书签 分享 收藏 举报 版权申诉 / 31

胞内或胞外协同表达两种抗真菌病基因培育抗病作物.pdf

  • 上传人:62****3
  • 文档编号:438521
  • 上传时间:2018-02-16
  • 格式:PDF
  • 页数:31
  • 大小:1.23MB
  • 摘要
    申请专利号:

    CN99100394.2

    申请日:

    1999.01.28

    公开号:

    CN1229141A

    公开日:

    1999.09.22

    当前法律状态:

    终止

    有效性:

    无权

    法律详情:

    专利权的终止(未缴年费专利权终止)授权公告日:2003.10.22|||授权|||公开|||

    IPC分类号:

    C12N15/79; C12N5/10; A01H5/00; A01H5/10

    主分类号:

    C12N15/79; C12N5/10; A01H5/00; A01H5/10

    申请人:

    中国农业科学院生物技术研究中心;

    发明人:

    贾士荣; 杨红华

    地址:

    100081北京市海淀区白石桥路30号中国农业科学院生物技术研究中心

    优先权:

    专利代理机构:

    北京蓟阳专利事务所

    代理人:

    邓亚琥

    PDF完整版下载: PDF下载
    内容摘要

    本发明利用几丁质酶和β-1,3-葡聚糖酶之间存在的协同作用,分别构建了两个定位于细胞内或细胞外的几丁质酶基因和β-1,3-葡聚糖酶基因的双价基因植物表达载体,通过花粉管通道法转化棉花,可以或者在胞内同时表达两种抗病基因,或者在胞外同时表达两种抗病基因,或者在棉花子房注射时同时具备胞内、胞外两类植物表达载体进行共转化,使转基因棉花同时具备胞内、胞外四价基因,在胞内和胞外同时建立抗真菌侵染的防御体系。

    权利要求书

    1: 含有菜豆几丁质酶基因或/和橡胶β-1,3-葡聚糖酶基因的重组 表达载体,其特征为在生物体内能表达具有生物活性的几丁质酶或/ 和β-1,3-葡聚糖酶,其中所说的生物活性为降解几丁质或/和葡聚糖。
    2: 根据权利要求1的重组表达载体,其中所说的生物体包括植 物、动物和微生物。
    3: 根据权利要求1的重组表达载体,所说的表达分为细胞内表 达和细胞外表达两种。
    4: 根据权利要求3的重组表达载体,其中所说的细胞内表达是 通过几丁质酶基因或/和β-1,3-葡聚糖酶基因本身的结构及重组载体的 结构来实现的。
    5: 根据权利要求3的重组表达载体,其中所说的细胞外表达是 通过几丁质酶基因或/和β-1,3-葡聚糖酶基因结构进行改造和修饰后实 现的。
    6: 根据权利要求5的重组表达载体,其中所说的对几丁质酶基 因进行的改造和修饰,是指去掉决定几丁质酶基因在细胞内表达的定 位信号--3’端酸性延伸部分(CTPP)。
    7: 根据权利要求5的重组表达载体,其中所说的对葡聚糖酶基 因进行的改造和修饰,是指通过去掉决定葡聚糖酶基因在细胞内表达 的定位信号--5’端信号肽序列和3’端酸性延伸部分(CTPP),并在 已修饰过的葡聚糖酶基因的5’端重新拼接上一个已确证能将细胞内 定位的蛋白质分泌到细胞外的大麦α-淀粉酶信号肽序列。
    8: 根据权利要求1的重组表达载体的,所说的重组表达载体是 指在编码几丁质酶基因或/和β-1,3-葡聚糖酶基因的5’端可操作地连接 有一个或多个酶切位点、一个或多个不同来源的启动子序列、一个或 多个不同来源的增强子序列、Ω序列、Kozak序列和分泌信号序列、 编码几丁质酶基因或/和β-1,3-葡聚糖酶基因的DNA序列、以及3’端 带有多酶切位点及一个或多个不同来源的终止序列。
    9: 根据权利要求8的重组表达载体,其中所说的启动子序列是 指任何能驱动结构基因在植物中表达的启动子,如甘露碱合成酶基因 的启动子、花椰菜花叶病毒的35S启动子、由甘露碱合成酶基因的启 动子与花椰菜花叶病毒的35S启动子相融合而成的启动子、带有两个 增强序列的花椰菜花叶病毒的35S启动子、以及适用于在单子叶植物 中表达的如Ubi、Emu、Actin启动子。
    10: 根据权利要求8的重组表达载体,其中所说的终止序列是 指任何能终止结构基因在植物中表达的终止子,如质粒pTiA6的T- DNA7’5’双向终止子、章鱼碱合成酶基因终止子、花椰菜花叶病毒 35S RNA终止子等等。
    11: 由根据权利要求8至10中任何一项的重组表达载体转化的 植物细胞或其愈伤组织。
    12: 由根据权利要求11的被转化的细胞或愈伤组织再生的转基 因植物。
    13: 根据权利要求12的转基因植物,其中所说的植物是任何一 种单子叶植物或双子叶植物的完整植株或部分或种子及其后代。
    14: 根据权利要求12的转基因植物,其中所说的转基因植物可 以分别在细胞内或细胞外、或同时在细胞内和细胞外表达几丁质酶或 /和β-1,3-葡聚糖酶基因。 15根据权利要求13或14的转基因植物,其中所说的植物包括 由转基因植物作为亲本杂交或转育所产生的植物。

