书签 分享 收藏 举报 版权申诉 / 13

铝氧碳化物组合物及其制造方法与耐火物.pdf

  • 上传人:Y94****206
  • 文档编号:4929698
  • 上传时间:2018-11-30
  • 格式:PDF
  • 页数:13
  • 大小:5.30MB
  • 摘要
    申请专利号:

    CN201280035007.6

    申请日:

    2012.07.25

    公开号:

    CN103649009A

    公开日:

    2014.03.19

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    登录超时

    IPC分类号:

    C04B35/00; C04B35/657; C04B35/103

    主分类号:

    C04B35/00

    申请人:

    黑崎播磨株式会社

    发明人:

    赤峰经一郎; 吉富丈记

    地址:

    日本福冈县

    优先权:

    2011.09.02 JP 2011-191830

    专利代理机构:

    北京信慧永光知识产权代理有限责任公司 11290

    代理人:

    周善来;李雪春

    PDF完整版下载: PDF下载
    内容摘要

    本发明提供一种可抑制使用中的Al4O4C的氧化且可使Al4O4C的效果长时间持续的铝氧碳化物(aluminum oxycarbide)组合物。本发明的铝氧碳化物组合物为在具有Al4O4C结晶的铝氧碳化物组合物中,以任意截面观察该铝氧碳化物组合物时,Al4O4C结晶的截面积换算成圆时的平均直径为20μm以上。该铝氧碳化物组合物可在用电弧炉使碳质原料与氧化铝质原料熔融后,在该电弧炉内冷却来制造。

    权利要求书

    权利要求书
    1.  一种铝氧碳化物组合物,在具有Al4O4C结晶的铝氧碳化物组合物中,其特征在于,以任意截面观察该铝氧碳化物组合物时,Al4O4C结晶的截面积换算成圆时的平均直径为20μm以上。

    2.  根据权利要求1所述的铝氧碳化物组合物,其特征在于,进一步含有刚玉结晶。

    3.  根据权利要求2所述的铝氧碳化物组合物,其特征在于,Al4O4C结晶与刚玉结晶交互排列成层状。

    4.  根据权利要求1~3中任一项所述的铝氧碳化物组合物,其特征在于,含碳量为3.2~6.3质量%以下。

    5.  一种铝氧碳化物组合物的制造方法,在权利要求1~4中任一项所述的铝氧碳化物组合物的制造方法中,其特征在于,用电弧炉使碳质原料与氧化铝质原料熔融后,在该电弧炉内冷却。

    6.  根据权利要求5所述的铝氧碳化物组合物的制造方法,其特征在于,在所述碳质原料与所述氧化铝质原料中,添加以外加比例计为0.2~10.0质量%的选自碳化硅、碳化硼、氮化铝、氮化硼及金属中的一种以上,且用电弧炉熔融后,在该电弧炉内冷却。

