水可溶胀的聚合物通常用作可吸收体液的卫生材料成分,所说的卫生材料是卫生巾,失禁器具和一次用婴儿尿布。这些聚合物的实例在美国专利3,926,891;4,190,562和4,293,609中有介绍。
高含量的水溶性聚合物与这些材料有很大关系,因为可提取的聚合物由于含水流体的作用可以从吸收性结构中沥出,从而降低了产品的使用效果。高含量的水溶性聚合物使得吸收器具的吸收能力下降。这样,当这些水可溶胀和聚合物与月经血、尿或其它体液接触时,它们具有低的初始吸收速率,较差的吸收效果并且变得胶粘。因此,高含量的水溶性聚合物能够抑制吸收器具的吸收能力。
众所周知,制备吸收性聚合物有各种方法;例如:本体聚合法,水溶液聚合法,喷淋聚合法,反乳化聚合法和反悬浮聚合法。
通常,水可溶胀的,交联的,亲水聚合物可以由适宜单体和交联单体的水溶液自由基共聚合反应来制备。干燥得到含水凝胶,然后将其磨碎成适合于与用作吸收人类体液的器具掺合在一起的形状。水溶性的,非交联的酸型单体可以用两种形式聚合。首先,对于羧酸单体可用其酸性形式进行聚合;其次,对羧酸单体可用其中和的形式,最好是一种碱金属盐的形式进行聚合。
如果单体采用一种中和的形式(例如用一种盐的形式)进行聚合,那么交联剂不可能溶于单体溶液中,从而将不可能均匀地分布于单体溶液中。不均匀的分布会增加存在于吸收性聚合物中水溶性聚合物的浓度。
当使用的单体呈酸性形式时,交联单体可以溶于含水的酸性单体中,从而可使交联单体和含水的酸性单体均匀混合。这种均匀混合有助于形成整齐平稳均匀交联的聚合物。这可以对存在于吸收性聚合物产物中的水溶性聚合物的含量产生影响。实际上,交联单体的均匀分布可以减少水溶性聚合物的量,这种水溶性聚合物当其与要吸收的流体接触时可以从吸收性聚合物中沥出。然而,当用呈酸性形式的单体进行聚合时,有必要中和得到的聚合物,以便赋予其吸收性质,并使之与人类的应用相适应。中和作用在单体聚合成粘性凝胶后再进行,这一操作难以控制。中和作用通过粘性凝胶与一定量的碱性溶液或碱性物质接触有效地中和存在于聚合物中的酸基来完成。由于难以将中和剂均匀地混入聚合的凝胶中,所以中和作用被减弱。
在美国专利4,286,082中介绍了制备吸收性聚合物组成的方法,该方法是在有表面活性剂的存在下聚合丙烯酸碱金属盐、丙烯酸和交联单体混合物的水溶液。表面活性剂的作用是将交联单体均匀地分散在碱金属盐和丙烯酸溶液中。然而存在于得到的聚合物中的表面活性剂,在含水流体通过含有该聚合物的吸收性结构时,能够抑制所期望的毛细能力。表面活性剂降低了被吸收流体的表面张力,其结果是吸收器具的吸收能力不能充分地利用。
吸收器具通常含有毛细纤维质材料,这将有助于被器具吸收的流体的分布。这类毛细纤维质材料的实例有纤维素棉胎,纸,纺织布或
无纺织布和纤维素绒毛。毛细材料使流体遍布于器具中,从而使器具中的所有吸收性聚合物可以完美地与流体接触。这样可导致在器具中的吸收性聚合物的有效使用。流体和毛细材料之间的毛细管作用导致了流体的分布。这个作用取决于被分布流体的表面张力。当表面活性剂溶于水或水溶液时,它的作用是降低表面张力或两种液体间的界面张力。这种表面张力的降低能够降低流体和毛细材料之间的毛细管作用。这样造成了吸收器具吸收能力的不完全利用。因此,最好的分散剂是那些对吸收器具的毛细作用没有反作用的分散剂。
由不含表面活性剂(其阻碍了吸收制品中的毛细管作用)的中和单体溶液制备的吸收性聚合物组成是最理想的。使在含水流体中可提取聚合物组成的量降低也是最理想的。此外,在没有表面活性剂存在下制备聚合物能够使人们更好的利用吸收器具的全部吸收能力,在吸收器具中聚合物是一个成分。因此,为获得具有较少可提取物的聚合物,由中和的单体溶液进行聚合而不使用表面活约恋姆椒ㄊ撬谕摹U庑┚酆衔锘岷芎玫卣故境隽己玫哪呵慷龋叩奈账俾剩偷乃苄跃酆衔锖浚透叩奈樟魈迥芰Α?
