具有优异耐磨性能的耐磨材料 及其制备方法 本发明涉及具有优异耐磨性能的耐磨材料及其制备方法,更具体地涉及包括固态润滑层的多层结构的,且具有优异耐磨性能的耐磨材料及其制备方法,所述固态润滑层对支撑里带或枢/套接合的移动侧提供润滑,在食品机械,轮船和气机的上述地方很难再填充润滑剂或停止接触移动侧以加油。
通常,由于通过表面硬化方法如渗碳,感应硬化以及渗氮对硬度进行了改善,用于机械接合部位的耐磨材料在高负载和低速下具有抗磨损性能。然而,当相应的摩擦材料是铁时,材料的润滑性能则很差,具有很高的摩擦系数,其原因是由于渗碳层、渗氮层或感应硬化层或由于简单快速的热-冷马丁体相变硬化(描述于USP5,217,544)而在基质上形成材料的硬性化合物层。
为解决上述问题,通过向接触移动侧加入润滑剂形成润滑膜。然而,如果使用低粘度的润滑油,则上述膜很容易被破坏,金属与金属间则产生摩擦。同时,也需要高性能的防泄露装置以保护恒定的润滑。使用高粘度的润滑油对存在问题可提供(良好的)油膜以及很小的油泄露。但是,接下来的问题是:在接触移动过程中,润滑剂从表面被带走而不能再提供,且由于摩擦生热而使润滑油裂解。为了使用高粘度的滑油剂如再使用润滑油,使用了加压的办法,以使润滑剂再充到摩擦基质地油裂解中。在摩擦基质上形成槽作为润滑剂活性填料的通道。
为保持所述作用,润滑剂应当定期填充。但由于短期内的填充则需要许多填料口,因此而导致时间的大量消耗。同时,如果填料位置位于复杂装置的较高或中部,就很难维修或检查机械。因此,必须注意上述各种状况。此外,擦划和咬接摩擦会引起损坏,而此损坏则衍变成滞塞而使机器裂缝或很难操作机器。
为解决所述问题USP 5,271,679;5,332,422;5,222,816;5,207,513和5,271,619中公开了使用MoS2和PTFE固态润滑剂的方法。这些固态润滑剂涂层不仅可降低磨擦系数,而且降低它们表面的负载支撑能力(抗压性能)。特别是,在摩擦剪切力作用下,润滑剂层很容易从需要润滑的表面除去,而其功能早已丧失。
此外,USP5,277,785中的硬铬涂层不仅导致高硬度和高的铁亲和力,同时也由于涂层厚度为20-30微米,在摩擦过程中其被剥离而引起擦划摩擦磨损。还有一些有关等离子体喷雾硬化材料的其它表面硬化的涂层方法,如USP5,305,726中使用氧化铝,USP5,230,750中使用高熔点和高硬度的氧化铬酸盐,USP5,201,917中使用碳化锰,USP5,194,304;5,313,919和5,332,422中使用硼化合物,而USP5,213,848中则使用硝酸钛。然而,这些材料对钢基质具有很低的粘附性,它的物理性质如热膨胀系数也彼此不同。同时,它们较低的弯曲性和抗冲击性能也使其在磨损材料应用方面由于较差的滑动作用而受到限制。
因此,本发明的目的是提供具有优异耐磨性能的、在基体上有突起,且在突起上具有固态润滑剂的耐磨材料,以及其制备方法。本发明的另外目的是提供在高负载低速运动接合处使用的耐磨材料,本发明的再一个目的是提供具有长期的使用寿命,且润滑剂再供应期较缓的耐磨材料。
本发明的所述目的通过提供制造本发明耐磨材料的方法来完成,包括使用带振动器的焊接装置的电火花焊接技术在基体上形成突起的步骤,以及通过涂布具有耐磨材料固态润滑剂在突起上形成固态润滑剂层的步骤。
优选的突起材料是铜合金,钼合金,钴合金,铁合金和其它金属。
固态润滑剂优选的是MoS2或或PTFE(聚氟乙烯)
固态润滑剂也可能是Pb,Sn,Bi,Zn和其合金。
本发明的所述目的也可以通过提供包括基体;基体上由电火花焊接技术形成的突起层;以及附于基体上的固态润滑剂的耐磨材料来完成。
通过下面结合附图对实施方案的描述说明,本发明的其它目的和方面会更加明了。附图中:
图1描述了在基体表面用焊接方法形成突起的情况。
图2是本发明形成的突起的截面图。
图3是固态润滑剂应用于本发明突起的截面图。
图4是本发明表面层的光学显微照片(100倍)。
图5是焊接方法的简图。
如图1到图5所示,使用带振动器的焊接装置通过电火花焊接在钢(SM45C)的基体(1)上形成突起(2)制备来发明的耐磨材料,然后将具有润滑性能的固态润滑剂层(3)应用于突起(2)上。