    7.  根据权利要求5或6所述的铝氧碳化物组合物的制造方法,其特征在于,将原料均匀混合成C成分的偏差成为±10%以内。

    8.  一种耐火物,其特征在于,含有权利要求1~4中任一项所述的铝氧碳化物组合物作为骨料。

    9.  一种耐火物,其特征在于,含有15~95质量%的权利要求1~4中任一项所述的铝氧碳化物组合物。

    说明书

    说明书铝氧碳化物组合物及其制造方法与耐火物
    技术领域
    本发明涉及陶瓷、耐火物或作为这些的原料而使用的铝氧碳化物组合物及其制造方法以及使用该铝氧碳化物组合物的耐火物。
    背景技术
    作为铝氧碳化物,已知有Al2OC及Al4O4C的2种。特别是Al4O4C具有在高温下稳定、具有抗氧化效果、耐腐蚀性优异以及低热膨胀率这样的特征。是将来可期待作为耐火物、陶瓷或这些的原料的材料。特别期待可作为钢铁等的熔融金属用的耐火物使用的氧化铝碳质耐火物、氧化镁碳质耐火物等的含碳耐火物的原料。
    作为含有该Al4O4C(铝氧碳化物)的铝氧碳化物组合物的制造方法,非专利文献1中公开了在氩气氛下热处理氧化铝与石墨的方法。具体而言,将乙醇添加于平均粒径为0.1μm的氧化铝与粒径为45μm以下的石墨试剂中,用玛瑙研钵混合后,经干燥,将混合物的粉体(2g)加入石墨坩埚中,使电炉内成真空后,送入氩气且在1700℃下烧成。此外,非专利文献2中公开了用电弧炉制造铝氧碳化物组合物的方法。但是,非专利文献2指出用该制造方法获得的铝氧碳化物组合物的碳量变多时,容易与水反应的Al4C3变多。
    另一方面,专利文献1中公开了为了抑制Al4C3的生成,均匀混合碳质原料与氧化铝,且使C成分的偏差消失。
    然而,已知Al4O4C在大气中在约850℃下会被氧化而氧化铝化,Al4O4C的结晶粒子微细时,作为耐火物的原料使用时会被氧化而使耐氧化性、耐腐蚀性、低 热膨胀率这样的效果难以长时间持续。
    现有技术文献
    专利文献
    专利文献1  国际公开第2010/113972号公报
    非专利文献
    非专利文献1  耐火物 第59卷 288页 2007年
    非专利文献2  耐火物 第35卷 316页 1983年
    发明内容
    本发明欲解决的课题为提供一种可抑制使用中的Al4O4C氧化且可使Al4O4C的效果长时间持续的铝氧碳化物组合物及其制造方法,以及使用该铝氧碳化物组合物的含碳耐火物。
    本发明的铝氧碳化物组合物为具有Al4O4C结晶的铝氧碳化物组合物,其特征为以任意截面观察该铝氧碳化物组合物时,Al4O4C结晶的截面积换算成圆时的平均直径为20μm以上。
    本发明的铝氧碳化物组合物优选含有Al4O4C以外的刚玉(corundum)的结晶,且更优选刚玉结晶与Al4O4C结晶交互排列成层状。此外,本发明的铝氧碳化物组合物除Al4O4C与刚玉以外,有时也包含少量的Al2OC、AlON等的氧氮化物、γ-Al2O3等。此外,含碳量优选为3.2~6.3质量%以下。
    用于制造上述的本发明的铝氧碳化物组合物的本发明的制造方法的特征为用电弧炉使碳质原料与氧化铝质原料熔融后,在该电弧炉内冷却。
    在本发明的制造方法中,优选在所述碳质原料与所述氧化铝质原料中,添加以外加比例计为0.2~10.0质量%的选自碳化硅、碳化硼、氮化铝、氮化硼及金属中的1种以上,此外,优选以使C成分的偏差在±10%以内的方式均匀地混合碳 质原料、氧化铝质原料、碳化硅等原料。
    根据本发明,由于Al4O4C结晶的截面积换算成圆时的平均直径为20μm以上,因此可抑制使用中的Al4O4C的氧化,可使Al4O4C的效果长时间持续。
    附图说明
    图1为本发明的铝氧碳化物组合物(表1的实施例2)的显微组织照片。
    图2为以往的铝氧碳化物组合物(表1的对比例1)的显微组织照片。
    具体实施方式
    本发明的铝氧碳化物组合物的特征为,具有Al4O4C结晶且在任意截面观察该铝氧碳化物组合物时,Al4O4C结晶的截面积换算成圆时的平均直径为20μm以上。
    铝氧碳化物组合物中的Al4O4C结晶由于为斜方晶系,因此大多数情况下呈现柱状或角柱状的组织。用显微镜观察时,以任意截面观察形状均不同,但在观察本发明的Al4O4C结晶的柱状组织时,在短边方向上为10~2000μm左右。
    此外,本说明书中“Al4O4C结晶的截面积换算成圆时的平均直径”是指在铝氧碳化物组合物的显微镜观察中,自截面积大的Al4O4C的结晶依次累计截面积直至超过其整体一半的面积,且将所累计的各个结晶的截面积换算成圆时的各个直径的平均值。Al4O4C结晶的截面积及将截面积换算成圆时的直径可使用图像处理软件计算。
    如此具有平均直径为20μm以上这样的Al4O4C结晶的铝氧碳化物组合物可通过使碳质原料与氧化铝质原料用电弧炉熔融后,例如在该电弧炉内冷却即缓冷来制造。
    以往,研磨材等通过使铝氧碳化物组合物电弧熔解而制造时,用电弧炉熔融后,压铸入电弧炉外的模具中成为锭块。然而,用该制造方法,用电弧炉熔融后,为了压铸入电弧炉外的模具中,熔融后的冷却速度成为超过10℃/分钟的 急冷,所得到的Al4O4C的结晶成为其平均直径为小于10μm的微细结晶。
    相对于此,用电弧炉熔融后,在该电弧炉内直接冷却时,其冷却速度成为10℃/分钟以下的缓冷,在其缓冷过程中Al4O4C的结晶成长,平均直径成为20μm以上。此外,铝氧碳化物组合物具有Al4O4C以外的刚玉结晶,且有时也含有少量的Al2OC、AlON等的氧氮化物、γ-Al2O3等。
    如此若Al4O4C结晶为平均直径20μm以上时,则可使使用中的Al4O4C的氧化受到抑制,且可使Al4O4C的效果长时间持续。进而,当存在刚玉的结晶时,刚玉可成为屏障而使Al4O4C的氧化受到抑制,且可使Al4O4C的效果长时间持续。Al4O4C结晶的平均直径的上限并无特别限定,但因作为耐火物的骨料原料的使用粒度在通常的粗粒区域中为3mm左右,故优选为3mm以下。
    本发明的铝氧碳化物组合物优选具有上述的Al4O4C结晶与刚玉结晶交互层积排列的层状组织。如上所述,已知Al4O4C在850℃以上的氧化气氛下会被氧化而成为氧化铝。被氧化成氧化铝时,无法获得作为Al4O4C本来特征的抗氧化效果、耐腐蚀性改善效果、低热膨胀效果。在使刚玉的结晶层积为层状的组织中,刚玉层具有保护Al4O4C的结晶氧化的效果,抑制铝氧碳化物组合物整体氧化的效果好,可长时间保持Al4O4C的这些特征。
