书签 分享 收藏 举报 版权申诉 / 10

基于排序K均值算法的灰度图像分割方法.pdf

  • 上传人:62****3
  • 文档编号:4615345
  • 上传时间:2018-10-22
  • 格式:PDF
  • 页数:10
  • 大小:651.67KB
  • 摘要
    申请专利号:

    CN201210062259.X

    申请日:

    2012.03.11

    公开号:

    CN102663681A

    公开日:

    2012.09.12

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效IPC(主分类):G06T 5/00申请日:20120311|||公开

    IPC分类号:

    G06T5/00

    主分类号:

    G06T5/00

    申请人:

    西安电子科技大学

    发明人:

    尚荣华; 焦李成; 白靖; 靳超; 吴建设; 郑喆坤; 马文萍; 李阳阳; 侯彪

    地址:

    710071 陕西省西安市西安市太白南路2号

    优先权:

    专利代理机构:

    陕西电子工业专利中心 61205

    代理人:

    王品华;朱红星

    PDF完整版下载: PDF下载
    内容摘要

    本发明针对现有K-均值算法很难保留像素较多类别中图像细节的缺点,提出了一种基于排序K-均值算法的灰度图像分割方法。其实现步骤是:(1)读入一幅不含噪声的灰度图像G,并随机指定各个聚类中心;(2)统计读入的灰度图像G的直方图HL;(3)求解各灰度级到各聚类中心距离;(4)对各灰度级到各聚类中心距离进行排序;(5)对排序后的距离进行存储;(6)将每个灰度级分配到离其距离最近的聚类中心的类别中;(7)根据排序后的各灰度级到各聚类中心的距离更新聚类中心;(8)根据更新前后的聚类中心,判断是否达到迭代停止条件,如果达到迭代停止条件,聚类结束,并输出聚类结果,完成图像分割。本发明具有图像分割精度高的优点,可用于提取和获得灰度图像的细节信息。

    权利要求书

    1.一种基于排序K-均值算法的灰度图像分割方法,包括如下步骤:
    (1)读入一幅不含噪声的灰度图像G,图像大小为256×256,随机指定各个聚类
    中心V:
    V=(V0,V1,…,Vi)
    其中,Vi为第i类的聚类中心,i=0,...,n-1,n为聚类类别数;
    (2)定义灰度图像G的灰度直方图HL(l):
    HL(l)=nl
    其中,l为灰度级,l=0,...,255,nl为灰度图像G中第l个灰度级的像素点总数;
    (3)计算图像灰度直方图中每个灰度级l到每个聚类中心Vi的欧式距离dil:
    dil=|l-Vi|;
    (4)针对每个聚类中心Vi,利用sort(dil)函数对距离dil由小到大进行排序;
    (5)用函数mdil存储排序后的每个灰度级到每个聚类中心Vi的距离dil,mdil定义
    如下:
    md il = Σ d i l 1 < d i l 2 HL ( l 1 ) + 1 1 l 1 d i l 1 > d i l 2 ]]>
    其中,l1,l2∈l,l1≠l2,表示灰度级l1到聚类中心Vi的距离,表示灰度级l2到
    聚类中心Vi的距离,i=0,...,n-1,n为聚类类别数,表示灰度级l1到聚类中
    心Vi的距离小于灰度级l2到聚类中心Vi的距离,HL(l1)表示第l1个灰度级的灰度直方
    图信息;
    (6)根据步骤(5)中mdil的值,将每个灰度级分配到离其距离最近的聚类中心的类
    别中,即选取min(mdil),i=0,...,n-1,将灰度级l归于Vi类,其中Vi是图像的第i类聚
    类中心,n为聚类类别数;
    (7)更新第i类聚类中心为以下值:
    V i t + 1 = 1 n i Σ j V i t v j ]]>
    其中,ni是图像聚类中第i类的像素点总数,Vi是图像的第i类聚类中心,vj
    是第i类中第j个像素点;
    (8)判断是否达到设定的循环结束条件,如果达到循环结束条件,则聚类结束,
    并输出聚类结果,完成图像G的分割,否则返回步骤(3)进行下一次循环。
    2.根据权利要求1所述方法,其中步骤(8)所述的循环结束条件,表示为:
    式中表示第t代的第i类聚类中心值,表示第t+1代的第i类聚类中
    心值,t表示基于排序K-均值算法的循环代数,t的取值范围为1-19。