所述材料的制备方法详细描述于下:通过气流或有机溶剂如乙醇和丙醇将SM45C基体(1)的摩擦表面清洁,并进行干燥。使用经济电极(4)通过火花焊接术在基体的表面上形成突起(2)。在火花焊接阶段,振动下快速移动电极(4)(参考附图1)。使用如铜合金,钼合金,钴合金,铁合金和其它金属等耐磨材料作为突起材料是适宜的。上述突起改善了基体的抗压(负载支撑能力)和耐磨能力。
将固态润滑剂层(3)涂布在突起(2)上。优选使用MoS2或PTFE;或软金属如Pb,Sn,Zn和Bi,或其合金作为固态润滑剂层(3)的材料。由于此层的作用,由摩擦引起的基体表面上的损伤和剪切流动将得到避免,摩擦表面的润滑作用将得到稳定的维持。
因此,如果具有包括突起(2)和固态润滑剂层(3)的多层耐磨材料用于套管接合处,抗滞塞性,耐磨性以及润滑剂的补充周期将得到极大的改善。
总之,将固态润滑剂应用于通过电火花技术形成突起的多层耐磨材料具有优异的耐磨、抗滞塞、抗压和润滑性能。这是由于突起因焊接材料的硬度而对耐磨材料提供了负载支撑能力,固态润滑剂提供了抗由摩擦引起的基体表面上的损伤和剪切流动能力,因而在摩擦表面具有稳定润滑作用。
由电火花焊接术形成的突起的高度,宽度和孔径可根据接合处的操作条件如活动负载和滑动速度而调整。也能将这些材料用于如重型机械,飞机,轮船,航空器和潜艇等这些长期不检查机械的接合处,这些地方很难补充润滑剂。
参考图5,将工件(12)装于卡盘(11)后,通过带有振动器(14)和电极夹(13)的焊接装置(15)进行电火花焊接。
图4描述了本发明材料的各层情况。
实施例
本发明人将本发明的耐磨盘片与仅涂覆有MoS2的盘片作了比较,并将其结果记载于表1中。
耐磨测试方法:盘片环形磨擦磨损试验测试条件:负载800kgf
压力4kgf/mm2
滑动速度300mm/sec
干燥状态样品:环形-SM45C钢,高频硬化,表面硬度为HRC58-62
盘片为SM45C钢,淬火-回火,硬度HRC20,本发明焊接条件表面
焊接
电极-铜合金电极(2.3%Mn,0.0087%Cr,0.16%Fe,0.015%Al,0.32%Ni.
0.0059%Si,平衡Cu)
振动频率120Hz
电压740V
功率88瓦
焊接速率3.2cm2/分钟采用掺杂在聚合物树脂中的固态润滑剂MoS2,其成分为现有技术已知。
表1实施例号滞塞时间 (秒)摩擦系数 μ摩损深度 (mm)滑动距离 (m)焊接厚度 (μm)固态润滑剂层厚度比较例1 8,600 0.04-0.05 0.054 258 - 45比较例2 15,450 0.04-0.06 0.062 464 - 47实施例1 504,500 0.07-0.09 0.033 15,135 14 46实施例2 454,500 0.06-0.09 0.052 13,635 13 37实施例3 276,050 0.08-0.10 0.036 8,382 19 37
在表1中,比较例1和2仅采用现有技术的固态润滑剂材料,而实施例1,2及3采用本发明的材料,利用振动机焊接在盘片表面,然后其上施以固态润滑剂。
如表1所示,现有技术的材料的滞塞时间比本发明的短得多。一般而言,具有小摩擦系数的材料具有小的摩损,但是也会发生由摩擦生热导致的滞塞,并且既使摩损小,机器也不再工作。为避免这种故障,可采用诸如PTFE和MoS2这样的固态润滑剂,以使防止滞塞,减小摩擦系数成为可能。然而,在高压下,会由于耐压不足而导致摩损加剧。本发明较现有技术具有优良的防滞塞性能及较长的工作时间。
如上所述,在接合处的情况下,本发明能扩展到所检测的间隙以再次提供润滑剂,这是由于润滑剂所具有的润滑作用,这是现有技术的表面硬化方法所形成的材料不具备的。这一特征延长了接合处的寿命,并且通过增加防滞塞能力和耐磨能力,解决了频繁更换部件及由摩擦损坏所致的噪声之类的问题。
选择硬金属作为焊接材料可使所创新的表面产生优异的承载性能,并且在干燥条件下形成平坦的多层,涂覆所述层到所述基底的摩擦表面,增强防滞塞能力、耐磨、耐压能力,特别增长了再次供给润滑剂的时间周期。因此,本发明的耐磨材料在干燥条件下可适用,并且能应用于现有技术所不能胜任的需要高负载、低速度和高剪切力的机器中。