    说明书


    胞内或胞外协同表达两种抗真菌病基因培育抗病作物

        本发明涉及编码几丁质酶和β-1,3-葡聚糖酶的DNA序列,包含所说DNA序列的植物表达载体,被所说的表达载体转化的植物细胞,以及由所说的转化细胞产生的对病原菌表现抗性的转基因植物及其后代,包括植物种子、完整植株及植物体的器官、组织和细胞。

        细菌、真菌和病毒性病害是危害农作物的三大病害。其中,真菌性病害一直是世界范围内限制农作物产量的重要制约因素。例如在我国,1993年棉花黄萎病大暴发,发病面积达266.67万公顷,重病田100万公顷,当年损失皮棉1亿公斤,价值10亿元。据1981年的统计资料,尽管用于防治植物病害的农药投入达1亿美元,但全世界的粮食损失仍占总产量的10%左右。

        由于植物病原微生物对各种农药逐渐产生抗药性,并且由于农药易造成环境污染,残留的农药进入食物链后又会对人或动物的健康造成损害,而使农药的应用受到限制。因此,长期以来人们一直借助传统的育种方法来培育具有抵抗不同病害的新作物品种。然而,由于传统育种周期长,病原菌变异迅速,可供利用的抗原匮乏等原因,致使传统育种方法难以满足需要。随着分子生物学、植物病理学及基因工程技术地迅猛发展,运用基因工程手段提高植物的抗病性为抗病育种开辟了一条崭新途径。

        已知在高等植物抗病能力的形成过程中,最明显的是植物在被病原菌侵染后一些多肽的积累。包括:1〕与植物抗毒素(对细菌和真菌具有毒性的次生代谢物)的合成有关的酶类;2〕与通过修饰植物细胞壁而对真菌侵染形成物理屏障的有关酶类;3〕丝氨酸蛋白酶抑制剂;¨能够降解真菌细胞壁的水解酶(如:几丁质酶和β-1,3-葡聚糖酶)(Broglie K.E.et al.Proc Natl Acad USA 83:6820-6824,1986)。

        几丁质酶(chitinase)是催化几丁质多聚体N-乙酰葡糖胺β-1,4-键水解的一类酶。已在许多植物种类中发现几丁质酶的存在,包括双子叶植物中的菜豆、黄瓜、马铃薯、烟草和单子叶植物中的大麦、玉米、水稻等等(Broglie et al.Proc Nalt Acad USA 83:6820-6824,1986;Shishi et al.Proc Nalt Acad USA 85:5541-5545,1987;Metraux etal.Proc Nalt Acad USA 86:896-900,1988;Gaynor and Unkenholz,Nucleic Acids Res 17:5855-5856,1989;Laflamme and Roxby,PlantMol Biol 13:249-250,1989;Swegle et al.Plant Mol Biol 12:403-412,1989;Zhu and Lamb,Mol Gen Genet 226:289-296,1991)。并证实植物几丁质酶基因的表达在发育水平和激素水平上受到许多复杂因素的调控(Shishi et al.Proc Nalt Acad Sci USA 85:5541-5545,1987;Boller,Oxford Surveys Plant Mol Cell Biol 5:145-176,1989;Lotan et al.Plant Cell 1:881-887,1989;Swegleet al.Plant Mol Biol 12:403-412,1989)。另外,几丁质酶的活性在受到创伤、乙烯或微生物信号分子作用时可显著提高(Boller etal.Planta 157:22-31,1983;Broglie et al.Proc Nalt Acad USA83:6820-6824,1986;Broglie et al.Plant Cell 1:599-607,1989;Hedrick et al.Plant Physiol 86:182-186,1988;Parsons et al.Proc Nalt Acad USA 86:7895-7899,1989),并且几丁质酶参与了植物在被微生物侵染时所产生的过敏性抵抗反应(Metraux and Boller,Physiol Mol Plant Pathol 28:161-169,1986:Metraux et al.Physiol Mol Plant Pathol 33:1-9,1988;Bller,Oxford SurveysPlant Mol Cell Biol 5:145-176,1989)。