因此,本发明涉及了一种由没有表面活性剂的中和的单体制备吸收性聚合物的方法,该方法的步骤有:
(a)使有效量的交联单体和分散剂在水溶性α,β-烯键不饱和羧酸单体(至少部份中和)的水溶液中制备成分散体。
(b)使分散体处于反应条件下,以便聚合中和的或部分中和的羧酸和交联单体,其中分散剂应使1克聚合的单体溶于200毫升(0.9%)氯化钠溶液中时,上层清液的表面张力不低于60达因/厘米(6帕斯卡)。
这里所述的表面张力是用标准方法在杜诺依表面张力仪上测量。
本发明还涉及一种制备吸收性聚合物组成的方法,该方法包括(1)在一定量分散剂的存在下制成交联单体在水溶性α,β-烯键不饱和羧酸单体中的水溶液,分散剂在水溶性单体被中和后可有效地保证交联单体的分散,选择的分散体应使1克聚合的单体溶于200毫升(0.9%)氯化钠溶液中时,上层清液的表面张力不小于60达因/厘米(6帕斯卡,(2)用足以中和大部分单体溶液的一定量碱性物质中和单体溶液,(3)向中和的单体溶液中添加有一种或多种乙烯基加成聚合引发剂,然后(4)使中和溶液处于聚合条件下。
本发明的另一种方案涉及一种制备吸收性聚合物组成的方法,该方法包括的步骤有(1)将交联单体溶于水溶性α、β-烯键不饱和羧酸单体的水溶液中,(2)用足以中和大部分单体溶液的一定量的碱性物质来中和单体溶液,(3)使中和溶液与一定量的分散剂接触,以便有效地保持交联单体在中和的单体溶液中的分散,选择的分散剂应使1克聚合的单体溶于200毫升(0.9%)氯化钠溶液中时,上层清液的表面张力不小于60达因/厘米(6帕斯卡),(4)向中和的单体溶液中添加一种或多种引发剂,然后(5)使溶液处于聚合条件下。
本发明提供了一种由单体制备高吸收能力聚合物的方法,该单体在聚合前进行中和,这样可以很容易地处理和加工聚合物。用这种方法制备的聚合物显示出了极好的吸收速率,凝胶强度和较低的水溶性聚合物的含量,这些都是对用于吸收和保持人类体液的器具所用的聚合物的理想性质。
单体的类型:
在本发明中所用的适宜水溶性α,β-烯键不饱和羧酸单体包括那些通过水溶液聚合能够转变成水可溶胀的和/或轻度交联的亲水凝胶聚合物的单体。交联结构可以通过水溶性单体和交联单体的共聚合获得,在所说交联单体的分子单元中具有至少两个可聚合双键。这类单体的实例有α,β-烯键不饱和单体,例如单羧酸和多羧酸。
用本发明的方法制备的水可溶胀的或轻度交联的亲水聚合物可以是任一种已知的能够吸收大量流体的亲水聚合物。这些聚合物的实例在美国专利3,997,484;3,926,891;3,935,099;4,090,013和4,190,562中有介绍。这些亲水聚合物由水溶性α,β-烯键不饱和单体例如单羧酸和多羧酸和丙烯酰胺以及它们的衍生物制备。
适宜单羧酸的例子有丙烯酸,甲基丙烯酸,巴豆酸和异巴豆酸,及其碱金属盐和铵盐。适宜的多羧酸有马来酸,富马酸,和依康酸。适宜的丙烯酰胺衍生物包括甲基丙烯酰胺。优选的单体包括丙烯酸和甲基丙烯酸以及它们相应的盐类例如碱金属盐或铵盐。
所用单体的浓度主要取决于最终聚合物产品中所希望的最后性质。这些性质包括良好的凝胶强度,较高的吸收能力,较快的吸收速率和较低的水溶性聚合物含量。最好使单体的浓度能导致较大量的单体转变成聚合物,较好的转化率是至少80%,进一步为至少90%,最好是至少99%的转化率。本发明中所用的水溶性单体的使用量,其范围以含水单体溶液的总重量计算为10~80%,最好为20~60%。
