本发明是关于将半导体芯片粘结在引线框架上时特别适合的耐热粘结剂,以及使用该粘结剂的粘结部件。 尤其,本发明是关于在半导体组件,特别是在LOC(Lead on Chip)结构组件中有效地防止吸湿后的焊锡软溶时的组件开裂的耐热粘结剂,以及使用该粘结剂的粘结部件。
半导体组件是将半导体芯片用粘结剂和共晶软钎料结合在具有与图1-3相同结构的引线框架上,芯片和引线框架的电极之间用金属线电连结后,用密封材料将整体模制而制造的。
过去,一般的组件结构是在具有与图3相同结构的引线框架的引板(连结板)上装配芯片的结构,在引线框架和芯片连结时使用AuSi共晶法、软钎料或者环氧系热固性粘结剂(芯片焊接)
近年来,随着集成度增加,芯片变大,芯片在组件中占有的比例变大。因此,由于在引线框架的引板上装配芯片的结构中容纳不下芯片,已开发出图1、2所示的没有引板结构的组件(US 5140404、特开昭61-218139、241959、US4862245、特开平1-76732、特开平2-36542、特开平4-318962)。与图1、2相同的组件结构分别称为loc(lead on chip)、COL(chip on lead),引线框架与芯片的连结使用热固性粘结剂或耐热性热熔粘接剂。
无论在上述哪种结构中,随着组件小型、薄型化和在组件中芯片占有的比例变大,由于密封材料的厚度变薄,在粘结剂和密封材料吸湿情况下,由焊锡连结(焊锡软溶)时的热而吸湿的水分汽化、膨胀,其结果是在组件中多发生裂纹现象。
为了防止这种现象,从密封材料、粘结剂两个方面进行了研究,在密封材料方面研究低吸湿化和提高机械强度(特开平5-67703)。另一方面,关于粘结剂,虽然通过低吸湿化和将粘接部件分离成数个小片来排出软溶时地水蒸汽,防止产生裂纹(特开平3-109757),但是关于LOC结构的组件,没有从粘结剂的物性方面探讨解决对策。
另外,从降低粘结温度的观点看,有意地残留溶剂,使树脂柔软(特开平3-64386),由于残留溶剂等而提高流动性,通过充分粘结而做到降低内引线间的漏电流(特开平2-36542)。
本发明提供在半导体组件,尤其是在LOC结构组件中能有效地防止吸湿后的软钎料软溶时的组件裂纹的粘结剂。
本发明人就LOC组件吸湿后的软钎料软溶时的组件裂纹和粘结剂物性的关系进行了深入探讨,结果发现,与其说是粘结剂的吸水率和Tg(玻璃化温度)不如说是粘结剂在高温时的柔软性(换句话说坚硬性)是组件裂纹的主要因素,通过使用具有某种特定坚硬性或者难于流动性的粘结剂可以得到改善,从而完成了本发明。
以往,关于粘结剂的坚硬性,如上所述,从粘结温度降低的观点出发有意地残留溶剂,使树脂柔软(特开平3-64386),或通过残留溶剂而提高流动性,通过充分粘结而做到降低内引线间的漏电流(特开平2-36542),然而如本发明所述,与其说吸水率和Tg不如说粘结剂的坚硬性或者难流动性是组件裂纹的主要原因,使用具有某种特定坚硬度或者难流动性的粘结剂可以有效地提高耐组件裂纹性这一结论是以往人们根本不曾予料到的。
即,本发明,
(1)是用粘结部件将半导体芯片粘结在引线框架上,用密封材料至少将半导体芯片、半导体芯片和引线框架的粘结部密封,制造半导体组件用的粘结部件上使用的耐热粘结剂,提供温出长度为2mm以下、吸水率为3%(重量)以下的耐热粘结剂。
(2)是用粘结部件将半导体芯片粘结在引线框架上,用密封材料至少将半导体芯片、半导体芯片和引线框架的粘结部密封,制造半导体组件时用的粘结部件上使用的耐热粘结剂,提供了溢出长度为2mm以下、吸水率为3%(重量)以下、玻璃化转变温度为200℃以上的耐热粘结剂。
(3)上述粘结部件是在耐热薄膜的一侧或者两侧上设置该耐热粘结剂涂层面形成的复合粘结片。
(4)上述粘结部件是单独的该耐热粘结剂。
下面详细说明本发明。
在本发明中使用的特定耐热粘结剂以耐热性热可塑树脂作主要成分,溢出长度为2mm以下即可,没有特别限制,理想的是具有玻璃化转变湿度200℃以上的耐热粘结剂,为此,聚酰亚胺粘结剂和聚酰胺粘结剂是令人满意的。
这里所说的聚酰亚胺包括聚酰胺亚胺、聚酯亚胺、聚醚亚胺、聚酰亚胺等具有亚胺基的树脂。
本发明的耐热粘结剂的吸水率是3%(重量)以上,较好是2.5%(重量)以下,更好是2.0%(重量)以下。溢出长度是2mm以下,较好是1mm以下,更好是0.5mm以下。尤其是作为本发明的耐热粘结剂,除上述特性外,希望玻璃化转变温度为200℃上,较好是225℃以上,更好是250℃以上。
这里所说的溢出长度是将19×50mm、厚度25μm的粘结剂薄膜在350℃、3MPa、1分钟的条件下进行压制时,在长边方向的中央位置测定溢出的粘接剂的长度,作为溢出长度。
在本发明中,玻璃转变温度低于250℃时,或者溢出长度大于1mm时,希望吸水率小于3%(重量),尤其是小于1.5%(重量)。
另外,密封材料厚度越薄,或者是粘结剂占有比例越多的组件,溢出长度越短越好。
本发明的粘结剂可以单独由聚酰亚胺或聚酰胺组成,从粘结力观点看含有酰胺基者为好。
