGGAATTGCCAGGAC-3')和1μg引物D(51-TCATGGTGCACGGTCTACGAG-3')后按第一步PCR相同的反应条件重复进行40次温度循环。
约5μl第2步PCR产品用于7%PAGE电泳以确定HCV病毒的存在(阳性样品应展示出一条182bp的DNA带来。
(9-A):
例四:制备特异性针对C型肝炎KHCV蛋白抗原:免疫
溶解在生理盐水中的KHCV897蛋白和等量的费氏完全佐剂混合,含有50μg这种蛋白的0.2ml混悬液腹腔内注入约10周龄的Bal b/c系小鼠。30μg该蛋白和费氏不完全佐剂混合后在间隔2-3同时再行腹腔接种。二次免疫后两周,从鼠尾抽少量血进行免疫酶测定以确定抗体滴度。当抗体滴度达到10000,在0.5ml生理盐水中溶解50-100μg这种蛋白进一步接种。抗体滴度被定义为在ELISA方法中0.2吸收单位产生的血清稀释。3-4天后,收集小鼠脾细胞用于制备生产单克隆抗体的细胞。
(9-B):细胞融合
免疫过的脾细胞和P3×63-Ag8.653株小鼠骨髓瘤细胞融合(ATCC CRL 1580)融合。5×107免疫鼠脾细胞和2×107骨髓瘤细胞混合后300g离心10分钟。细胞沉淀物用IMDM培养基离心洗,弃去上清液,沉淀细泡中滴入1ml50%PEG(Kodak,分子量1450dlt),边滴边搅1分钟以上,再离心2分钟(200g),在3分钟以上缓慢加入5ml IMDM培养基,再加入含胎牛血清(10%)的5ml IMDM培养基,边加边搅,5分钟内完成。
含10%胎牛血清的IMDM掊养基随后加至总体积为50ml,离心10分钟。弃上清。加10%胎血血清,100μM次黄嘌呤,0.4μM氨基喋呤和16μM%胸腺嘧啶至IMDM培养基,用此培养基稀释细胸成每毫升5×105P3×63-Ag8.653细胞。然后,将该液以0.1ml/孔的量加入细胞培养的96孔板。含1×105个细胞/ml腹腔巨噬胞的0.1ml加入板孔,此外这些巨噬细胞在融合之前应制备好并培养一天。骨髓瘤细胞和脾细胞不能在HAT培养基中生长。
据此,能在HAT培养基生长的细胞就是融合细胞。当杂交瘤生长至10-50%水平时,上清取样检查抗体活性。
(9-c):单克隆抗体滴度检测
在第9-B步生产的单克隆抗体,可采用下列的酶免疫测定法来检测其滴度。
第1步
将KHCV897蛋白溶解在50mM硼酸盐缓冲液(pH9.0)中,使其终浓度为2μg/ml给Immunolon type Ⅰ板(Dynatech)每孔加入上述溶液100μl37℃温育2小时。
第2步:
然后,用含有0.05%Tween 20(v/v)的PBS(pH7.4,称为洗液)洗板孔一次,再加入含0.1%明胶(w/v)PBS液,各孔200μl,以封闭残留在板孔中的蛋白吸附位点,同样在37℃温育2小时。
第3步
第2步各板孔用洗液洗2次后,回入50μl含0.25%明胶(w/v),1.0mM EDTA,1%m曲拉通X-100(v/v)和0.02%硫柳汞的PBS液,之后每孔再加入50μl已经生长后的融合细胞上清液,37℃温育1小时。
第4步
第3步中处理的板孔用洗液洗5次。以1∶5000比例用含10%胎牛血清(v/v),1%聚蔗糖(v/v),0.02%硫柳汞(w/v)和0.05% Tween 20(v/v)PBS稀释辣根过氧化物酶(HRP)标记的抗鼠IgG-HRP(Boehringer Manheim,Cat.No.705-250)。然后每孔加入稀释的IgG-HRP液100μl 37℃1小时。反应后,用洗液洗板5次。
第5步:
每孔加入含10mg/5ml OPD(Sigma Chemical Co.)的50mM柠檬酸盐/磷酸盐缓冲液(pH5.5)100μl室温避光反应30分钟,再加入50μl 2N硫酸以终止反应。在波长492处测完每孔的光吸收值。具有所需抗体活性的杂交瘤转入并生长在一个六孔板或24孔板上,若必要可加入小鼠腹腔巨噬细胞作为饲养细胞用于提供融合细胞生长所需的生长因子。
(9-D):抗体的生产
4个细胞系(Lucky1.1,1.2,1.3和1.4)它们都能分泌所需的单克隆抗体在上步中获得。
本发明所用抗体既来自用常规方法细胞培养杂交瘤克隆株的上清液也来自生长在Balb/c小鼠腹腔中的杂交瘤克隆的腹水。
2.5×106融合细胞注入于7-14天前已用Pristane(Sigma)预处理过的一只Balb/c小鼠腹腔内。1-2周后,收集腹水,用常规方法分离抗体。
(9-E):单克隆抗体特性检查
在例(9-D)中获得的每一株克隆制备出的单克隆抗体其特性鉴定按下述过程进行。
第1步:抗体的亚类