    说明书

    基于排序K-均值算法的灰度图像分割方法

    技术领域

    本发明属于图像处理领域,涉及一种图像分割方法,尤其涉及一种灰度图像分割
    方法,可用于提取和获得灰度图像的细节信息。

    背景技术

    随着计算机技术的发展,图像在各行各业的应用日益广泛。灰度图像分割是以图
    像的形式获得信息的基础,是人们研究的热点,是图像处理技术应用的重要内容之一。

    图像分割在目标识别、变化监测等方面应用广泛。图像分割方法有多种,基于灰
    度级单阈值分割,基于灰度级多阈值分割、区域增长和聚类等。

    K-means聚类算法,简称K-均值算法,是1967年由J.B.MacQueen提出的。K-means
    聚类算法是一种经典的划分的聚类算法,是到目前为止应用最广泛最成熟的一种聚类
    分析方法。已被广泛应用于图像分割领域。

    K-means聚类算法是一种典型的基于距离的硬聚类算法,算法通常采用误差平方
    和函数作为优化的目标函数,误差平方和函数的定义如下所示:

    E = Σ j = 1 K Σ x C j | | x - m j | | 2 ]]>

    其中,K表示聚类的数目,Cj,j=1,2,...K表示聚类的第j类,x表示类Cj中的
    任一数据对象,mj表示类Cj的均值,E表示数据样本与聚类中心差异度平方之和,E
    值的大小取决于K个聚类中心点。越小的E值,聚类结果的质量就越好。

    K-means算法首先从含有n个数据对象的数据集中随机选取K个数据作为初始中
    心,然后计算每个数据到各个中心的距离,根据最邻近原则,所有的数据都会被划分
    到离它最近的那个中心所代表的类中,接着分别计算新生成的各类中数据的均值作为
    各类新的中心,比较新的中心和上一次得到的中心,如果新的中心没有发生变化,则
    算法收敛,输出结果,如果新的中心和上一次中心相比较发生变化,则要根据新的中
    心对所有数据对象重新进行划分,直到满足算法的收敛条件为止。该方法应用于灰度
    图像分割领域,对部分图像的分割取得了一些效果,能够根据灰度级将图像分割成为
    较理想的情况。但该方法的不足之处是,当图像中的某一类或者几类像素较少时,该
    方法就很难保留像素较多类别中的图像细节部分,划分效率较低。

    发明内容

    本发明的目的在于针对上述已有方法的缺点,提出了一种基于排K-均值算法的
    灰度图像分割方法,完成了像素较多类别中图像细节部分的保留,提高图像分割效率。

    实现本发明目的技术方案,包括如下步骤:

    (1)读入一幅不含噪声的灰度图像G,图像大小为256×256,随机指定各个
    聚类中心V:

    V=(V0,V1,…,Vi)

    其中,Vi为第i类的聚类中心,i=0,...,n-1,n为聚类类别数;

    (2)定义灰度图像G的灰度直方图HL(l):

    HL(l)=nl

    其中,l为灰度级,l=0,...,255,nl为灰度图像G中第l个灰度级的像素点总数;

    (3)计算图像灰度直方图中每个灰度级l到每个聚类中心Vi的欧式距离dil:

    dil=|l-Vi|;

    (4)针对每个聚类中心Vi,利用sort(dil)函数对距离dil由小到大进行排序;

