书签 分享 收藏 举报 版权申诉 / 7

人脸识别方法.pdf

  • 上传人:大师****2
  • 文档编号:4598818
  • 上传时间:2018-10-21
  • 格式:PDF
  • 页数:7
  • 大小:998.11KB
  • 摘要
    申请专利号:

    CN201510003944.9

    申请日:

    2015.01.04

    公开号:

    CN104463234A

    公开日:

    2015.03.25

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效IPC(主分类):G06K9/62申请日:20150104|||公开

    IPC分类号:

    G06K9/62; G06K9/46

    主分类号:

    G06K9/62

    申请人:

    深圳信息职业技术学院

    发明人:

    李钦; 张运生

    地址:

    518172广东省深圳市龙岗区龙翔大道2188号

    优先权:

    专利代理机构:

    深圳新创友知识产权代理有限公司44223

    代理人:

    王震宇

    PDF完整版下载: PDF下载
    内容摘要

    一种人脸识别方法,包括如下步骤:扩充训练集:使用不同类训练样本在高维空间的线性关系合成训练样本,为每个原始训练样本生成一个聚类;扩展LDA算法:估计类内距与类间距,为LDA投影向量构造Fisher准则,使LDA算法适用于扩充的训练集;特征向量提取:利用所述Fisher准则,构造特征提取算子,提取人脸图像特征向量;人脸识别:根据提取的人脸特征向量进行人脸识别。本方法识别准确率高、运算复杂度低、实时性好,在每类训练样本仅有一个的情况下能够高效准确地识别人脸。

    权利要求书

    1.  一种人脸识别方法,其特征在于,包括如下步骤:
    扩充训练集:使用不同类训练样本在高维空间的线性关系合成训练样本,为每个原始训练样本生成一个聚类;
    扩展LDA算法:估计类内距与类间距,为LDA投影向量构造Fisher准则,使LDA算法适用于扩充的训练集;
    特征向量提取:利用所述Fisher准则,构造特征提取算子,提取人脸图像特征向量;
    人脸识别:根据提取的人脸特征向量进行人脸识别。

    2.
      如权利要求1所述的人脸识别方法,其特征在于,所述扩充训练集包括如下步骤:
    设定来自第一人脸的图像x与来自第二人脸的图像y为高维空间的两个点,构造一条高维的直线连接这两个点,该直线由式(1)表达;
    z=λx+(1-λ)y 0≤λ≤1    (1)
    其中λ为变体选择系数;
    在所有的原始训练样本中,找到x的k个近邻yi(1≤i≤k),y1表示最近邻;
    使用公式zi=λix+(1-λi)yi合成图像,生成一个关于x的聚类,其中1≤i≤k并且1-d(x,y1)/(3*d(x,yi))<λi≤1,其中d()表示两点间的欧氏距离。

    3.
      如权利要求1或2所述的人脸识别方法,其特征在于,所述扩展LDA算法包括如下步骤:
    将LDA扩展为适用于扩充的训练集,由式(2)表达,
    J(α)=αTSb*ααTSw*αSw*=Σi=1cΣj=1ni(zji-xi)(zji-xi)TSb*=Σi1≠i2Σj=1ni1Σk=1ni2(zji1-zki2)(zji1-zki2)T---(2)]]>
    其中α为投影向量,J(α)为Fihser鉴别表达式即Fisher准则,表示类间散度矩阵,表示类内散度矩阵,xi为第i类的原始图像,用来作 第i类训练样本的中心,c为原始样本总数,ni为第i个原始样本合成的样本总数,为第i个原始样本合成的第j个合成图像,为第i个原始样本合成的第k个合成图像,i1和i2代表不同的类。

    4.
      如权利要求1或2或3所述的人脸识别方法,其特征在于,所述特征向量提取包括:
    基于扩展的LDA算法确定特征提取算子,该特征提取算子使得式(2)中的Fisher准则取得最大值。

    5.
      如权利要求4所述的人脸识别方法,其特征在于,确定由式(3)定义的泛化特征方程的最大特征值所对应的特征向量,
    Sb*α=λSw*α---(3)]]>
    以所确定的特征向量来作特征提取的投影向量。