        植物几丁质酶的分子量约为25-35kDa,等电点范围较大,通常以单体的形式出现。基于一级结构的小的差异,可将几丁质酶至少分成四种类型:第I类几丁质酶带有一个约40个氨基酸的半胱氨酸丰富的N末端和一个被可变的铰链区分割的高保守的成熟蛋白区;第II类几丁质酶没有半胱氨酸丰富的N末端,但其成熟蛋白区的氨基酸序列与第I类几丁质酶有很高的同源性;第III类几丁质酶与第I类和第II类几丁质酶在序列上都没有相似性;第IV类几丁质酶在全序列上与第I类几丁质酶有很高的同源性,其区别在于第IV类几丁质酶比第I类几丁质酶少了四个片段,这四个片段的缺失分别发生在N端(一个)和成熟蛋白区(三个),所以第IV类几丁质酶的成熟蛋白区仅有241-255个氨基酸,比第I类几丁质酶300个氨基酸的成熟蛋白区明显小了很多(Collinge et al.Plant J 3:31-40,1993)。

        与几丁质酶类似,在许多植物种类中都发现了β-l,3-葡聚糖酶。β-1,3-葡聚糖酶是一类催化β-l,3-葡聚糖β-1,3-键水解的酶类。根据其一级结构的差异,可将β-l,3-葡聚糖酶至少分成三类。第II类和第III类β-1,3-葡聚糖酶是一类分子量约为35kDa的分泌蛋白,包括植物病程相关蛋白(PR蛋白)家族中的酸性β-l,3-葡聚糖酶(Kauffman et al.EMBO J 6:3209-3212,1987;Payne et al.PlantMol Biol 15:797-808,1990)和两种分子量约为41kDa的β-1,3-葡聚糖酶(Ori et al.EMBO J 9:3429-3436,1990)。第I类β-1,3-葡聚糖酶呈碱性,分子量约为33kDa并且定位于细胞内的液泡中(vanden Bulcke et al.Proc Nalt Acad USA 86:2673-2677,1989;Keefeet al.Planta 182:43-51,1990)。

        免疫细胞化学和细胞的分级分离方法用来研究不同类型几丁质酶的细胞定位(Boller and Metraux.Physiol Mol Plant Pathol 33:11-16,1988;Bller and Vogeli.Plant Physiol 74:442-444,1984;Fink et al.Plant Physiol 88:270-275,1988;Flemming et al.Physiol Mol Plant Pathol 39:147-160,1991;Keefe et al.Planta182:43-51,1990;Mauch and Staehelin,Plant Cell 1:447-457,1989;Nesser et al.Physiol Mol Plant Pathol 36:1-14,1990)。得出的一般结论是:许多隶属第I类型的几丁质酶定位于细胞内的液泡中,而其它类型的几丁质酶定位于细胞外。已有研究证实隶属第I类型的呈碱性的烟草几丁质酶在其氨基酸序列的C端上有一个约6个氨基酸残基的延伸部分(CTPP)是决定该酶定位于液泡的充分必要条件(Neuhaus et al.Proc Natl Acad Sci USA 88:10362-10366,1989)。从烟草、菜豆、马铃薯、杨树和拟南芥中分离得到的碱性的第I类型几丁质酶在C端都有这样一个显著的决定液泡定位的信号序列。而第IV类几丁质酶(如从甘蔗和葡萄分离的几丁质酶)和一些第I类型的几丁质酶(如从水稻和大麦中分离的几丁质酶)由于缺乏C端的CTPP序列而定位于胞外(Huang et al.Plant Mol Biol 16:479-480,1991;Rasmussen et al.Plant Mol Biol 20:277-287,1992;Swegle et al.Plant Mol Biol 12:403-412,1989)。对不同类型β-1,3-葡聚糖酶在植物细胞中的定位研究也得到了与几丁质酶类似的结果,即呈碱性的第I类β-1,3-葡聚糖酶定位于细胞内的液泡中;其它类型的β-1,3-葡聚糖酶定位于胞外(Keefe et al.Planta 182:43-51,1990)。将第I类型几丁质酶和第I类型β-1,3-葡聚糖酶的CTPP去掉后构建成的嵌合基因转化烟草,结果表明经修饰的基因的产物定位于胞外,进-步证实CTPP是决定几丁质酶和β-1,3-葡聚糖酶在液泡中定位的信号序列(Neuhaus et al.Proc Natl Acad Sci USA 88:10362-10366,1989)。并且已有实验证明从这些转基因烟草中分离纯化的酶蛋白仍保持原来的活性(Sela-Buurlage et al.Plant Physiol 101:857-863,1993)。