所谓酰胺基是酰亚胺闭环后还残存的酰胺基,不包括是酰亚胺前驱物的酰胺酸中的酰胺基。
酰胺基的亚胺基和酰胺基的合计量以10-90%(摩尔)为宜,较好是20-70%(摩尔),更好是30-50%(摩尔)。小于10%时粘结力小,大于90%时吸水率变大。
本发明的耐热粘结剂,基本上由二胺(A)或者二异氰酸酯(A′)以及酸酐(B)和/或二元羟酸或其酰胺形成性衍生物(C)合成,利用各种调整上述反应成分的组合、其反应比例、反应条件、分子量、有无添加剂及其种类、环氧树脂等的添加树脂等,可以容易地制造具有上述所定特性,即溢出长度2mm以下、吸水率3%(重量)以下、最好玻璃转变温度200℃以上的耐热粘结剂。
本发明中使用的二胺(A),例如可列举出六亚甲基二胺、八亚甲基二胺、十二亚甲基二胺等亚烷基二胺;对苯二胺、间苯二胺、2,4-二氨基甲苯等亚芳香基二胺;4,4'-二氨基二苯基醚(DDE)、4,4'-二氨基二苯基甲烷、4,4'-二氨基二苯砜、3,3'-二氨基二苯砜、4,4'-二氨基二苯甲酮、3,3'-二氨基二苯甲酮、4,4'-二氨基苯甲酰苯胺等二氨基二苯基衍生物;1,4-双[1-(4-氨基苯基)-1-甲基乙基]苯(BAP)、1,3-双[1-(4-氨基苯基)-1-甲基乙基]苯、1,3-双(3-氨基苯氧基)苯、1,4-双(3-氨基苯氧基)苯、1,4-双(4-氨基苯氧基)苯、2,2-双[4-(4-氨基苯氨基)苯基]丙烷(BAPP)、2,2-双[4-(3-氨基苯氧基)苯基]丙烷、双[4-(3-氨基苯氧基)苯基]砜(m-APPS)、双[4-(4-氨基苯氧基)苯基]砜、2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷,以及由下列通式(1)表示的二胺和由下列通式(2)表示的硅氧烷二胺等。
式中,Y表示氨基,R11、R12、R13、R14分别独立地是氢或者碳原子数为1-4的烷基或烷氧基,它们之中至少2个以上是烷基或烷氧基,X是以-CH2-、-C(CH3)2-、-O-、-SO2-、-CO-或-NHCO-表示的基。
作为以通式(1)表示的化合物,例如可列举出:
4,4’-二氨基-3,3’,5,5’-四甲基二苯基甲烷、
4,4’-二氨基-3,3’,5,5’-四甲基二苯基甲烷、
4,4’-二氨基-3,3’,5,5’-四正丙基二苯基甲烷、
4,4’-二氨基-3,3’,5,5’-四异丙基二苯基甲烷、
4,4’-二氨基-3,3’,5,5'-四丁基二苯基甲烷、
4,4’-二氨基-3,3’-二甲基-5,5’-二乙基二苯基甲烷、
4,4'-二氨基-3,3'-二甲基-5,5'-二异丙基二苯基甲烷、
4,4’-二氨基-3,3’-二乙基-5,5’-二异丙基二苯基甲烷、
4,4’-二氨基-3,5-二甲基-3’,5’-二乙基二苯基甲烷、
4,4’-二氨基-3,5-二甲基-3’,5’-二异丙基二苯基甲烷、
4,4’-二氨基-3,5-二乙基-3’,5’-二异丙基二苯基甲烷、
4,4’-二氨基-3,5-二乙基-3’,5’-二丁基二苯基甲烷、
4,4’-二氨基-3,5-二异丙基-3’,5’-二丁基二苯基甲烷、
4,4’-二氨基-3,3’-二异丙基-5,5’-二丁基二苯基甲烷、
4,4’-二氨基-3,3’-二甲基-5,5’-二丁基二苯基甲烷、
4,4’-二氨基-3,3’-二乙基-5,5’-二丁基二苯基甲烷、
4,4’-二氨基-3,3’-二甲基二苯基甲烷、
4,4’-二氨基-3,3’-二乙基二苯基甲烷、
4,4’-二氨基-3,3’-二正丙基二苯基甲烷、
4,4’-二氨基-3,3’-二异丙基二苯基甲烷、
4,4’-二氨基-3,3’-二丁基二苯基甲烷、
4,4’-二氨基-3,3’,5-三甲基二苯基甲烷、
4,4’-二氨基-3,3’,5-三乙基二苯基甲烷、
4,4’-二氨基-3,3’,5-三正丙基二苯基甲烷、
4,4’-二氨基-3,3’,5-三异丙基二苯基甲烷、
4,4’-二氨基-3,3’,5-三丁基二苯基甲烷、
4,4’-二氨基-3-甲基-3’-乙基二苯基甲烷、
4,4’-二氨基-3-甲基-3’-异丙基二苯基甲烷、
4,4’-二氨基-3-乙基-3’-异丙基二苯基甲烷、
4,4’-二氨基-3-乙基-3’-丁基二苯基甲烷、
4,4’-二氨基-3-异丙基-3’-丁基二苯基甲烷、
2,2-双(4-氨基-3,5-二甲基苯基)丙烷、
2,2-双(4-氨基-3,5-二乙基苯基)丙烷、
2,2-双(4-氨基-3,5-二正丙基苯基)丙烷、
2,2-双(4-氨基-3,5-二异丙基苯基)丙烷、
2,2-双(4-氨基-3,5-二丁基苯基)丙烷、
4,4’-二氨基-3,3’,5,5’-四甲基二苯醚、
4,4’-二氨基-3,3’,5,5’-四乙基二苯醚、
4,4’-二氨基-3,3’,5,5’-四正丙基二苯醚、
4,4’-二氨基-3,3’,5,5’-四异丙基二苯醚、
4,4’-二氨基-3,3’,5,5’-四丁基二苯醚、