    说明书

    人脸识别方法
    技术领域
    本发明涉及一种人脸识别方法。
    背景技术
    人脸识别是一种在生活中常见的技术,相关研究众多,是一种相对成熟的技术。然而,在一些特殊的应用环境中,如身份证人脸识别、护照人脸识别、驾照人脸识别、犯罪现场鉴定等情况下,每类(每个人)仅有一个已知训练样本。在这种情况下,绝大多数经典的人脸识别算法PCA、LDA、LPP等的准确率都会非常低甚至完全失效,其原因如下:
    (1)小样本问题。单样本问题是一种极端的小样本问题。人脸图像至少为上千维的高维向量,否则不具备别性。已有研究表明,N维特征向量至少需要10*N个样本,才能被各种学习方法生成一个鲁棒性高的模型。在每类仅有一个训练样本的情况下,显然无法进行有效的学习。
    (2)单一样本表达力不足。对于同一张人脸,由于拍照时姿势、光照等差异性,可形成一系列有差异的图像。这一系列有差异地图像共同表达同一张人脸。而在每类仅有一个训练样本的情况下,显然无法对人脸进行有效的表达。
    (3)类内方差不可知。同时需要对类内方差和类间方差进行优化才能得到鲁棒性好的分类器。在每类仅有一个训练样本的情况下,类内方差不可知,因此无法设计有效的分类器。
    (4)类间方差过估计。在每类仅有一个训练样本的情况下,所有的差值都由类间样本产生,则类间方差被放大,从而影响分类器性能。
    发明内容
    本发明的主要目的在于针对现有技术的不足,提供一种新的人脸识别算法,以提高单一训练样本情况下识别准确率。
    为实现上述目的,本发明采用以下技术方案:
    一种人脸识别方法,包括如下步骤:
    扩充训练集:使用不同类训练样本在高维空间的线性关系合成训练样本,为每个原始训练样本生成一个聚类;
    扩展LDA算法:估计类内距与类间距,为LDA投影向量构造Fisher准则,使LDA算法适用于扩充的训练集;
    特征向量提取:利用所述Fisher准则,构造特征提取算子,提取人脸图像特征向量;
    人脸识别:根据提取的人脸特征向量进行人脸识别。
    优选地:
    所述扩充训练集包括如下步骤:
    设定来自第一人脸的图像x与来自第二人脸的图像y为高维空间的两个点,构造一条高维的直线连接这两个点,该直线由式(1)表达;
    z=λx+(1-λ)y 0≤λ≤1     (1)
    其中λ为变体选择系数;
    在所有的原始训练样本中,找到x的k个近邻yi(1≤i≤k),y1表示最近邻;
    使用公式zi=λix+(1-λi)yi合成图像,生成一个关于x的聚类,其中1≤i≤k并且1-d(x,y1)/(3*d(x,yi))<λi≤1,其中d()表示两点间的欧氏距离。
    所述扩展LDA算法包括如下步骤:
    将LDA扩展为适用于扩充的训练集,由式(2)表达,
    J(α)=αTSb*ααTSw*αSw*=Σi=1cΣj=1ni(zji-xi)(zji-xi)TSb*=Σi1≠i2Σj=1ni1Σk=1ni2(zji1-zki2)(zji1-zki2)T---(2)]]>
    其中α为投影向量,J(α)为Fihser鉴别表达式即Fisher准则,表示类间散度矩阵,表示类内散度矩阵,xi为第i类的原始图像,用来作第i类训练样本的中心,c为原始样本总数,ni为第i个原始样本合成的样本总数,为第i个原始样本合成的第j个合成图像,为第i个原始样本合成的第k个合成图像,i1和i2代表不同的类。
    所述特征向量提取包括:
    基于扩展的LDA算法确定特征提取算子,该特征提取算子使得式(2)中的Fisher准则取得最大值。
    确定由式(3)定义的泛化特征方程的最大特征值所对应的特征向量,
    Sb*α=λSw*α---(3)]]>
    以所确定的特征向量来作特征提取的投影向量。
    本发明的有益效果:
    本发明提出一种新的人脸识别方法,通过采用扩充训练集样本数量,并有针对性地扩展LDA算法提取特征向量的手段,能够显著提高单一训练样本情况下识别准确率,有效解决在人脸识别系统(身份证人脸识别、驾照人脸识别等)中每类训练样本仅有一个的情况下(即每个人仅有一张人脸图像作为训练),传统识别算法准确率低的问题,本识别方法准确率高、运算复杂度低、实时性好,在每类训练样本仅有一个的情况下能够高效准确地识别人脸。更具体来说,本发明的人脸识别方法可针对单一训练样本下的基于训练样本集扩充,主要优点体现在:1.通过扩充训练集样本数量,增强样本表达力,保证训练样本有小的类内方差与大的类间方差;2.通过扩展LDA算法,能够针对扩展样本集的特点,构造优化的Fisher准则,能够准确地估计类内方差与类间方差,提取表达力强的特征向量,从而高效准确地实现人脸识别。
    附图说明
    图1为本发明人脸识别方法的基本流程图。
    具体实施方式
    以下对本发明的实施方式作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
