书签 分享 收藏 举报 版权申诉 / 9

一种基于自适应遗传算法和OTSU算法的图像分割方法.pdf

  • 上传人:t****
  • 文档编号:4669054
  • 上传时间:2018-10-26
  • 格式:PDF
  • 页数:9
  • 大小:655.73KB
  • 摘要
    申请专利号:

    CN201410416268.3

    申请日:

    2014.08.21

    公开号:

    CN104134221A

    公开日:

    2014.11.05

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效IPC(主分类):G06T 7/00申请日:20140821|||公开

    IPC分类号:

    G06T7/00; G06T5/40; G06N3/12

    主分类号:

    G06T7/00

    申请人:

    河海大学

    发明人:

    李东新; 封雪

    地址:

    211100 江苏省南京市江宁区佛城西路8号

    优先权:

    专利代理机构:

    南京纵横知识产权代理有限公司 32224

    代理人:

    董建林

    PDF完整版下载: PDF下载
    内容摘要

    本发明公开了一种基于自适应遗传算法和OTSU算法的图像分割方法,与现有技术相比,传统的阈值分割法在对图像进行多阈值分割时,运行速度慢,将标准的遗传算法(Standard Genetic Algorithm,SGA)与OTSU法相结合,能提高传统的OTSU法对图像阈值分割的速度,但分割的精确度不够。本发明将自适应遗传算法与最大类间方差法相结合对图像进行分割,采用自适应变化的交叉算子和变异算子,既能提高图像阈值分割的速度,又能提高图像分割的精确度。能在较短的时间内收敛到最佳分割阈值,可广泛应用于生物医学图像分析和遥感等领域中。

    权利要求书

    权利要求书
    1.  一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,包括如下步骤:
    步骤S01:计算待分割图像的图像灰度直方图;
    步骤S02:对图像的灰度值进行编码,随机产生M个初始种群;
    步骤S03:根据OTSU算法计算每个个体的适应度值;
    步骤S04:进行遗传操作,包括顺次执行的选择操作、交叉操作和变异操作,其中,
    选择操作:将当代种群中的个体按照适应度值由大到小选择前M个个体,将它们复制到下一代种群中;
    交叉操作:将上述选择操作产生的种群中的个体的交叉率Pc按照下述方法进行变化:
    当个体适应度值高于平均适应度值时,随着个体适应度值的增加交叉率加速减小;
    当个体适应度值小于平均适应度值时,随着个体适应度值的增加,交叉率减速减小;
    按照交叉率Pc由大到小依次选择若干对个体进行交叉,并更新种群;
    变异操作:将上述交叉操作产生的种群中的个体的变异率Pm按照下述方法进行变化:
    当个体适应度值高于平均适应度值时,随着个体适应度值的增加变异率加速减小;
    当个体适应度值小于平均适应度值时,随着个体适应度值的增加, 变异率减速减小;
    按照变异率Pm由大到小选择若干个变异率Pm大的个体进行变异,并更新种群;
    步骤S05:判断新种群是否满足终止条件,若满足则结束,并获得分割阈值,否则,进入步骤S03;
    步骤S06:根据分割阈值处理待分割图像。

    2.  根据权利要求1所述的一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,在步骤S04中,进行交叉的次数次。

    3.  根据权利要求1所述的一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,在步骤S04中,进行变异的次数≤Pm·M次。

    4.  根据权利要求1所述的一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,在步骤S02中,对范围为0-255的图像灰度级用8位二进制码串进行编码。

    5.  根据权利要求4所述的一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,在步骤S03中,OTSU算法以准则函数计算适应度值,
    式中,设二进制码串解码后得到的阈值t将待分割图像分为C0类和C1类,其中ω0、ω1分别为C0类、C1类内像素点出现的概率,μ0、μ1分别为C0类、C1类内像素点的平均灰度值,即是二进制码串解码后得到的阈值t对应的适应度值。

    6.  根据权利要求5所述的一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,在步骤S05中,若满足最大迭代次数或种群中个体的最大 适应度值不再发生变化,则算法终止并输出结果,否则继续进行遗传操作。