4,4’-二氨基-3,3’,5,5’-四甲基二苯基砜、
4,4’-二氨基-3,3’,5,5’-四乙基二苯基砜、
4,4’-二氨基-3,3’,5,5’-四正丙基二苯基砜、
4,4’-二氨基-3,3’,5,5’-四异丙基二苯基砜、
4,4’-二氨基-3,3’,5,5’-四丁基二苯基砜、
4,4’-二氨基-3,3’,5,5’-四甲基二苯甲酮、
4,4’-二氨基-3,3’,5,5’-四乙基二苯甲酮、
4,4’-二氨基-3,3’,5,5’-四正丙基二苯甲酮、
4,4’-二氨基-3,3’,5,5’-四异丙基二苯甲酮、
4,4’-二氨基-3,3’,5,5’-四丁基二苯甲酮、
4,4’-二氨基-3,3’,5,5’-四甲基苯甲酰苯胺、
4,4’-二氨基-3,3’,5,5’-四乙基苯甲酰苯胺、
4,4’-二氨基-3,3’,5,5’-四正丙基苯甲酰苯胺、
4,4’-二氨基-3,3’,5,5’-四异丙基苯甲酰苯胺、
4,4;-二氨基-3,3’,5,5’-四丁基苯甲酰苯胺等。
式中,R15和R18是二价有机基,R16和R17是一价有机基,m是1-100的整数。
上述通式(2)中的R15和R18分别独立地是
三亚甲基 -(CH2)3-
四亚甲基 -(CH2)4-
甲代亚苯基
和 亚苯基等。
R16和R17分别独立地是甲基、乙基、苯基等,数个R16和数个R17分别可以相同,也可以不同。
在通式(2)的硅氧烷二胺中,在R15和R18都是三亚甲基,R16和R17都是甲基时,m是1的硅氧烷二胺、平均10左右的硅氧烷二胺、平均20左右的硅氧烷二胺、平均30左右的硅氧烷二胺、平均50左右的硅氧烷二胺和平均100左右的硅氧烷二胺分别以LP-7100、X-22-161AS、X-22-161A、X-22-161B、X-22-161C和X-22-161E(都是信越化学工业(株)商品名)在市场上出售。
作为在本发明中使用的二异氰酸酯(A’),在上述举例所表示的二胺中,可以将氨基换成异氰酸酯基。
本发明中使用的酸酐(B),可以列举出:
偏苯三酸酐、
焦苯六甲酸二酐、
3,3’,4,4’-二苯甲酮四羧酸二酐(BTDA)、
3,3’,4,4’-联苯四羧酸二酐、
2,2-双(3,4-二羧苯基)六氟丙烷二酐、
双(3,4-二羧苯基)醚二酐、
双(3,4-二羧苯基)砜二酐、
4,4’-双(3,4-二羧苯氧基)二苯基砜二酐、
2,2-双[4-(3,4-二羧苯氧基)苯基]丙烷二酐、
乙二醇双偏苯三酸酯二酐(EBTA)、
癸二醇双偏苯三酸酯二酐(DBTA)、
双酚A双偏苯三酸酯二酐(BABT)、
2,2-双[4-(3,4-二羧基苯酰氧基)苯基]六氟丙烷二酐、
1,4-双{1-甲基-1-[4-(3,4-二羧基苯酰氧基)苯基]乙基}苯二酐、
马来酸酐、甲基马来酸酐、纳西克酸酐、烯丙基纳西克酸酐、甲基纳西克酸酐、四氢化邻苯二甲酸酐、甲基四氢化邻苯二甲酸酐等。
本发明中使用的二羧酸或者其酰胺形成性衍生物(C),可列举出对苯二甲酸、间苯二甲酸、苯基苯甲酸、苯二甲酸、萘羧酸、二苯醚二羧酸等,作为这些二羧酸的酰胺形成性衍生物,可举出这些二羧酸的二氯化物、二烷基酯等。
另外,可以用氨基苯甲酸等氨基羧酸取代二胺(A)、二羧酸(C)的一部分。
最好是,本发明的耐热粘结剂是,
作为(A)二胺,是亚烷基二胺、间苯二胺、2,4-甲苯二胺、
4,4’-二氨基二苯醚(DDE)、
4,4’-二氨基二苯基甲烷、
4,4’-二氨基二苯基砜、
3,3’-二氨基二苯基砜、
3,3’-二氨基二苯甲酮、
1,3-双(4-氨基枯烯基)苯、
1,4-双(4-氨基枯烯基)苯、
1,3-双(3-氨基苯氧基)苯、
1,4-双(3-氨基苯氧基)苯、
1,4-双(4-氨基苯氧基)苯、
2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)、
双[4-(3-氨基苯氧基)苯基]砜(m-APPS)、
双[4-(4-氨基苯氧基)苯基]砜、
2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷、
4,4’-二氨基-3,3’,5,5’-四甲基二苯基甲烷、
4,4’-二氨基-3,3’,5,5’-四乙基二苯基甲烷、
4,4’-二氨基-3,3’,5,5’-四异丙基二苯基甲烷、
4,4’-二氨基-3,3’-二甲基-5,5’-二乙基二苯基甲烷、
4,4’-二氨基-3,3’-二甲基-5,5’-二异丙基二苯基甲烷、
4,4’-二氨基-3,3’-二乙基-5,5’-二异丙基二苯基甲烷、
4,4’-二氨基-3,3’-二甲基二苯基甲烷、
4,4’-二氨基-3,3’-二乙基二苯基甲烷、
4,4’-二氨基-3,3’-二异丙基二苯基甲烷、
再有,在通式(2)的硅氧烷二胺中,最好能使用商品名为LP-7100、X-22-161AS、X-22-161A的市售品。
另外,作为(B)酸酐,最好是使用偏苯三酸酐、
3,3’,4,4’-二苯甲酮四羧酸二酐(BTDA)、