    (5)用函数mdil存储排序后的每个灰度级到每个聚类中心Vi的距离dil,mdil定义
    如下:

    md il = Σ d i l 1 < d i l 2 HL ( l 1 ) + 1 1 l 1 d i l 1 > d i l 2 ]]>

    其中,l1,l2∈l,l1≠l2,表示灰度级l1到聚类中心Vi的距离,表示灰度级l2到聚
    类中心Vi的距离,i=0,...,n-1,n为聚类类别数,表示灰度级l1到聚类中心Vi
    的距离小于灰度级l2到聚类中心Vi的距离,HL(l1)表示第l1个灰度级的灰度直方图信
    息;

    (6)根据步骤(5)中mdil的值,将每个灰度级分配到离其距离最近的聚类中心的类
    别中,即选取min(mdil),i=0,...,n-1,将灰度级l归于Vi类,其中Vi是图像的第i个聚
    类中心,n为聚类类别数;

    (7)更新第i类聚类中心为以下值:

    V i t + 1 = 1 n i Σ j V i t v j ]]>

    其中,ni是图像聚类中第i类的像素点总数,Vi是图像的第i类聚类中心,vj
    是第i类中第j个像素点;

    (8)判断是否达到设定的循环结束条件,如果达到循环结束条件,则聚类结束,
    并输出聚类结果,完成图像G分割,否则返回步骤(3)进行下一次循环。

    本发明与现有技术相比存在以下优点:

    1.本发明由于对直方图中灰度级到聚类中心的距离dil由小到大进行排序,可以有
    效的减小错分率,提高分割结果的精度。

    2.本发明由于直接统计像素个数,找到像素个数较少的类别,可以有效的保留图
    像像素较多类别中较少像素的图像信息。

    附图说明

    图1是本发明的实现流程图;

    图2是用本发明和现有的K-均值方法对两幅灰度图像的三类分割结果对比图;

    图3是用本发明和现有的K-均值方法对两幅灰度图像的四类分割结果对比图。

    具体实施方式

    下面结合图1对本发明的具体实施步骤做进一步的详细描述。

    步骤1,读入一幅不含噪声的灰度图像G,图像大小为256×256,随机指定
    各个聚类中心V:

    V=(V0,V1,…,V1)
    其中,Vi为第i类的聚类中心,i=0,...,n-1,n为聚类类别数;

    在本发明的实施例中,读入一幅不含噪声的灰度级House图像,图像大小为256
    ×256。设定图像分为4类,即n=4。

    随机生成聚类中心V=(V0,V1,V2,V3),本发明随机生成的聚类中心为
    V=(41,35,190,132)。

    步骤2,定义灰度图像G的灰度直方图HL(l):

    HL(l)=nl

    其中,l为灰度级,l=0,...,255,li为灰度图像G中第l个灰度级的像素点总数;

    在本发明实施例中,以灰度级为横坐标,以灰度级像素点的总数为纵坐标构成灰
    度直方图。

    步骤3,计算步骤2中定义的图像灰度直方图中每个灰度级l到每个聚类中心Vi的
    欧式距离dil:

    dil=|l-Vi|;

    其中,l为灰度级,l=0,...,255,Vi为聚类中心,每个灰度级到每个聚类中心的距离
    采用的是欧式距离;

    在本发明实施例中,灰度级l=0,...,255,聚类中心为V0,V1,V2,V3,dil表示每个灰
    度级分别到聚类中心V0,V1,V2,V3的欧式距离。

    步骤4,针对每个聚类中心Vi,利用sort(dil)函数对步骤3中计算出的欧式距离dil
    由小到大进行排序;

    在本发明实施例中,聚类中心为V0,V1,V2,V3,利用sort函数分别对各个灰度级到
    聚类中心V0、V1、V2和V3的距离d0l,d1l,d2l和d3l从小到大排序。

    步骤5,用函数mdil存储步骤4中排序后的每个灰度级到每个聚类中心Vi的距离
    dil,mdil定义如下:

    md il = Σ d i l 1 < d i l 2 HL ( l 1 ) + 1 1 l 1 d i l 1 > d i l 2 ]]>

    其中,l1,l2∈l,l1≠l2,表示灰度级l1到聚类中心Vi的距离,表示灰度级l2到聚
    类中心Vi的距离,i=0,...,n-1,n为聚类类别数,表示灰度级l1到聚类中心Vi
    的距离小于灰度级l2到聚类中心Vi的距离,HL(l1)表示第l1个灰度级的灰度直方图信
    息。