    说明书

    说明书一种基于自适应遗传算法和OTSU算法的图像分割方法
    技术领域
    本发明涉及一种基于自适应遗传算法和OTSU算法的图像分割方法。
    背景技术
    图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程,主要是对图像目标进行提取、测量,它是由图像处理到图像识别、分析的基础和关键步骤。
    对于图像分割的方法,目前已有非常多的处理方法,例如边缘检测分割法、区域分割法、阈值分割法,其中阈值分割法应用比较广泛,但传统的阈值分割法在对图像进行多阈值分割时,运行速度慢。将标准遗传算法(Standard Genetic Algorithm,SGA)与OTSU算法(最大类间方差法)相结合对图像进行阈值分割,能提高传统的OTSU法对图像阈值分割的速度,但分割的精确度不够,易早熟。
    发明内容
    针对上述问题,本发明提供一种基于自适应遗传算法和OTSU算法的图像分割方法,采用自适应变化的交叉算子和变异算子,既能提高图像阈值分割的速度,又能提高图像分割的精确度。
    为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
    一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,包括如下步骤:
    步骤S01:计算待分割图像的图像灰度直方图;
    步骤S02:对图像的灰度值进行编码,随机产生M个初始种群;
    步骤S03:根据OTSU算法计算每个个体的适应度值;
    步骤S04:进行遗传操作,包括顺次执行的选择操作、交叉操作和变异操作,其中,
    选择操作:将当代种群中的个体按照适应度值由大到小选择前M个个体,将它们复制到下一代种群中;
    交叉操作:将上述选择操作产生的种群中的个体的交叉率Pc按照下述方法进行变化:
    当个体适应度值高于平均适应度值时,随着个体适应度值的增加交叉率加速减小;
    当个体适应度值小于平均适应度值时,随着个体适应度值的增加,交叉率减速减小;
    按照交叉率Pc由大到小依次选择若干对个体进行交叉,并更新种群;
    变异操作:将上述交叉操作产生的种群中的个体的变异率Pm按照下述方法进行变化:
    当个体适应度值高于平均适应度值时,随着个体适应度值的增加变异率加速减小;
    当个体适应度值小于平均适应度值时,随着个体适应度值的增加,变异率减速减小;
    按照变异率Pm由大到小选择若干个变异率Pm大的个体进行变异,并更新种群;
    步骤S05:判断新种群是否满足终止条件,若满足则结束,并获得分割阈值,否则,进入步骤S03;
    步骤S06:根据分割阈值处理待分割图像。
    本发明将自适应遗传算法(Adaptive Genetic Algorithm,AGA)与最大类间方差法(OTSU法)相结合对图像进行分割,首先读取图像信息并计算图像灰度直方图,可以将图像的灰度级用二进制进行编码,随机产生M个初始种群,解码并将十进制灰度值代入OTSU法准则函数,计算当代种群中各个体的适应度值,选择优秀的个体组成新的种群,对新种群中的个体依次进行交叉操作和变异操作,然后判断是否满足终止条件,若满足条件则输出分割阈值并按分割阈值分割图像,若不满足终止条件则继续进行遗传操作。
    其中,交叉算子和变异算子在操作过程中做自适应调整,即交叉率和变异率与种群中个体适应度值相关,既避免了算法在进化过程中趋于纯粹的随机搜索,又能避免算法处于停滞不前的状态,克服了标准遗传算法(standard Genetic Algorithm,SGA)收敛速度慢、易早熟的缺点。将AGA与OTSU法相结合对图像进行阈值分割,能在较短的时间内收敛到最佳分割阈值,且图像分割的精确度更高。
    本发明的有益效果是:本发明将自适应遗传算法与最大类间方差法相结合对图像进行分割,采用自适应变化的交叉算子和变异算子,既能提高图像阈值分割的速度,又能提高图像分割的精确度。可广泛应用于生物医学图像分析和遥感等领域中。
    附图说明
    图1是本发明一种基于自适应遗传算法和OTSU算法的图像分割方法的流程图;
    图2是本发明遗传操作的具体流程图;
    图3是本发明个体基因串单点交叉示意图;
    图4是本发明AGA遗传算子变化的曲线图。
    具体实施方式
    下面结合附图和具体的实施例对本发明技术方案作进一步的详细描述,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
    如图1所示,其中G代表迭代次数,设初始迭代次数是0,每操作完一次遗传操作,迭代次数G加1。一种基于自适应遗传算法和OTSU算法的图像分割方法,包括如下步骤:
    步骤S01:读取图像信息并计算待分割图像的图像灰度直方图。
    步骤S02:对图像的灰度值进行编码,优选,图像的灰度范围为0-255,对范围为0-255的图像灰度级用8位二进制码串进行编码,编码范围为00000000-11111111。随机产生第0代M个初始种群。