2,2-双(3,4-二羧苯基)六氟丙烷二酐、
双(3,4-二羧苯基)醚二酐、
双(3,4-二羧苯基)砜二酐、
4,4’-双(3,4-二羧基苯氧基)二苯基砜二酐、
2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐、
乙二醇双偏苯三酸酯二酐(EBTA)、
癸二醇双偏苯三酸酯二酐(DBTA)、
双酚A双偏苯三酸酯二酐(BABT)、
1,4-双{1-甲基-1-[4-(3,4-二羧基苯甲酰氧基)苯基]乙基}苯二酐、马来酸酐、纳西克酸酐、烯丙基纳西克酸酐。
还有,纳西克酸酐的结构式是
烯丙基纳西克酸酐的结构式是
在本发明中,将这些二胺(A)、酸酐(B)、二羧酸(C)适当组合而制成的树脂,可以适当选择其Tg较好是200℃以上、更好是250℃以上的单体。
为了成为具有本发明的特定特性的耐热粘结剂,在混合聚酰亚胺和聚酰胺的情况下,混合后的粘结剂的Tg最好是在200℃以上。
使用本发明粘结剂的粘结部件,在密封型半导体组件的制造中,具有将半导体芯片粘结在引线框架上的适当的形状、性质、尤其适合于LOC结构的半导体组件的制造。即,使用本发明粘结剂的粘结部件,是连结半导体芯片和引线框架的金属线结合位于半导体芯片上,用于无引板结构的密封型半导体组件的半导体芯片和引线框架的粘结,具有特别适合的形状、性质。
作为本发明的耐热粘结剂,不局限于上述聚酰亚胺和聚酰胺,同样也可以使用聚马来酰亚胺、聚烯丙基二酰亚胺。
聚酰亚胺通过聚酰胺酸的热闭环或化学闭环而获得。在本发明中使用的聚酰亚胺不一定要100%酰亚胺化,但是希望完全酰亚胺化。
本发明的耐热粘结剂可以单独是聚酰亚胺或聚酰胺,可以是聚酰亚胺和聚酰胺的混合物,或者也可以添加环氧树脂和硬化剂、硬化促进剂等再使用。
在这种情况下,通过适当混合环氧树脂等添加树脂和偶合剂等添加剂,即使所用耐热粘结剂的Tg是200°以下,仍可以将吸水率、溢出长度调整到本发明的范围内。
作为可以混合到本发明特定的聚酰亚胺系耐热粘结剂中的环氧树脂,没有特别的限制,只要每1分子平均具有2个以上的环氧基就可以,可以列举出例如双酚A的二缩水甘油醚、双酚F的二缩水甘油醚、酚酚醛树脂型环氧树脂、多元醇的聚缩水甘油酸酯、多元酸的聚缩水甘油酸酯、脂环环氧树脂、乙内酰脲环氧树脂等。
另外,在本发明的耐热粘结剂中也可以添加陶瓷粉、玻璃粉、银粉、铜粉等填料和偶合剂。另外,也可以将本发明的耐热粘结剂浸渗在玻璃布、阿拉密岛布、碳纤维布等的基底上使用。
上述的偶合剂,可以使用乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、γ-甲基丙烯基丙基三甲氧基硅烷等 乙烯基硅烷;γ-环氧丙氧基丙基三甲氧基硅烷、γ-环氧丙氧基丙基甲基二乙氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅烷等环氧硅烷;γ-氨基丙基三乙氧基硅烷、γ-氨基丙基三甲氧基硅烷、N-苯基-γ-氨基丙基三甲氧基硅烷等氨基硅烷;γ-巯基丙基三甲氧基硅烷等巯基硅烷;钛酸盐、铝螯合剂、锆铝酸盐等偶合剂;最好是使用硅烷偶合剂特别是环氧硅烷系偶合剂。另外,γ-甲基丙烯氧基丙基三甲氧基硅烷的结构式是,γ-环氧丙氧基丙基三甲氧基硅烷的结构式是
在本发明的粘结部件中使用的耐热粘结剂可以单独使用,也可以涂布在基底膜片或浸渗在基片上使用,在单独使用耐热粘结剂的情况下,可以直接涂布在半导体芯片和引线框架等被粘结物上,也可以预先制成片状而应用于被粘结物进行热压粘结使用。
将本发明的耐热粘结剂涂布在底膜片(或者基片)上而作为复合粘结片时,复合粘结片是通过在耐热薄膜,最好是在表面处理过的耐热薄膜的一侧或两侧上涂布吸水率3%(重量)以下、溢出长度2mm以下,最好玻璃化转变温度200℃以上的耐热粘结剂或者其漆后,再进行加热而获得。
在本发明中作为基底膜片而使用的耐热膜片,可以列举出聚酰亚胺、聚酰胺和聚砜、聚亚苯基硫化物、聚醚醚甲酮、多芳基化树脂等工程塑料的膜片。
耐热膜片的玻璃化转变温度(Tg),使用高于本发明耐热粘结剂的Tg的耐热膜片,较好是使用200℃以上者,更好是使用250℃以上者。所用耐热膜片的吸水率是3%(重量)以下、最好是2%(重量)以下。
因而,作为在本发明中使用的耐热膜片,从Tg、吸水率、热膨胀系数的角度看,聚酰亚胺膜片是理想的。具有Tg为250℃以上、吸水率为2%(重量)以下、热膨胀系数为3×10-5/℃以下的物性的膜片是特别理想的。
为了增加与粘结剂的粘结力,最好是对耐热膜片进行表面处理。表面处理方法,可以采用碱处理、有机硅烷偶合处理等化学处理,喷砂等物理处理,等离子处理,电晕处理等任一种处理方法,根据粘结剂的种类使用最适宜的处理方法。在应用本发明的耐热粘结剂时,作为在耐热膜片上施行的表面处理,化学处理或者等离子处理是特别适用的。
对将耐热粘结剂(漆)涂布在耐热膜片上的方法没有特别限制。用刮刀和刮刀涂布机、模涂机等任何一种方法都可以。虽然也可以使膜片在漆中通过而进行涂布,但是因为难以控制厚度,所以是不理想的。