    本发明的铝氧碳化物组合物优选含碳量为3.2~6.3质量%以下。该含碳量成为铝氧碳化物组合物中的Al4O4C含量的指标。即,理论上的Al4O4C的含碳量为6.52质量%、铝氧碳化物组合物的含碳量为6.52质量%时,铝氧碳化物组合物中的Al4O4C的含量成为100质量%。铝氧碳化物组合物的含碳量小于3.2质量%时Al4O4C较少,存在不能充分获得Al4O4C的效果的情况。另一方面,含碳量超过6.3质量%时,因容易产生易于水合的碳化铝,不仅缺乏组织的稳定性而且刚玉的结晶较少或者不含,因此Al4O4C的氧化抑制效果差,在氧化气氛下难以长时间保持Al4O4C。
    本发明的铝氧碳化物组合物如上所述,用电弧炉使碳质原料与氧化铝质原料熔融后,例如在该电弧炉内冷却(缓冷)而制造。
    作为此时使用的碳质原料,可使用通常所使用的碳质原料作为耐火物的原料。例如可使用沥青、石墨、焦炭、碳黑及粉末有机树脂等。其中,作为石墨可使用鳞状石墨、土壤石墨、膨胀石墨及人造石墨。碳质原料的C含有率为90质量%以上,更优选为95质量%以上。
    此外,作为氧化铝质原料,可使用通常所使用的氧化铝质原料作为耐火物的原料。例如,可使用通过拜耳法(Bayer process)等将天然矾土(bauxite)等纯化而人工制成的Al2O3纯度为95质量%以上的电熔氧化铝、烧结氧化铝及煅烧氧化铝等。此外,矾土叶岩(aluminous shale)、矾土、粘土及砖屑(brick pieces)等也可在氧化铝质原料整体的Al2O3纯度优选成为90质量%以上,更优选为成95质量%以上的范围内使用。
    且,本发明中也可使用氧化铝碳质或氧化铝石墨质的耐火物等含有碳与氧化铝的耐火物作为碳质原料或氧化铝质原料。在该情况下,碳质原料及氧化铝质原料整体中所占的碳与氧化铝的总含量调整为90质量%以上,更优选为95质量%以上,进而在碳质原料及氧化铝质原料的整体中,碳与氧化铝的比率以摩尔比(C/Al2O3)计优选调整为0.8~2.0的范围。
    由于Al4O4C通过下述(1)的反应生成,因此理想上期望碳质原料与氧化铝质原料的摩尔比为1.5。
    2Al2O3+3C=Al4O4C+2CO...(1)
    通过调整碳质原料的含量,可在某种程度上控制铝氧碳化物组合物中的含碳量(Al4O4C含量),但在通常的熔融条件下,虽原因并不明确,但碳被氧化生成较多的刚玉(Al2O3)。进而产生局部生成Al4C3等的问题。
    认为这是由于电弧炉的形式、电压条件等引起的熔融气氛的影响所致。考 虑到实用的大量生产时,有必要使用大型的电弧炉,另外,有必要以高电压、高电力进行熔融。此时,由于熔融气氛成为氧化气氛,因此认为难以生成Al4O4C,而刚玉(Al2O3)的生成增多。
    因此,本发明在碳质原料与氧化铝质原料中添加以外加比例计为0.2~10.0质量%的碳化硅、碳化硼、氮化铝、氮化硼及金属中的1种以上。也优选用电弧炉熔融。
    详细的机制并不清楚,但如此通过添加金属等的抗氧化剂,可使因熔融时及冷却时的气氛所引起的碳质原料的氧化受到抑制,使碳质原料高效地与氧化铝质原料反应熔融。Al4O4C的熔点为1850℃以上的高温区域,但氧化铝与碳的反应所引起的Al4O4C的生成认为在产生液相的1850℃以下且认为可进行烧结反应的1000℃以上的适当温度下发生。因此,本发明中添加的金属在1000℃以上的温度区域中的氧亲和力必须比碳强。
    此外,认为本发明中添加的金属通过与由氧化铝与碳的反应而生成的一氧化碳进行例如下述(2)的反应,使作为一氧化碳而消失的碳固定化,也可达到增加碳收率的效果。
    作为金属添加硅时,发生下述(2)的反应。
    2CO+Si=SiO2+2C...(2)
    本发明中使用的金属作为金属粉或金属块使用,抑制由熔融、冷却时(制造时)的气氛所引起的碳质原料、Al4O4C的氧化。因此,在碳开始氧化的500℃以上,优选在认为Al4O4C生成的1000℃以上的温度区域中,使用氧亲和力比碳强的金属。具体而言,可使用例如Si、Mn、Al、Ca、Mg、Zr、Ti等中的1种以上。此外,也可使用包含这些金属的合金。金属、合金的纯度并无特别限定,但优选为90%以上的金属、合金。
    在本发明的其他方式中,添加碳化硅、碳化硼、氮化铝及氮化硼中的1种以 上代替金属或与其合用。
    虽然其机制并不明确,但推测碳化硅(SiC)、碳化硼(B4C)、氮化铝(AlN)及氮化硼(BN),与金属同样,抑制由气氛引起的熔融时及冷却时的碳质原料的氧化,高效地达到碳质原料与氧化铝反应熔融的效果。进而,例如为SiC的情况下,认为碳高效地熔出于熔融原料中,为有助于Al4O4C生成的物质。
    本发明中使用的碳化硅、碳化硼、氮化铝及氮化硼在耐火物的技术领域中,可使用通常作为碳的抗氧化剂等使用的物质。其纯度并无特别限定,但优选为90%以上的物质。
    本发明中,上述的碳质原料、氧化铝质原料、金属、碳化硅等的原料优选以使C成分的偏差成为±10%以内的方式均匀混合。通过如此事先均匀混合原料,可提高Al4O4C的收率且可抑制Al4C3的生成。
    在此,“均匀混合”是指取样原料的混合物时成为偏差非常少的状态。本发明中该指标用C成分的偏差来表示。在此“C成分的偏差”是指从混合原料而成的混合物中取样3次,且分析所取样的混合物的C成分,相对于C成分的目标设定值,差异最大的分析值与目标设定值的差相对于目标设定值的比例(%)。该C成分的偏差优选在±10%以内,更优选在±5%以内。且,为了均匀混合,优选使用通常市售的粉末用混炼机混合。且,目标设定值(%)是指原料的混合物所占的含碳原料的比例(%)×含碳原料的C成分含有率(%)。含碳原料的C成分含有率为混合前的测定值。
    作为电弧炉可使用使氧化镁或氧化铝等的耐火物熔融而制造时通常所使用的电弧炉。在电弧炉中,可根据需要将添加了金属等的碳质原料与氧化铝质原料的混合物熔融。具体而言,在1850~2400℃左右使其熔融。熔融后,在该电弧炉内冷却,且通过将所得的锭块粉碎来获得铝氧碳化物组合物。
    此外,本发明中通过将碳质原料中的碳与氧化铝质原料中的氧化铝的摩尔 比(C/Al2O3)控制在0.8~2.0的范围,可控制Al4O4C的含有率。
    本发明的铝氧碳化物组合物可适合地用作耐火物的原料,特别是骨料(粒径0.2mm以上)。此外,使用本发明的铝氧碳化物组合物作为耐火物的原料时,其含量优选为15~95质量%。铝氧碳化物组合物的含量小于15质量%时存在不能充分得到铝氧碳化物组合物的效果。另一方面,含量超过95质量%时,以降低弹性率为目的而添加的碳、作为抗氧化或烧结材料添加的金属或碳化物、氮化物、硼化物等的抗氧化剂以及作为粘结剂而添加的酚树脂等的添加量受到限制,作为耐火物难以获得充分的强度、弹性率、耐氧化性等的特性。
    实施例
    通过将原料用电弧炉熔融后在该电弧炉内冷却(缓冷)的本发明的制造方法,与作为对比例的将原料用电弧炉熔融后压铸入电弧炉之外的模具中急冷的以往的制造方法,分别制造铝氧碳化物组合物且评价其特性。其结果如表1所示。
    表1