其它少量的水溶性、不饱和的单体例如酸性单体的烷基酯也可以存在。例如丙烯酸甲酯或甲基丙烯酸甲酯也可以存在。
用羧酸单体进行聚合时,通常在聚合之前完成中和作用。该中和作用很容易用一定量的碱性物质与含水单体接触来完成,所说的碱性物质用量应足以中和谒嵝缘ヌ逯械闹辽?0%,最好至少50%的酸基。在酸性单体中被中和的酸基的范围通常为20~95%,最好为50~85%,尤其是65~80%。当预先中和单体溶液时,重要的是控制中和条件,以使中和的热量不致引起单体混合物的过早聚合。中和最好在低于40℃,特别是在低于35℃的温度下进行。单体的中和会使交联单体在单体溶液中成为不溶解的,这一点可以由形成的混浊溶液来证明,交联单体的不溶性能够导致聚合物不均匀地交联,从而使聚合物趋向于具有高含量的水溶性聚合物。
使用预先中和的单体生产吸收性聚合物时,该吸收性聚合物无需在聚合后或掺入吸收器具之前进行中和。用预先中和的单体制备的聚合物已经呈碱金属盐形式。预先中和的聚合物显示的吸收性质对用作人类体液吸收器具组分的聚合物来说是很理想的。
常用的乙烯基加成聚合引发剂适用于水溶性单体和交联剂的聚合。最好用充分溶解于单体溶液的自由基聚合引发剂引发聚合反应。适宜引发剂的实例有水溶性过氧化物,例如过硫酸钾,过硫酸铵,过硫酸钠和其它碱金属过硫酸盐,过氧化氢和水溶性偶氮化合物,例如2,2′-偶氮双(2-脒基丙烷·HCl)。其中的某些引发剂例如过氧化氢能够与还原物质例如亚硫酸盐或胺类结合形成已知的氧化还原型引发剂。引发剂的用量以单体反应物的总重量计算可以为0.01~1.0%,最好为0.01~0.5%。另外自由基能够在现场用紫外线激发或用X射线激发产生。本发明优选的方法包括用过氧化氢作引发剂或作为部分引发剂。可以认为过氧化氢对得到的聚
合物具有漂白作用。由于美学的原因一般不希望聚合物有颜色。
当使用热引发剂时,反应温度的选择一般取决于所用引发剂的类型和所选择单体的类型。聚合的反应温度最好是较低的温度,低温可以增加所得到的交联聚合物的分子量。通常反应温度可以是5℃至100℃。
交联单体的类型:
与水溶性单体可共聚合的有2个或多个烯基的有机化合物可作为交联单体使用。典型的交联单体包括:乙二醇、二甘醇、三甘醇、丙二醇,1,4-丁二醇,1,5-戊二醇,1,6-己二醇,新戊二醇,三羟甲基丙烷和季戊四醇的二丙烯酸酯或二甲基丙烯酸酯;三羟甲基丙烷和季戊四醇的三丙烯酸酯或三甲基丙烯酸酯;季戊四醇的四丙烯酸酯或四甲基丙烯酸酯,N,N′-亚甲基-双-丙烯酰胺,N,N′-亚甲基-双-异丁烯酰胺和三烯丙基异氰脲酸盐。本发明优选的交联单体是那些不溶于中和的单体溶液的交联单体例如三羟甲基丙烷三丙烯酸酯。交联剂较差的溶解度导致了对分散剂的需要。
存在于水溶性单体和分散剂组成的分散体中的交联单体,其用量应有效地交联水溶性聚合物。通常,交联单体的使用量以100份所用的水溶性单体重量计为0.0001到5份。最好是每100份重量的水溶性单体使用从0.01到2份重量的,特别是0.02到1份重量的交联单体。如果交联单体使用的重量超过5份,则得到的聚合物含有过高的交联密度,并显示出了降低的吸收能力。如果交联剂的使用重量小于0.0001份,则得到的聚合物含有太低的交联密度,当与将要吸收的流体接触时,则变得胶粘并显示出较低的初始吸收速率。较佳的交联单体用量由所需的吸收能力程度和期望的保持吸
收流体的能力决定。
在中和的酸液中的溶解度:
一般地,这样的交联单体能大量溶解在酸式单体的水溶液中,可由这些溶液的透明度表明。然而,当酸式单体被中和时,某些交联单体将显示出溶解性降低。这可以具体地用酸性单体溶液中和后形成的混浊溶液来证明,它表示交联单体和水溶性单体之间的相分离。
可以相信在中和的水溶性单体中交联单体的不溶性导致交联剂不能均匀地分布在整个聚合物产品中。这仿佛是增加了水溶性聚合物的量,存在的水溶性聚合物易于从聚合物中沥出。因此,最好均匀地分散交联单体以便由中和的单体生产出吸收水的聚合物,这样聚合物可以均匀地交联,并显示出较低的水溶性聚合物含量和良好的吸收特性。
适宜的分散剂部分地通过下面标准试验的溶液表面张力来确定。将在有分散剂的情况下制备的1克聚合物,与200毫升0.9%的氯化钠溶液混合,溶液的上层清液的表面张力用渔民牌(Fisherbrand)杜诺依表面张力仪测定。保持上层清液的表面张力至少为60达因/厘米(6帕斯卡)的那些分散剂是适宜的。较好的是上层清液的表面张力不少于65达因/厘米(6.5帕斯卡),最好是不少于70达因/厘米(7帕斯卡)的那些分散剂。
适宜的分散剂具有保持交联单体均匀分散在中和的水溶性单体溶液中的能力。这类分散剂不一定促使交联剂溶于中和的单体溶液中,而是应对维持交联单体良好地分散于水溶性单体中起帮助作用。交联剂在水溶性单体中的良好的分散可以用水溶性单体的混浊溶液来证明,即该溶液在聚合前或聚合中并不分离。适宜的分散剂例子包括羧
甲基纤维素悬浮助剂,甲基纤维素,羟丙基纤维素,最好与聚乙烯醇一起使用,特别是与75~100%水解的聚乙烯醇一起使用。
分散剂必须选择,以致于当回收的和干燥的吸水聚合物掺入到人体液吸收器具中时,分散剂残留物不能进入暴露于它之下的人体液并抑止吸收器具的毛细作用。这是很重要的,因为正是毛细作用使流体均匀地分布在吸收器具中,从而使吸收性聚合物以有效的方法使用。因此,本发明的分散剂是那些能保持上层清液(如上所述)表面张力至少为65达因/厘米(6.5帕斯卡),最好是至少为70达因/厘米(7帕斯卡)的分散剂。为了试验的目的,该上层清液溶液要模仿已在人体体液吸收器具中与聚合物接触的人体体液。
分散剂以在聚合前和聚合中保持溶液分散的有效量存在于交联单体和水溶性单体的水溶液中。一般地存在于水溶液中的分散剂的量以使用的水溶性单体的重量计为从1%到0.001%。存在于水溶液中的分散剂的量以使用的水溶性单体的重量计最好为0.1%到0.005%,特别是从0.01到0.05%。
中和所用的方法和物料:
通常用于中和单体羧酸基的化合物是那些将有效地中和酸基而对聚合过程没有有害影响的化合物。这类化合物包括碱金属氢氧化物,碱金属碳酸盐和碳酸氢盐。用于中和单体的原料最好为氢氧化钠或氢氧化钾,或碳酸钠或碳酸钾。所用中和剂的量应足以中和20~95%,最好为50~85%,特别是65~80%的存在于水溶性单体中的酸基。在确定所需的中和程度时,必须保证使得到的交联吸收性聚合物与待吸收的含水流体接触时,或分散在该流体中时,其pH值保持在采用该聚合物时所予期的适当使用范围内。
典型的聚合条件:
根据本发明对含水溶液的共聚合是在共聚合前用常规的方法混合水溶性单体,交联单体,分散剂和引发剂。混合的顺序并不是关键的,只要保证交联单体的均匀分散而没有凝聚即可。混合可以用静态的在线混合器或任何其它适当的混合设备来完成。混合的温度应保持在使聚合不致于过早引发程度下,最好为40℃以下,特别是在35℃以下。然后将溶液在以上所述的条件下中和。