为了将涂布过本发明耐热粘结剂的膜片除去溶剂并酰亚胺化而进行热处理的情况下,热处理温度根据是聚酰胺酸漆还是聚酰亚胺漆而有所不同。
在聚酰胺酸漆的情况下,为了酰亚胺化,必须是Tg以上的温度,而在聚酰亚胺漆的情况下,只要是能够除去溶剂的温度就可以。
为了提高粘结剂与耐热膜片的粘结力,最好是在250℃以上的温度进行热处理。
使用本发明耐热粘结剂的粘结部件,对于在图1所示的LOC结构的半导体组件的引线框架和半导体芯片的粘结特别有效。
图1的LOC(lead on chip)结构组件与图2的CDL(chip on lead)结构组件和图3的组件相比,在组件整体中半导体芯片占有的比例大,这一点是不同的。这是因为
(1)相对于图3的组件来说,图1的组件是没有引板的结构,
(2)图2和3的组件中,在半导体芯片的端面上形成引线结合,与此相反,图1的组件是在半导体芯片上面形成引线结合,图1的组件没有必要在半导体芯片以外另外设置引线结合空间。
因此,在图1的组件中,由于能达到在组件整体中半导体芯片占有的比例大,势必使得在组件整体中密封材料部分变薄,粘结剂对组件裂纹产生的影响变大。
对于图1的组件来说,与图2、3的组件相比,组件裂纹产生急剧增多,希望有对策。本发明的饧结剂特别有效地防止图1的组件中的组件裂纹产生。
在用本发明的粘结剂连结半导体芯片和引线框架时,其方法没有特别限制,可以用对各组件最适宜的方法进行连结。
例如,
(1)先将两面涂布本发明耐热粘结剂的复合基片热压粘合在引线框架上,然后将半导体芯片热压粘接在相反的本发明耐热粘结剂面上。
(2)先将一面涂布本发明耐热粘结剂的复合基片热压粘接在引线框架上,然后在相反的一面上涂布相同的或者另外的本发明粘结剂的糊状物,将半导体芯片压粘接。
(3)将本发明耐热粘结剂单独膜片夹在半导体芯片和引线框架之间进行热压粘结。
(4)将本发明耐热粘结剂涂布在半导体芯片或者引线框架上,然后可以使用将引线框架和半导体芯片热压粘结等各种方法。
按照图1-3说明用使用本发明耐热粘结剂的粘结部件将半导体芯片粘结在引线框架上的具体方法。
图1-3是表示引线框架形状及与引线框架粘结的半导体芯片的位置不同的的粘结状态的模式图,根据使用本发明耐热粘结剂的粘结部件,将半导体芯片与引线框架粘结,用密封材料密封半导体芯片、半导体芯片与引线框架的粘结部分而制成半导体组件。
图1是表示半导体芯片相对于引线框架位于下方状态的模式图。
图2是表示半导体芯片相对于引线框架位于上方时的模式图。
图3是半导体芯片位于引线框架上方时的模式图。
在图1-3中,1是粘结部件,2是半导体芯片,3是引线框架,4是引线,5是密封材料。
使用本发明的耐热粘结剂的粘结部件,对半导体芯片和引线框架的连结是有效的,但并不局限于此,也能有效地应用于陶瓷板、金属板、金属箔、塑料薄膜、塑料板、层压板等的被粘结物。
在这种情况下,在该被粘结物上涂布,或者在片状的情况下夹在被粘结物之间,然后在粘结剂的软化温度以上的温度加热、加压,可将被粘结物粘结在其他物体上。
下面借助实施例详细说明本发明,但是本发明并不局限于这些范围。
实施例1
在备有搅拌器、温度计、氮气导入管、氯化钙管的四口烧瓶中加入3.66g(10mmol)4,4’-二氨基-3,3’-5,5’-四异丙基二苯基甲烷(IPDDM)和28.3gN,N-二甲基甲酰胺(DMF),使其溶解。接着,一边冷却使之不超过5℃一边每次少量地将5.76g(10mmol)双酚A双偏苯三酸酯二酐(BABT)加入,然后不超过5℃那样地冷却,使之反应1小时,接着在室温反应6小时而合成聚酰胺酸。在含所得到的聚酰胺酸反应液中加入2.55g乙酸酐和1.98g吡啶,在室温反应3小时而合成聚酰亚胺。
将含有所得到的聚酰亚胺的反应液注入水中,分离得到的沉淀物,并进行粉碎、干燥,得到聚酰亚胺粉末。
将这种聚酰亚胺粉末以0.1g/dl的浓度溶解在DMF中,在30℃时测定的比浓粘度是0.71dl/g。
将这种聚酰亚胺粉末加入各种有机溶剂中形成5%(重量)浓度,在室温通过观察溶解状态进行溶解性试验。其结果是,该聚酰亚胺粉末可溶解于DMF、N-甲基吡咯烷酮(NMP)、二氯甲烷、二噁烷、THF和甲苯中。
将这种聚酰亚胺粉末溶解在DMF中,将所得的漆流散在玻璃板上。在100℃干燥10分钟后,进行剥离,并固定在铁支架上,在250℃干燥1小时得到膜片。
用如此得到的膜片,采用渗透法在25kg/cm2载荷、升温速度10℃/分的条件下测定聚酰亚胺的玻璃化转变温度是262℃。热分解温度是405℃。
膜片在25℃的水中浸渍24小时的吸水率是0.3%(重量)。
在350℃、3MPa条件下将19×50mm、厚25μm的粘结剂膜片压1分钟,在长边方向的中央部位测定的溢出的粘结剂的长度是0.8mm。
另外,将得到的膜片弯曲成180°的角度进行可挠性试验时,膜片不开裂,显示良好的可挠性。