    以表1所示的比例,以合计成为500kg的方式称量煅烧氧化铝(Al2O3成分99.9质量%)与鳞状石墨(C成分99质量%)。此外,在实施例1~6、8、9及对比例2中,相对于煅烧氧化铝及鳞状石墨的合计100质量%,以外加比例计添加Al、Si或SiC。
    此外,在实施例1~5、8、9及对比例2中,在配合上述原料后,以V锥型混合机混合5分钟。实施例6、7及对比例1未进行均匀混合的处理。原料混合物的C成分的偏差用上述方法评价。
    将这些原料的混合物加入1000KVA的电弧炉中熔融后,在实施例中直接缓冷,在对比例中压铸入电弧炉之外的模具中,分别制造铝氧碳化物组合物的锭块。实施例中的冷却速度为0.7℃/分钟左右,对比例中的冷却速度为15℃/分钟左右。
    将所制造的铝氧碳化物组合物的锭块粉碎、整粒后,依据JIS(日本工业标准)-R2205测定表观比重及表观气孔率。此外,关于化学成分依据JIS-R2011来测定C含量。且,C含量为JIS-R2205中记载的自由碳及碳化硅中的碳的合计的碳量。即,由于Al4O4C在820℃以上的温度下开始氧化,所以从在900℃下测定的碳与在1350℃下测定的碳化硅中的碳量的合计来评价含碳量。理论上的Al4O4C的C含量为6.52质量%。
    关于矿物相通过X射线衍射法的内部标准法来定量化。
    显微组织用显微镜观察,Al4O4C结晶的平均直径如上所述,表示在铝氧碳化物组合物的显微镜观察中,自截面积大的Al4O4C结晶依次累计截面积直至超过其一半的面积,且将累计的各个结晶的截面积换算成圆时的各个直径的平均值。
    热膨胀率为从锭块直接切出8×8×12mm的角柱样品,利用热机械分析(TMA),在大气气氛下进行测定至1000℃为止。此外,以评价铝氧碳化物组合物氧化后的热膨胀率的维持率为目的,在1500℃的大气气氛下氧化处理8×8×12mm的角柱样品3小时后,用同样的热机械分析(TMA),在大气气氛下进行测 定至1000℃为止。
    由于在Al4O4C氧化时变化成氧化铝(刚玉),耐氧化性通过计算出显示Al4O4C的减少率(刚玉的增加率)的氧化铝化率来进行评价。在此,氧化铝化率由下式表示。
    数1