    步骤S03:解码并根据OTSU算法计算每个个体的适应度值。
    其中,OTSU算法以准则函数计算适应度值,式中,设二进制码串解码后得到的阈值t将待分割图像分为C0类和C1类,其中ω0、ω1分别为C0类、C1类内像素点出现的概率,μ0、μ1分别为C0类、C1类内像素点的平均灰度值,即是二进制码串解码后得到的阈值t对应的个体的适应度值。
    步骤S04:进行遗传操作,具体如图2所示,包括顺次执行的选择操作、交叉操作和变异操作,其中,选择操作采用的是精英选择策略,交叉和变异操作采用的是自适应变化的交叉算子和变异算子。具体为:
    选择操作:将当代种群中的个体按照适应度值由大到小选择前M个个体,将它们复制到下一代种群中。即选择适应度值大的优秀个体,将它们复制到下一代种群中,淘汰适应度值小的较差个体。
    交叉操作:将上述选择操作产生的种群中的个体的交叉率Pc按照下述内容进行变化,见图4的(a)曲线:
    当个体适应度值高于平均适应度值(favg)时,随着个体适应度值的增加交叉率加速减小;
    当个体适应度值小于平均适应度值(favg)时,随着个体适应度值的增加,交叉率减速减小;
    当然,适应度值也有自己的最大值fmax和最小值fmin,交叉率有自己的最大值pcmax和最小值pcmin,可以根据需要自行设定相应的范围。
    按照交叉率Pc由大到小依次选择若干对个体进行交叉,即两两交叉,并更新种群,将交叉后的个体代替交叉前的个体。
    交叉算子将两个被选中的个体的基因串的某一部分进行交叉和互换操作,从而得到两个新的个体。交叉算子在实施时是按照一定的概率Pc来进行交叉操作,并且交叉的位置也是随机进行选择的。可以进行单点交叉,单点交叉是指在两个待交叉个体基因串中选择一个交叉点,将该点后部分的基因串相互交换组成两个新的个体。令“┆”为交叉点,执行过程如图3所示。
    变异操作:将上述交叉操作产生的种群中的个体的变异率Pm按照下述内容进行变化,见图4的(b)曲线:
    当个体适应度值高于平均适应度值时,随着个体适应度值的增加变异率加速减小;
    当个体适应度值小于平均适应度值时,随着个体适应度值的增加,变异率减速减小;
    同样的,变异率有自己的最大值pmmax和最小值pmmin,可以根据需要自 行设定相应的范围。
    按照变异率Pm由大到小顺次选择若干个变异率Pm大的个体进行变异,并更新种群,即变异后的个体替代变异前的个体。
    至此,完成一次完整的遗传操作。
    当个体适应度值低于平均适应度值时,随着个体适应度值的增加,交叉率和变异率减速减小,低适应度值个体能够保持快速进化,相对较优的个体进化速度大大减慢,解决了种群“盲目进化”的问题,节省了时间;当个体适应度值高于平均适应度值时,随着个体适应度值的增加,交叉率和变异率加速减小,适应度值大的个体能够保持稳定地进化,交叉率和变异率的最小值都不为零,这样保证了种群中任何个体都有一定的概率进行交叉和变异操作,不会出现近似停滞不前的情况。
    其中,在进行选择操作、交叉操作和变异操作时,分别对选择操作的次数a、交叉操作的个体数b(由于每次交叉操作是操作两个个体,所以,每操作一次交叉,b加2)、变异操作的次数c进行计数,当a=M时,选择操作结束。优选交叉的次数次,即当b≤Pc·M时,交叉操作结束,变异的次数≤Pm·M次,变异操作结束,图2中均采用操作次数最大值进行遗传操作。
    步骤S05:判断新种群是否满足终止条件,若满足则结束,并获得分割阈值,否则,进入步骤S03,其中,若满足最大迭代次数或种群中个体的最大适应度值不再发生变化,则算法终止并输出结果,否则继续进行遗传操作。
    步骤S06:根据分割阈值处理待分割图像。
    与现有技术相比,传统的阈值分割法在对图像进行多阈值分割时,运行速度慢,将标准的遗传算法(Standard Genetic Algorithm,SGA)与OTSU法相结合,能 提高传统的OTSU法对图像阈值分割的速度,但分割的精确度不够。本发明将自适应遗传算法与最大类间方差法相结合对图像进行分割,采用自适应变化的交叉算子和变异算子,既能提高图像阈值分割的速度,又能提高图像分割的精确度。能在较短的时间内收敛到最佳分割阈值,可广泛应用于生物医学图像分析和遥感等领域中。
    以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或者等效流程变换,或者直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

    关 键  词:
    一种 基于 自适应 遗传 算法 OTSU 图像 分割 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:一种基于自适应遗传算法和OTSU算法的图像分割方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-4669054.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1