    步骤6,根据步骤5中mdil的值,将每个灰度级分配到离其距离最近的聚类中心的
    类别中,即选取min(mdil),i=0,...,n-1,将灰度级l归于图像的第i类聚类中心Vi。

    步骤7,更新第i类聚类中心为以下值:

    V i t + 1 = 1 n i Σ j V i t v j ]]>

    其中,ni是图像聚类中第i类的像素点总数,Vi是图像聚类中第i类的聚类中
    心,vj是图像聚类中第i类的第j个像素点;

    在本发明实施例中,步骤(1)中随机生成聚类中心V=(41,35,190,132),进行一次
    迭代后,聚类中心更新为:V=(95,23,205,116)。

    步骤8,根据步骤7中更新前的聚类中心和更新后的聚类中心判断是否
    达到设定的循环结束条件,如果达到循环结束条件:则聚类结束,并输出
    聚类结果,完成图像分割,否则返回步骤(3)进行下一次循环;

    其中表示第t代的第i类聚类中心,表示第t+1代的第i类聚类中心,t表示
    循环代数,t的取值范围为1-19。

    在本发明实施例中,t=7时,达到循环结束条件:此时聚类中心为
    V=(129,94,205,204),聚类结束,并输出聚类结果,完成图像分割。

    本发明的效果可以通过以下仿真实验进一步说明:

    1.实验条件和内容:

    实验条件:

    在CPU为core 22.4GHZ、内存1G、WINDOWS XP系统上使用VC++6.0进行仿
    真。

    实验内容:

    本发明分别用两幅不含噪声的灰度图像进行实验,大小均为256×256,分别命
    名为lena和house,分别对lena和house进行三类和四类的分割。

    2.实验结果:

    (1)用本发明和现有K-均值两种方法分别对Lena,House两幅图像进行三类的分
    割,结果如图2所示,其中图2(a)为Lena的原图像;图2(b)为House的原图像;图
    2(c)为现有K-均值算法对图2(a)的分割结果;图2(d)为现有K-均值算法对图2(b)的分
    割结果;图2(e)为本发明对图2(a)的分割结果;图2(f)为本发明对图2(b)的分割结果。

    从图2(c)、图2(d)的分割结果可见,现有K-均值算法虽然利用了图像的灰度特征,
    但由于容易忽略像素较多类别中图像中的细节,因此不能得到理想的分割结果。

    从图2(e)、图2(f)的分割结果可见,本发明对不含噪声的灰度图像的细节部分分
    割效果较好。

    (2)用本发明和现有K-均值两种方法分别对Lena,House两幅图像进行四类的分
    割,结果如图3所示,其中图3(a)为Lena的原图像;图3(b)为House的原图像;图
    3(c)为现有K-均值算法对图3(a)的分割结果;图3(d)为现有K-均值算法对图3(b)的分
    割结果;图3(e)为本发明对图3(a)分割结果;图3(f)为本发明对图3(b)的分割结果;

    从图3(c)、图3(d)的分割结果可见,现有K-均值算法虽然利用了灰度特征,但仍
    旧没有很好保留图像细节部分信息,分割结果不理想。

    从图3(e)、图3(f)的分割结果可见,本发明对不含噪声的灰度图像的细节部分分
    割效果较好。

    综上,本发明提出的基于排序K-均值算法的灰度图像分割方法,通过对每个灰
    度级到每个聚类中心的距离dil进行排序,基本消除了图像中细节的错分现象,可以
    有效保留像素较多类别中较少像素的图像细节,提高了算法的分割效果,将图像分割
    成了较为理想的类别。

    关 键  词:
    基于 排序 均值 算法 灰度 图像 分割 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:基于排序K均值算法的灰度图像分割方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-4615345.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1