    具体而言,从锭块切出10×10×10mm的样品,在大气气氛下,在1500℃的温度条件下,使用旋转炉氧化3小时后测定含碳量,且与氧化试验前预先测定的含碳量对比来计算氧化铝化率。铝氧碳化物组合物主要为刚玉与Al4O4C,其他成分极微量。因此,若测定含碳量可计算Al4O4C的含量。因此,通过测定氧化试验前后的含碳量,求出氧化试验前后的Al4O4C的含量来计算氧化铝化率。
    由表1可知,Al4O4C的平均直径为20μm以上的实施例的耐氧化性均优异。另一方面,作为对比例的Al4O4C结晶的平均直径小于10μm的耐氧化性差。
    此外,在大气气氛下于1500℃氧化的铝氧碳化物组合物的热膨胀率,在如实施例1~9中所示的Al4O4C结晶的平均直径为20μm以上的均维持低的热膨胀率,但对比例1及2所示的Al4O4C结晶的平均直径小于10μm的热膨胀率变高。
    此外,通过实施例2与实施例6的对比,可知通过将原料预先均匀混合可提高Al4O4C的收率(含有率)。但是,通过实施例2与对比例2的对比,可知仅预先将原料均匀混合对于耐氧化性的提高无效果。
    此外,通过实施例6、8、9与实施例7的对比,可知通过添加金属等抗氧化剂可提高Al4O4C的收率(含有率)。
    图1表示实施例2的显微组织,图2表示对比例1的显微组织。在实施例2中,可知短径50~250μm左右的柱状Al4O4C结晶与短径30~300μm左右的柱状的刚玉 结晶或刚玉及Al4O4C的共晶区域交互排列成层状而同时成长。另一方面,在对比例1中,Al4O4C结晶与刚玉结晶微细化至小于10μm。
    接着,使用表1的实施例2、对比例1及2的铝氧碳化物组合物分别制造含碳耐火物且评价其特性。其结果如表2所示。
    表2