本发明的一个优选方案是制备一种酸式单体、交联剂和分散剂的水溶液。然后中和该水溶液,得到交联剂在中和的酸性单体溶液中的分散体。
混合物的聚合可以通过提高含引发剂混合物的温度或用上述的氧化还原型引发剂来引发。通常,聚合开始的温度在20℃到45℃的范围内,聚合完成的温度主要取决于所用单体的类型如所用的具体引发剂体系。聚合的最高温度最好在50℃到100℃的范围内,特别是60℃到90℃的范围内。控制聚合温度的方法不是关键的,只要进行有效地冷却,排出在聚合中产生的热即可。在本发明的一个优选的方案中,由中和单体方法制备的聚合物中水溶物的含量可以通过仔细调节放热聚合过程中的温度来控制。当使用较大的反应容器时,单靠外部冷却夹套一般不足以提供期望的反应温度控制。而在减压下进行该反应可很好地控制温度。
得到的含水类凝胶聚合物,通过将其干燥可以用于制备吸收性聚合物组成。最好是在尽可能高的效率下,尽可能短的时间内干燥类凝胶含水聚合物,以防止由于过热而导致聚合物变质。一个所希望的干燥方法包括用热空气加热聚合物到50~200℃的温度,且有一个
使含水聚合物的湿度含量降低在40%以下,最好在10%以下(以吸收性聚合物的总重量为基准)的足够的时间周期。
通过在加热下干燥类凝胶含水聚合物得到的吸收性聚合物组成,可以根据所需的尺寸适当地粉碎成粗粒,细粒或粉末。粉碎的方法一般并不是关键的,任何本领域熟知的方法都可以使用。在聚合过程中反应介质的搅拌也可以用于控制颗粒的大小。
本发明的吸收性聚合物组成有良好的工作特性。该聚合物具有较高的聚合度,因为它是使用在相对高浓度的水溶液中共聚合形成的类凝胶含水聚合物来制备。此外,在有分散剂的存在下,可以通过水溶性单体和涣ヌ骞簿酆辖杏行У鼐鹊亟涣R虼耍梦招跃酆衔镒槌删哂泻艿偷乃苄跃酆衔锖浚佣庇牒魈褰哟ナ辈唤赫常矣写罅康谋ズ臀铡8镁酆衔镒槌上允境鲆晕招跃酆衔镒苤亓考扑愕陀?0%的水溶性聚合物含量,最好为低于15%,特别是低于10%。水溶性聚合物的含量可以用500克(0.9%)的氯化钠对1克吸收性聚合物萃取4小时来测定。溶胀的聚合物过滤掉,滤液用盐酸滴定以测定可溶性聚合物的含量。
本发明的吸收性聚合物组成显示出从20克/克到70克/克,最好为30克/克到55克/克,特别是40克/克到50克/克的吸收能力。该吸收能力或自由胀度(Fsc)的测定可以将1.0克的聚合物在20分钟内,在300克(0.9%)氯化钠溶液中吸收到极限来进行。不吸收的过量盐溶液称重并从最初300克中减去便得到自由溶胀度值。
下面的实施例说明了预中和聚合物的制备和该聚合物的物理性质,即特性数据。
实施例1
在1升(1000厘米3)的玻璃反应器中,将0.31克(以单体重量计为0.25%)的三羟甲基丙烷三丙烯酸酯(TMPTA)溶于125克的丙烯酸中。向该溶液中加入323.2克的蒸馏水。再向这个溶液中加入3毫升(3厘米3)的聚乙烯醇溶液,此溶液是由1克Vino 523TM(由空气产品和化学品公司得到的聚乙烯醇)溶于278克的蒸馏水中而成。在搅拌下将97克的50%氢氧化钠溶液缓慢地加入到得到的溶液中,以便中和单体的酸基。将该反应器冷却且维持在30℃的温度。这个中和作用使TMPTA作为特细的,非常稳定的分散体从该溶液中分离出。在持续搅拌下,将由道化学公司购得的VersenexTM-80(40%二亚乙基三胺五乙酸的五钠盐水溶液)6滴以及0.031克的V-50(2,2′-偶氮双(2-脒基丙烷·HCl))(由美国Wako化学品公司购得)和0.031克的过硫酸钠加入到上述溶液中。该溶液用氮气脱氧。然后将该溶液在12分钟内加入到2升的玻璃反应器中,该玻璃反应器已预热到90℃温度。用环绕反应器的加热套将该反应器保持在不大于85℃的温度。该反应进行直到反应放热下降方可完成。在反应完成后将反应物保持在85℃的反应温度。然后将该聚合物凝胶从反应器中分离出,磨碎并在100℃的炉中干燥。