将聚酰亚胺的NMP漆涂布在等离子处理过的UPILEX-S(甲部兴产株式会社制造的聚酰亚胺膜片)上,在100℃干燥10分钟,再在300℃干燥10分钟,得到复合基片。将这种复合基片叠放在42合金(含42%Ni的铁镍合金)上,在350℃、3MPa下压紧5秒钟后,测定90度剥离强度是0.7kN/m。
使用这种复合基片,如图1那样将TSOP(Thin small out-line package)型半导体芯片制成组件后,在85℃、85%RH的条件下进行48小时吸湿处理,然后在260℃的焊锡浴中浸渍,无裂纹产生。
实施例2
除使用3.85g(10mmol)双(3,4-二羧苯基)砜二酐(DSDA)、1.83g(5mmol)IPDDM、2.05g(5mmol)2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)以外,与实施例1同样进行,得到聚酰胺酸漆。由这种聚酰胺酸漆,按与实施例1同样进行操作,得到聚酰亚胺粉末。
其比浓粘度是1.21dl/g,Tg是268℃,热分解温度是410℃。另外吸水率是0.7%(重量),溢出长度是0.01mm。
使用上述聚酰胺酸漆,除进行100℃10分钟,300℃15分钟热处理以外,与实施例1同样进行,得到复合基片。与42合金的粘结力是1.2KN/m,与实施例1同样操作得到的TSOP型半导体组件经吸湿后的焊锡浴处理,无裂纹产生。
实施例3
除使用3.22g(10mmol)3,3’,4,4’-二苯甲酮四羧酸二酐代替BABT,用20.69gNMP代替DMF以外,与实施例1同样进行,得到聚酰胺酸漆。在这种漆中添加10g二甲苯,在180℃加热5分钟,得到聚酰亚胺漆。
比浓粘度是0.48dl/g,Tg是300℃,热分解温度是405℃。吸水率是1.0%(重量),溢出长度是0.5mm。
碱处理后,将上述聚酰亚胺漆涂布在硅烷偶合处理过的KAPTON膜片(东レニデュポン株式会社制造的聚酰亚胺膜片)上,在100℃进行10分钟,在275℃进行10分钟热处理,得到复合片。与42合金的粘结力是0.92KN/m,与实施例1同样进行操作得到的TSOP型的半导体组件经吸湿后的焊锡浴处理,无裂纹产生。
实施例4
除使用5.76g(10mmol)BABT、2.38g(6.5mmol)IPDDM、0.43g(3.5mmol)间甲苯二胺以外,与实施例1相同地进行,得到聚酰亚胺粉末。
比浓粘度是0.61dl/g,Tg是275℃,热分解温度是415℃。吸水率是0.5%(重量),溢出长度是1.5mm。
将上述聚酰亚胺的NMP漆涂布在碱处理过的UPILEX-S膜片上,然后在100℃干燥10分钟,再在300℃干燥10分钟,得到复合片。与42合金的粘结力是0.85KN/m,与实施例1相同进行操作所得到的SOJ(Small outline J-leaded package)型半导体组件经吸湿后的焊锡浴处理无裂纹产生。
实施例5
除使用3.5g(10mmol)DSDA、0.92g(2.5mmol)IPDDM、3.08g(7.5mmol)BAPP之外,与实施例3相同地进行,得到聚酰亚胺粉末。
比浓粘度是0.62dl/g,Tg是255℃,热分解温度是440℃。吸水率是1.2%,溢出长度是0.2mm。
将上述聚酰亚胺的DMAC漆涂布在等离子处理过的UPILEX-S膜片上,然后在100℃干燥10分钟,再在250℃干燥10分钟,得到复合片。与42合金的粘结力是1.40KN/m,与实施例1相同进行操作,所得到的半导体组件(TSOP型)经吸湿后的焊锡浴处理无裂纹产生。
实施例6
除使用4.10g(10mmol)BAPP溶解在24.5g DMF中,加入2.02g(20mmol)三乙胺、然后边冷却到5℃以下,边一点一点地将2.03g(10mmol)异间苯二甲酸氯化物添加进去。在5℃以下反应5小时后,与实施例1相同地进行,得到聚酰胺粉末。
比浓粘度是0.45dl/g,Tg是219℃,热分解温度是425℃。吸水率是2.3%(重量),溢出长度是2.4mm。
将与实施例1相同进行得到的聚酰亚胺和上述聚酰胺分别以85%(重量)和15%(重量)进行混合而成DMF漆,将其涂布在等离子处理过的UPILEX-S膜片上,然后在100℃干燥10分钟,再在250℃干燥10分钟,得到复合片。将这种复合片重叠在42合金上,在350℃、3MPa下压紧5秒钟,然后测定90度剥离强度是1.2KN/m。
另外,复合膜片的Tg是255℃,吸水率是0.6%(重量),溢出长度是1.5mm。
用这种复合片如图1那样制成半导体组件(SOJ型),然后在85℃、85%RH条件下进行48小时吸湿处理,之后在260℃的焊锡浴中浸渍,未发生裂纹。
实施例7
将1.74g(7mmol)4,4’-二氨基二苯基砜(DDS)、1.23g(3mmol)BAPP溶解在20gDMF中,加入2.02g(20mmol)三乙胺,然后边冷却到5℃以下,边少量地将2.03g(10mmol)异间苯二甲酸氯化物加入,在5℃以下反应5小时后,与实施例1相同进行,得到聚酰胺粉末。