    *1 表1实施例2的铝氧碳化物组合物
    *2 表1对比例1的铝氧碳化物组合物
    *3 表1对比例2的铝氧碳化物组合物
    *4 相对于其他原料合计100质量%的外加比例的质量%
    按照表2所示的比例配合各种原料,将作为粘结剂的酚树脂以外加比例计添加5质量%,经混合、成形后,通过在300℃的温度下加热来制造含碳耐火物。
    关于所制造的含碳耐火物,评价Al4O4C含量、体积比重、表观气孔率、热膨胀率、耐腐蚀性、耐氧化性、耐液相氧化性及耐热冲击性。
    体积比重及表观表孔率通过JIS-R2205中所记载的方法进行评价。热膨胀率通过JIS-R2207-1中所记载的非接触法,在氮气氛下进行评价至1000℃为止。
    耐腐蚀性使用高频感应炉,使SS材与氧化铁粉熔融来制作CaO/Al2O3=2.2的合成熔渣,在该合成熔渣中进行1600℃×3小时的试验来测定熔损量。接着,将后述表3的对比例5的熔损量作为100来进行指数化。数值越小则耐腐蚀性越好。
    耐液相氧化性使用高频感应炉使SS材熔融,在其钢水中进行1600℃×5小时的试验,测定熔池部(steel bath)的氧化层厚度。接着将后述表3的对比例5的氧化层厚度作为100来进行指数化。数值越小则耐液相氧化性越好。
    耐热冲击性为重复下述循环,即将试样浸渍于1600℃的钢水中3分钟后进行空气冷却,从直至剥落的次数来判断良好与否。具体而言,用N=2的试样直到剥落的平均次数进行评价。数值越大则耐热冲击性越好。
    由表2可知,使用表1的实施例2的铝氧碳化物组合物的实施例10,与使用表1的对比例1及2的铝氧碳化物组合物的对比例3及4相比,其在耐腐蚀性、耐液相氧化性、耐热冲击性的任一方面均优异。实施例10即使在高温的试验条件下,由于Al4O4C仍不会被氧化,可长时间保持,故而认为作为Al4O4C的特征的由改善与熔渣润湿性所引起的耐腐蚀性良好。此外,在液相氧化试验中也同样由于保持了Al4O4C,故而认为提高了高温区域中的耐氧化性。耐液相氧化性的效果就工作面而言,认为是由Al4O4C与FeO反应形成致密的Al2O3层从而获得高的氧化抑制效果所引起的。再者,即使耐热冲击试验中在重复高温热处理的条件下由于也保持了Al4O4C,故认为低热膨胀率效果所引起的耐剥落(spalling)性优异。相 对于此,在对比例3及4中,铝氧碳化物组合物在高温的试验条件下,在短时间内即被氧化,由于Al2O3化故而认为与熔渣润湿性降低而使耐腐蚀性下降,此外,耐氧化性也降低,进而使伴随高热膨胀率的耐剥落性降低。
    接着,使用表1的实施例5的铝氧碳化物组合物制造来含碳耐火物,且评价其特性。其结果如表3所示。且,表3的对比例5为未使用铝氧碳化物组合物的含碳耐火物。
    表3

    以表3所示的比例配合各种原料,通过与表2的例子相同的方法来制造含碳耐火物。此外,所制造的含碳耐火物的特性也通过与表2的例子相同的方法进行评价。
    任一实施例与对比例5相比,在耐腐蚀性、耐液相氧化性、耐热冲击性的任一方面均优异。

    关 键  词:
    碳化物 组合 及其 制造 方法 耐火
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:铝氧碳化物组合物及其制造方法与耐火物.pdf
    链接地址:https://www.zhuanlichaxun.net/p-4929698.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1