用杂交瘤亚-异型试剂盒(Calbiochem,USA)确定这些小鼠抗体的亚类,结果见表3。
第2步:酶免疫测定
将KHCV897蛋白溶解在50mM硼酸钠缓冲液中,使其终浓度为2μg/ml,给微量反应板(Dynatech Immunolon type Ⅰ)每孔加入200μl上清液,37℃温育2小时。用含有0.05%Tween 20(v/v)的PBS洗板。从每一个克隆收集的抗体经用常规方法纯化后调整其深度为1mg/ml,用含0.25%明胶(w/v),1.0%曲拉通X-100,0.02%硫柳汞和1mM EDTA的PBS二倍倍比系列稀释。每孔加入210μl含0.1%明胶的PBS 37℃1小时,然后用洗液洗板。
奖辣根过氧化物酶标记的抗鼠IgG(Boehringer Manheim,Cat.No.605-250)溶解在含10%FBS(v/v),1%聚蔗糖(v/v)和0.05% Tween 20的PBS中,每孔加入200μl 37℃1小时。按例(9-C)相同的方式进行反应。当OD值(495nm)高于1.0时每一种抗体的EIA效力以稀释倍数的倒数来表示。结果见表3。
第3步:确定分子量
每一个杂交瘤克隆用板或小鼠腹腔培养,获得的上清液或腹水通过蛋白G Sepharlse柱进行亲和层析分离出IgG,然后进行SDS-PAGE以确定上述获得的小鼠抗体重链和轻链的分子量。结果见表3。
第4步:确定表位决定簇(epitope)
KHCV897 cDNA在不同地方被切割,并构建了许多编码下列蛋白的克隆体,在本发明中每一种单克隆抗体与这些蛋白的反应性也进行了检查。
(1)KHCV897蛋白:一种由KHCVLBC1编码的氨基酸序列中第1192至1457号区段的蛋白质。
(2)KHCV290蛋白:一种由KHCV-LBC1编码的氨基酸序列中第1192至1289号区段的蛋白质。
(3)KHCV430蛋白:一种由KHCV-LBC1编码的氨基酸序列中第1192至1335号区段的蛋白质。
(4)KHCV570蛋白:一种由KHCV-LBC1编码的氨基酸序列中第1192至1382号区段的蛋白质。
(5)KHCV652蛋白:一种由KHCV-LBC1编码的氨基酸序列中第1192至1407号区段的蛋白质。(6)KHCV150蛋白,一种由KHCV-LBC1编码的氨基酸序列中第1408至1457号区段的蛋白质。
(7)KHCV257蛋白:一种由KHCV-LCBC1编码的氨基酸序列中第1371至1457号区段的蛋白质。
(8)KHCV518蛋白质:一种由KHCV-LBC1编码的氨基酸序列中第1285至1457号区段的蛋白质。
SDS-PAGE样品的制备是将缓冲液[Laemmli,U.K.,Nature 277,680(1970)]加入表达每一种KHCV cDNA片段的大肠杆菌细胞中,然后100℃煮沸5分钟。制备样品对抗体的反应性检查是采用免疫印迹法[Towbin,H.,J.Immunol.Metbods,72,313-340(1984)]。结果见表3和表4。
从这个结果可以看出从Lucky1.1株获得的抗体对C型肝氨基酸序列的第1192至1289区段为识别位点;而Lucky1.2,1.3和1.4株获得的抗体对第1371至1407区段为识别位点。对相互有不同表位的单克隆抗体可用以制备试剂盒,用以盒试剂可用于检测血清样品中的抗原,使用方法为夹心法酶免疫检测。
表3:本发明单克隆抗体的特性检查
(详见附后的表3)
表4:不同KHCV897 cDNA切割构建的表达载体产生的各种蛋白质与单克隆抗体之间的免疫反应性(详见附后的表4)。
Lucky1.1和Lucky1.2细胞系于1991年12月18日按国际专利《布达佩斯条约》有关条款保藏于美国菌种保藏中心(ATCC),其编目号为ATCC 10949和ATCC 10950。
例10:由针对KHCN抗原的抗体组成的诊断试剂
第1步:辣根过氧化物酶标记Lucky1.1株产生的单克隆抗体
首先,所说的Lucky1.1细胞系产生的抗体用辣根过氧化物酶标记是采用如下所述的过碘酸盐法[Nakane et al.,J.Histochem.Cytochem.,22,1084(1974)]
将0.3ml在10mM磷酸钠缓冲液(pH7.0)中的0.1M过碘酸钠溶液加入至1.2ml溶有5mg过氧化物酶的蒸馏水中。该混合物在室温下反应20分钟。反应物对1mM乙酸钠缓冲液透析16小时。将1.5ml过氧化物酶溶液和1ml被标记抗体混合。该抗体已事先溶解在20mM碳酸钠溶液(pH9.5)中,终浓度为10mg/ml。上述酶和抗体混合物在室温下反应2小时。加入100μl4mg/ml溶解在蒸馏水中的单水化钠(Sodium monohydride)以减少未反应的Schiff碱。然后对PBS(pH7.4)透析过夜,再上样于Sephacryl S300层析柱以除去未柱记上的单克隆抗体。