比浓粘度是0.88dl/g,Tg是260℃,热分解温度是435℃。吸水率是2.5%(重量),溢出长度是0.2mm。
将60%(重量)的实施例1的聚酰亚胺和40%(重量)的上述聚酰胺混合而成NMP漆,使用这种漆,与实施例1相同进行,得到复合片。这种复合片与42合金的粘结力是1.6KN/m。
另外,复合膜片的Tg是260℃,吸水率是1.1%(重量),溢出长度是0.5mm。
用这种复合片与实施例1相同进行,所得到的TSOP型半导体组件经吸湿后的焊锡溶处理也无裂纹产生。
实施例8
除使用1.83g(5mmol)IPDDM、2.05g(5mmol)BAPP、0.64g(3mmol)4-氯甲酰基苯基-1,2-二羧酸二酐、0.30g(3mmol)三乙胺、30g NMP外,与实施例6相同进行,得到聚酰胺酸漆。在5℃以下,将2.51g(7mmol)双(3,4-二羧苯基)砜二酐(DSDA)每次少量地加入这种漆中,然后在5℃以下反应5小时。之后,加入乙酸酐、吡啶,与实施例1相同进行,得到聚酰胺酰亚胺粉末。
这种聚酰胺酰亚胺的比浓粘度是1.15dl/g,Tg是258℃,热分解温度是385℃。并且吸水率是1.0%(重量),溢出长度是0.02mm。
碱处理后,将上述聚酰胺酰亚胺溶解在DMAc中而形成的漆涂布在经硅烷偶合处理过膜片上,在100℃热处理10分钟,再在275℃热处理10分钟,得到复合片。与42合金的粘结力是1.4KN/m,与实施例1相同进行操作,所得到的TSOP型半导体组件经吸湿后的焊锡浴处理无裂纹产生。
实施例9
除使用5.76g(10mmol)BABT、2.74g(7.5mmol)IPDDM、0.41g(1.0mmol)BAPP、1.26g(1.5mmol)X-22-161AS外,与实施例1相同进行,得到聚酰亚胺粉末。
比浓粘度是0.65dl/g,Tg是226℃,热分解温度是396℃。并且,吸水率是0.3%(重量),溢出长度是1.7mm。
将上述聚酰亚胺的NMP漆涂布在经等离子处理的UPILEX-S膜片上,在100℃干燥10分钟,再在300℃干燥10分钟,得到复合片。与42合金的粘结力是0.80KN/m,与实施例1相同进行操作,所得到的SOJ型半导体组件经吸湿后的焊锡浴处理无裂纹产生。
实施例10
除使用3.58g(10mmol)DSDA、4.32g(10mmol)双[4-(4-氨基苯氧基)苯基]砜以外,与实施例1相同进行,得到聚酰亚胺粉末。
比浓粘度是0.87dl/g,Tg是270℃,热分解温度是520℃。并且,吸水率是2.3%(重量),溢出长度是0.01mm。
将上述聚酰亚胺的NMP漆涂布在经等离子处理的UPILEX-S膜片上,然后在100℃干燥10分钟,再在300℃干燥10分钟,得到复合片。与42合金的粘结力是1.0KN/m,与实施例1相同进行操作,所得到的TSOP型半导体组件经吸湿后的焊锡浴处理无裂纹产生。
实施例11
使用实施例2的聚酰亚胺,与实施例1相同进行,制成只有粘结剂的膜片。使用这种膜片,与实施例1相同进行,所得到的TSOP型半导体组件经吸湿后的焊锡浴处理无裂纹产生。
实施例12
使用实施例8的聚酰胺酰亚胺的NMP漆,在半导体芯片上形成粘结剂层。使用带有这种粘结剂的芯片TSOP型,如图1那样制成组件,然后与实施例1相同进行吸湿后的焊锡溶处理,无裂纹产生。
实施例13
将2.87g(7mmol)BAPP和0.75g(3mmol)LP-7100溶解在23.0gNMP中,然后在5℃以下边冷却边每次少量地将2.13g(10mmol)4-氯甲酰基苯-1,2-二羧酸二酐加入。添加2.02g(20mmol)三乙胺,在5℃以下反应5小时,然后与实施例1相同地进行,得到聚酰胺酰亚胺粉末。
比浓粘度是0.57dl/g,Tg是185℃,热分解温度是420℃。吸水率是0.13%,溢出长度是0.8mm。
将100g上述聚酰胺酰亚胺粉末和3gγ-环氧丙氧基丙基三甲氧基硅烷溶解在400g DMF中而形成的漆涂布在聚酰亚胺膜片(UPILEX-S膜片)上,然后在100℃干燥10分钟,再在背面进行同样地涂布,干燥后,在250℃干燥10分钟,得到复合片。这种复合片与42合金的粘结力是1.6KN/m。并且,粘结剂部分的Tg是185℃,吸水率是1.3%,溢出长度是0.2mm。
先将这种复合片在350℃、6MPa下贴附在引线框架上,时间是3秒钟。在375℃、6MPa下将芯片贴附在其反面上,时间是3秒钟。引线结合后,用密封材料模制,得到如图1的半导体组件。将这种TSOP型组件在85℃、85%RH条件下进行48小时吸湿处理,然后在245℃的红外线炉中进行焊锡软溶,无裂纹发生。
实施例14
将3.69g(9mmol)BAPP和0.88g(1mmol)X-22-161AS溶解在34.7g NMP中,然后在5℃以下,每次少量地将4.10g(10mmol)乙二醇双偏苯三酸二酐加入。反应2小时后,添加15g二甲苯,在氮气流下,边将缩合水和二甲苯共沸除去,边在180℃下反应5小时,而合成聚酰亚胺。将得到的聚酰亚胺漆注入水中,分离得到的沉淀,并进行粉碎,干燥,得到聚酰亚胺粉末。