    参阅图1,根据本发明的实施例,有效扩充训练样本集,扩充后的训练样本集可以有效的表达同一人脸的不同变化,并且样本具有小的类内方差和大的类间方差。进一步地,针对扩充后的训练样本集,扩展传统的LDA算法,可实现单一训练样本集情况下准确的人脸识别。本发明的实施例包括以下步骤:
    扩充训练集:使用不同类训练样本在高维空间的线性关系合成训练样本,为每个原始训练样本生成一个聚类。由于单一训练样本情况下存在样本表达力低、类内方差不可知、类间方差过估计等问题,本步骤通过扩充训练样本数量,增强样本表达力,并保证训练样本有小的类内方差与大的类间方差。
    扩展LDA算法:估计类内距与类间距,为LDA投影向量构造Fisher准则,使LDA算法适用于扩充的训练集。本步骤在训练样本数量扩充的基础上,扩展LDA算法,能够针对扩充样本集的特点,获得优化的Fisher准则。
    特征向量提取:根据扩展的LDA,使用经优化的Fisher准则,构造特征提取算子,提取人脸图像特征向量;
    人脸识别:根据提取的人脸特征向量进行人脸识别。
    在优选的实施例中,该方法具体包括如下步骤:
    步骤一、扩充训练样本集:通过图像合成算法,扩充训练集样本数量,增强样本表达力,并保证训练样本有小的类内方差与大的类间方差。图像合成算法主要步骤如下所述。
    (1)设定来自人脸1的图像x与来自人脸2的图像y为高维空间的两个点(每个人有一张人脸图像作为训练,人脸1和人脸2分别来自两个人),我们可以构造一条直线连接这两个点。该直线由公式(1)表达:
    z=λx+(1-λ)y 0≤λ≤1   (1)
    λ为变体选择系数,可限定λ的取值范围,若则公式(1)为y的变体;若则公式(1)为x的变体。
    (2)在所有的原始训练样本中,找到x的k个近邻yi(1≤i≤k),y1表示最近邻。
    (3)使用公式zi=λix+(1-λi)yi合成图像,生成一个关于x的聚类,其中1≤i≤k并且1-d(x,y1)/(3*d(x,yi))<λi≤1,d()表示两点间的欧氏距离。
    上述算法保证了以下两点:
    (1)图像zi=λix+(1-λi)yi比任何一个不为x的原始训练样本距x的距离都要近;
    (2)设zi=λix+(1-λi)yi是x的一个变体,设zj=λjyj+(1-λj)x是yj的一个变体,则zi与x距离必然小于zj与x的距离,其中,zi是x的变体,zj是x的某个近邻的变体。
    步骤二、扩展LDA算法:针对扩展后的样本集,扩展LDA算法。
    传统的LDA算法中,类间散度矩阵完全由原始训练样本得到,造成了类间散度矩阵无法准确估计。
    本发明实施例将LDA算法扩展为适用于扩充的训练集,优选地,LDA扩展由公式(2)表达,
    J(α)=αTSb*ααTSw*αSw*=Σi=1cΣj=1ni(zji-xi)(zji-xi)TSb*=Σi1≠i2Σj=1ni1Σk=1ni2(zji1-zki2)(zji1-zki2)T---(2)]]>
    其中α为投影向量,J(α)为Fihser鉴别表达式(Fisher准则),表示类间散度矩阵,表示类内散度矩阵,xi为第i类的原始图像,我们用来作第i类训练样本的中心,c为原始样本总数,ni为第i个原始样本合成的样本总数(即第i类的总数),为第i个原始样本合成的第j个合成图像,为第i个原始样本合成的第k个合成图像,i1和i2代表不同的类,从而使类间散度矩阵使用所有的合成图像得出。
    步骤三、特征向量提取:基于扩展的LDA算法,确定特征提取算子,该特征提取算子使得公式(2)中的Fisher准则取得最大值。即,寻找一个投影向量α,使Fihser鉴别表达式J(α)最大。
    优选地,公式(3)定义的泛化特征方程最大特征值对应的特征向量可以使Fisher准则最大化。我们可以用这些特征向量来作特征提取的投影向量。
    Sb*α=λSw*α---(3)]]>
    步骤四、人脸识别:根据上述步骤提取的人脸特征向量,可以进行人脸识别。
    表1记录了在FERET数据库中本算法与其它传统算法的实验测试比较。
    表1识别准确率(%)对比

     LDALPP本发明实施例FERET67.363.375.9

    以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术 领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。

    关 键  词:
    识别 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:人脸识别方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-4598818.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1