第2步:吸附Lucky1.2单克隆抗体到微量反应板上
取200μl用PBS稀释的Lucky1.2抗体液加入每一个板孔中在37℃2小时让其吸附到孔壁上。
第3步:封闭非特并性吸附位点
第2步制备的微量反应板用含0.05% Tween 20和0.02%硫柳汞PBS液(称为洗液)洗板一次,然后每板孔加入含0.1%明胶的200μlPBS包被蛋白吸附位点1小时,再用洗液洗板2次。
第4步:诊断抗原的存在
KHCV897抗原用含0.25%(w/v)明胶,1.0%(v/v)曲拉通X-100,1mMEDTA和0.02%硫柳汞的PBS从200mg/ml开始2倍倍比系列稀释,每孔加入200μl。为比较起见,将KHCV蛋白加入到一个正常血样中使其终浓度为400mg/ml;含有KHCV抗原的正常血样也进行2倍倍比系列稀释,100μl稀释血样和100μl所说缓冲液混合后加入每一个孔中。这企图表明血液样品中C型肝炎抗原能够用已制备抗体建立的夹心法酶免疫测定进行检测。未加KHCV897抗原的正常血样被用于阴性对照。板在37℃温育1小时后用洗液洗5次。
第5步:用标记过氧化物酶的Lucky1.1抗体检测抗原
用含有10%(v/v)胎牛血清,1%聚蔗糖0.05%Tween20和0.02%硫柳汞的PBS稀释Lucky1.1抗体成终浓度5μg/ml,取200μl加至每一个板孔中,37℃温育1小时。
第6步:显色反应
第5步处理的板用洗液洗5次。取邻苯二胺加入50mM柠檬酸盐/磷酸盐缓冲液(pH5.5)中使其终浓度为2mg/ml,每孔加入200μl上述溶液,避光室温30分钟显色。之后加入50μl 4N硫酸终止反应。在492nm波长下测定光吸收值。结果见图43。
例11:用夹心法酶免疫测定检测C型肝炎病人血清
100μl待检血清和100μl例样10第4步所用缓冲液混合后加入用例样10中相同过程制备的已吸附单克隆抗体的微量反应板孔。血清中抗原的检测和例样10相同,结果见表5。
231个样品中有220样品(220/231)在492nm波长处光吸收值低于0.15;另外11个样品的OD值变化范围为0.15-0.8,并被判为阳性。与Halbert法[Halbert,S.P.et al.Clin.Clim.Acta 1271,69(1983)]一致,结果判定值(cut-off value)定在0.15。
有15个样品(包括上述11个样品)按例7相同的过程测定了KHCV的抗体。结果见表6。
用夹心ELISA法测定KHCV897抗原很有用,并可用于早期测定KHCV的感染。同EIA测定抗体一道使用,测抗原的ELISA用于HCV患者的治疗和预防。
表5:夹心法酶免疫测定确定样品的吸收值
(详见附后的表5)
其中:
注:1)百分率(%)= (检查样品数)/(总样品数)
表6:C型肝炎抗体和抗原的检测
(详见附后的表6)
其中:
注:1)抗原诊断的结果判定值定在0.15光吸收值,抗体诊断定在0.33
据此,本发明的KHCV蛋白,特别是含有3种蛋白的混合抗原比表1中所列的已商品化的HCV诊断试剂盒对KHCV抗体有更强的反应性。本发明所建立的试剂盒比已商品化的试剂盒所获结果的准确度更高的多。像列在表2中的那样也比确定结果测完的试剂盒更方便和经济。
本发明涉及的微生物和细胞系,已保藏在ATCC,另外也保藏在中国典型微生物保藏中心(武汉)(CCTCC)(6月9日1992)。其中涉及三个个组,即:Saccharomyces cerevisiae DC04(pYCBC-A/G-UB-KHCV)它包括用pYLBC-A/G-UB-KHCV4-3转化的S.cerevisiae DC04,用pYLBC-A/G-UB-CORE14转化的S.cerevisiae DC 04,以及用pYLBC-A/G-UB-E2C转化的S.cerevisiae DC 04;大肠杆菌(E.coli)W3110(ptrpH-UB-KHCV),它包括用ptrpH-UB-KHCV897转化的大肠杆菌W3110,用ptrpH-UB-CORE17转化的大肠杆菌W3110,用ptrpH-UB-CORE14转化的大肠杆菌W3110,用ptrpH-UB-E1转化的大肠杆菌;用ptrpH-UB-E2N转化的大肠杆菌以及用KHCV-LBC1转化的大肠杆菌;和含Lucky1.1和Lucky1.2杂交瘤细胞系的Lucky1C。
虽然本发明已描述了某些特定的实施例,但本领域技术人员认识到它可进行各种明显的改动和变化,但均落入本发明限定的权利要求的保护范围之内。