        人们之所以推测几丁质酶和β-1,3-葡聚糖酶可能是植物防御体系的两种防卫因子是以下列事实为依据的:1〕在高等植物中经常发现有很高的几丁质酶和β-1,3-葡聚糖酶活性。然而,在植物体中并不含有几丁质酶的作用底物-几丁质;并且β-1,3-葡聚糖酶的作用底物-β-l,3-葡聚糖在植物中的含量也很低。但几丁质和β-1,3-葡聚糖却是许多真菌细胞壁的重要组成成分,它们很可能是这两种植物水解酶的天然底物(Boller,In:T Kosuge,EW Nester(eds)Plant-Microbe Interactions.Vol 2.Macmillan,New York,385-413,1987);2〕几丁质酶和β-1,3-葡聚糖酶均可被乙烯和病原真菌侵染所诱导或被病原菌驱使的信号分子所诱导(Mauch et al.PlantPhysiol 76:607-611,1984;Pegg and Young,Physiol Plant Pathol19:371-382);3〕体外实验表明,纯化的几丁质酶和β-1,3-葡聚糖酶具有抗真菌活性,并且可以协同作用降解真菌细胞壁,从而抑制真菌的生长(Schlumbaum et al.Nature 324:365-367,1986;Mauch etal.Plant Physiol 88:936-942,1988;Boller,In:Fritig B,Legrand M(eds.)Mechanisms of Plant Defense Responses.391-400,the Netherland:Kluwer Academic Publishers,1992)。

        真正证实几丁质酶和β-1,3-葡聚糖酶的体内抗菌作用是从转基因植物入手的。菜豆几丁质酶基因在转基因烟草和油菜中的高效表达可减轻病原真菌Rhizoctonia solani的侵染症状(Broglie et al.Science 254:1194-1197,1991;Broglie and Broglie,In:FritigB,Legrand M(eds.)Mechanisms of Plant DefenseResponses.411-421,the Netherland:Kluwer AcademicPublishers,1992);大豆的β-1,3-葡聚糖酶基因在转基因烟草中的表达可减轻病原菌Phytophthora parasitica的侵染(Yoshikawa et al.Naturwissenschaften 80:417-420,1993)。几丁质酶和β-1,3-葡聚糖酶转基因烟草相互杂交后,后代中具有双价基因的转基因植株可比它们各自的单价转基因烟草更能抵抗病原菌Cercosporanicotianae的侵染(Zhu et al.Bio/Technology 12:807-812,1994)。本实验室将几丁质酶基因和β-1,3-葡聚糖酶基因构建在同一表达载体上,并对基因及表达元件进行设计和修饰,使两者同时表达在细胞内(液胞)或细胞外,在分别使用时,可分别在细胞内或细胞外建立对真菌的防御体系,在合并使用时,期望在胞内和胞外同时建立防御体系,以增强转基因植物的抗病性。这是本发明的创新之点。

        Mauch等最早观察到几丁质酶和β-1,3-葡聚糖酶对真菌细胞壁的降解具有协同作用。用从豌豆豆荚中分离纯化的几丁质酶和β-1,3-葡聚糖酶对18种真菌进行了体外抑菌实验。结果表明:几丁质酶和β-1,3-葡聚糖酶单独作用对许多真菌的生长不起抑制作用,仅几丁质酶单独作用时可抑制Trichoderma viride的生长;而两者共同作用则可抑制全部受测真菌的生长(Mauch et al.Plant Physiol 88:936-942,1988)。不同类型的几丁质酶和β-1,3-葡聚糖酶在体外对Fusarium solani的抑菌实验中显示了强度不一的抑制作用。在几丁质酶中,5μg的第I类型的几丁质酶能够裂解F.solani的菌丝,而50μg的第II类型的几丁质酶则不能裂解F.solani的菌丝。在β-1,3-葡聚糖酶中也是如此,即仅第I类型的β-1,3-葡聚糖酶对F.solani有裂解作用。而0.1μg的第I类型的几丁质酶和0.1μg的第I类型的β-1,3-葡聚糖酶就可完全抑制F.solani的生长(Sela-Buurlageet al.Plant Physiol 101:857-863,1993)。转基因烟草对Cercosporenicotianae的抗性分析表明,几丁质酶和β-1,3-葡聚糖酶双价基因的转基因植株的抗病性高于各个单价基因的二倍体纯合转基因植株,证实了两者在植物体内的协同作用(Zhu et al,Bio/Technology 12:807-812,1994)。由此可见,几丁质酶和β-1,3-葡聚糖酶对真菌的抑制作用不是一种简单的累加,而是一种互补的协同增效作用。