用下列方法测定吸收性质:
1.自由胀度(FSC)的测定,将1.0克聚合物放在300克(0.9%)的氯化钠溶液中,在20分钟内吸收到其极限。将未被吸收的过量盐溶液称重并从原始300克溶液中减去,便得到其自由胀度值。
2.水溶性聚合物含量的测定,用500克(0.9%)氯化钠溶液萃取1克吸收性聚合物4小时。将溶胀的聚合物过滤掉,滤液用盐酸滴定以测定可溶性聚合物的含量。
本实施例的聚合物组成表现出44.4克/克的FSC和5.3%的水溶性聚合物含量。
实施例2
在50加仑(0.193)的搪瓷反应器中,将0.65磅(295克)的TMPTA溶于47磅(21.3千克)的丙烯酸中。向该溶液中加入115.5磅(52.4千克)的去离子水,随后加入0.24磅(108.9克)的2%PVA(Vinol523由空气产品和化学品公司购得)水溶液和11克的Versenex 80(由道化学公司购得)。向反应器中的该溶液缓慢地加入36.6磅(16.6千克)的50%氢氧化钠,同时很好地搅拌,并用反应器夹套使物料温度维持在30℃以下。
将上述单体混合物输送到一个30加仑(0.113米3)配有高扭矩搅拌器的不锈钢反应器中。该反应物料用N2吹30分钟将氧除去。将4.3克的硫代硫酸钠,2.7克Wako V-50,和32.0克的过硫酸钠加入到这个反应器中。在几分钟时间内,反应器温度由27℃逐步开始上升。用真空泵将反应器维持在270乇(36,000千帕(Kpa))压力下,用冷凝器将反应的峰值温度限制在77℃。将反应器中的反应物在峰值温度保持30分钟后,细碎的凝胶从反应器中分离出并在100℃下干燥。
由实施例2得到的聚合物显示出6.3%的水溶性聚合物和46.1克/克的FSC。
实施例3
使用与实施例2相同的设备,将0.70磅(317.5克)TMPTA溶于50磅(22.7千克)的丙烯酸中。将110.2磅的去离子水与11克Versenex80和0.25磅(113.4克)的5%PVA(Vinol205,由空气产品和化学品公司购得)水溶液一道加入到上述溶液中。向反应器的该容液中缓慢地加入38.9磅(17.6千克)的50%氢氧化钠,同时良好地搅拌,并用反应器夹套将该单体混合物维持在30℃以下。
将上述单体混合物输送到装备有高转矩搅拌器的30加仑(0.113米3)不锈钢反应器中。在输送过程中,在管线上同时用N2吹送,以便将溶解的氧从单体混合物中除去。向该反应器中加入3.4克硫代硫酸钠,3.4克WAKO V-50,45.4克过硫酸钠,75.6克30%的过氧化氢和11.4克Lupersol256,((2,5-二甲基-2,5-双(2-乙基己酰过氧基)己烷)由庞沃特的Lucidol Division购得)。
在几分钟时间内,反应混合物开始从27℃逐渐地上升并增稠。保持反应器在减压下且反应的峰值温度限制在81℃。反应物料在峰值温度下保持30分钟后,将细碎的凝胶从反应器中分离出,然后小批量地在150℃下用热空气枪干燥。
由实施例3得到的聚合物显示出8.2%的水溶性聚合物和43.4克/克的自由溶胀度。