比浓粘度是0.65dl/g,Tg是170℃,热分解温度是390℃。吸水率是1.0%,溢出长度是1.8mm。
使用100g上述聚酰亚胺粉末和5gγ-环氧丙氧基丙基甲基二乙氧基硅烷溶解在400g DMF中形成的漆,与实施例13相同地进行,得到复合片。这种复合片与42合金的粘结力是1.3KN/m。并且,粘结剂部分的Tg是172℃,吸水率是1.0%,溢出长度是1.0mm。
与实施例13相同地进行,所得到的SOJ型半导体组件经吸湿后的焊锡浴处理无裂纹产生。
实施例15
除使用3.28g(8mmol)BAPP和0.40g(2mmol)十二亚甲基二胺及2.13g(10mmol)4-氯甲酰基苯-1,2-二羧酸二酐外,与实施例13相同进行,得到聚酰胺酰亚胺粉末。
比浓粘度是0.85dl/g,Tg是190℃,热分解温度是395℃。吸水率是0.1%,溢出长度是0.6mm。
将100g上述聚酰胺酰亚胺粉末和10gγ-环氧丙氧基丙基三甲氧基硅烷溶解在400g NMP中而形成的漆涂布在聚酰亚胺(UPILEX-S膜片)的两面上,分别在100℃干燥10分钟,再在275℃干燥10分钟,得到复合片。这种复合片与42合金的粘结力是1.4KN/m。并且,粘结剂部分的Tg是191℃,吸水率是1.1%,溢出长度是0.2mm。
与实施例13相同地进行,所得到的TSOP型半导体组件经吸湿后的焊锡溶处理无裂纹产生。
比较例1
将实施例6中得到的聚酰胺的DMF漆与实施例1相同地进行操作,得到复合片。与42合金的粘结力是1.60KN/m。与实施例1相同地进行操作,所得到的TSOP型半导体组件经吸湿后的焊锡浴处理有裂纹产生。
比较例2
将2.11g(8.5mmol)DDS、0.62g(1.5mmol)BAPP溶解在20gDMF中,添加2.02g(20mmol)三乙胺,然后边冷却到5℃以下,边每次少量地将2.03g(10mmol)间苯二酸氯化物加入。在5℃以下反应5小时后,与实施例1相同地进行,得到聚酰胺粉末。
比浓粘度是0.45dl/g,Tg是280℃,热分解温度是430℃。吸水率是3.5%(重量),溢出长度是1.2mm。
碱处理后,将上述聚酰胺漆涂布在经硅烷偶合处理的膜片上,在100℃热处理10分钟,再在250℃热处理10分钟,得到复合片,与42合金的粘结力是1.5KN/m。与实施例1相同地进行操作,所得到的TSOP型半导体组件经吸湿后的焊锡浴处理,有裂纹产生。
比较例3
与实施例4相同地进行,得到比浓粘度是0.35dl/g的聚酰亚胺粉末,Tg是275℃,热分解温度是410℃。吸水率是0.6%(重量),溢出长度是3.4mm。
与实施例4相同地进行,所得到的复合片与42合金的粘结力是0.9KN/m。与实施例1相同地进行操作,所得到的TSOP型半导体组件经吸湿后的焊锡浴处理,有裂纹产生。
比较例4
除使用4.10g(10mmol)乙二醇双偏苯三酸酯二酐和4.32g(10mmol)双[4-(3-氨基苯氧基)苯基]砜外,与实施例1相同地进行操作,得到聚酰亚胺粉末。
比浓粘度是0.44dl/g,Tg是187℃,热分解温度是465℃。吸水率是1.1%(重量),溢出长度是2.2mm。
与实施例1相同地进行操作,所得到的TSOP型半导体组件经吸湿后的焊锡浴处理,有裂纹产生。
这些结果示于下表1中。
表1(1)
表1(2)
表1(3)
表1(4)
缩写符号
IP:间苯二酸
TA:偏苯三酸酐
LP-7100:甲硅烷氧基胺,信越化学工业(株)商品名
IPDDM:4,4’-二氨基-3,3’,5,5’-四异丙基二苯基甲烷
DDS:4,4’-二氨基联苯砜
BTDA:3,3’,4,4’-二苯甲酮四羧酸二酐
BAPP:2,2-双[4-(4-氨基苯氧基)苯基]丙烷
DSDM:双(3,4-二羧氧基苯基)砜酐
161AS:X-22-161AS甲硅烷氧基胺,信越化学工业(株)制造,商品名
P-APPS:双[4-(4-氨基苯氧基)苯基]砜
m-APPS:双[4-(3-氨基苯氧基)苯基]砜
EBTA:乙二醇双偏苯三酸酯二酐
DDMA:十二亚甲基二胺
γ-GPTM:γ-环氧丙氧基丙基三甲氧基硅烷
γ-GPME:γ-环氧丙氧基丙基甲基二乙氧基硅烷
本发明的耐热粘结剂具有优异的抗组件裂纹性,尤其是有提高半导体组件可靠性的效果。
附图的简单说明
图1是在由使用本发明耐热粘结剂的粘结部件将半导体芯片与引线框架粘结,用密封材料密封半导体芯片、半导体芯片与引线框架的粘结部而制造半导体组件中,表示半导体芯片相对位于引线框架下侧状态的模式图。
图2是在图1的半导体组件中,半导体芯片相对位于引线框架上侧时的模式图。
图3是在图1的半导体组件中,半导体芯片相对位于引线框架上侧时的模式图。
符号说明
1 粘结部件
2 半导体芯片
3 引线框架
4 引线
5 密封材料