        关于几丁质酶和β-1,3-葡聚糖酶的作用机制,许多研究表明几丁质酶可以抑制含有几丁质的真菌的细胞壁的生长(Broekaert et alPhysiol Mol Plant Pathol 33:319-331,1988;Roberts andSelitrennikoff.J.Gen.Microbiol 134:169-176,1988;Schlumbaum et al,Nature 324:365-367,1986)。在真菌菌丝体的顶端生长过程中,生长着的菌丝体顶端同时合成了几丁质和β-1,3-葡聚糖细丝;在远离顶端的成熟细胞壁中,由几丁质和β-1,3-葡聚糖细丝交织而成的多糖可能被其它多糖和蛋白质层所覆盖(Wessels,Int.Rev.Cytology 104:37-39,1986;Neerl,Acta Bot.37:3-16,1988)。所以在菌丝体顶端,那些裸露的新生的几丁质链容易遭到几丁质酶的降解,而那些位于成熟细胞壁中的几丁质层则不易受到酶的降解。许多研究者对菌丝体肿胀或裂解的观察也证实了几丁质酶对未成熟细胞壁的破坏作用(Boller et al.Planta 157:22-31,1993;Broekaert et al.Science 245:1100-1102,1988;Ordentlich et al.Physiol 78:84-88,1988)。而且在体外实验中,单独的豌豆几丁质酶作用不能抑制许多受测真菌的生长,表明几丁质酶要发挥其对真菌的有效抑制作用还需要其它抗菌因子(如β-1,3-葡聚糖酶)的协同作用(Collinge et al.The Plant J 3:31-40,1993)。免疫细胞化学技术的出现给几丁质酶在植物体内对真菌细胞壁的降解作用带来了直接的证据(Benhamou et al.Plant Physiol 92:1108-1120,1990)。研究证实几丁质酶在侵染进入植物的真菌细胞壁的周围积累;而且几丁质酶主要是出现在已被改变了的细胞壁周围,表明该酶的激活是在其它水解酶如β-1,3-葡聚糖酶的作用之后或是与这些酶共同进行。此假说已被几丁质酶和β-1,3-葡聚糖酶在体外抑制真菌生长的协同作用所支持(Mauch,et al.Plant Physiol 88:936-942,1988)。考虑到不同类型几丁质酶的细胞定位和它们在植物防卫体系中的作用,人们推测胞外的几丁质酶可能参与了一种早期的、被诱导的防卫反应。它们可能通过阻断菌丝体的生长与真菌发生直接作用来防止真菌进一步侵染到植物细胞内部;并且还可能间接地释放一些真菌信号分子诱导其它几丁质酶的活性和寄主的其它防卫反应(Barber et al.Physiol Mol Plant Pathol 34:3-12,1989;Kurosaki et al.PlantCell Physiol 29:527-531,1988;Roby et al.Carbohydr Res 165:93-104,1987)。可见,定位于液泡内的几丁质酶只有当细胞破裂后把液泡中的内含物释放到胞外空间即在真菌侵染过程的后期才能发挥功效(Mauch and Staehelin,Plant Cell 1:447-457,1989)。

        事实上,已有许多研究表明植物的防御体系中,多个防卫因子的协同作用可以增强植物的抗病能力。如从大麦种子中分离出来的核糖体失活蛋白的抗菌活性在几丁质酶的加入后可大大增强。其原因在于几丁质酶降解菌丝体细胞壁后可促使核糖体失活蛋白进入真菌细胞发挥其抗菌活性(Leah et al.J Biol Chem 266:1564-1573,1991);小麦和大麦thionin蛋白的抑菌活性在分别加入油菜2S清蛋白酶抑制剂和大麦胰蛋白酶抑制剂后大大提高(Terras et al.Plant Physiol103:1311-1319,1993)。因此,根据不同抗菌蛋白的互补功能进行组合,应用基因工程的方法培育作物抗病品种,不仅能够增强作物抵抗某一病害的能力,而且还能减少由于病原菌突变造成的抗性丧失,从而使作物获得广谱、持久的抗病能力。

        由于病原菌对植物的侵染最早是发生在细胞表面,并且许多病原真菌就是寄主在植物细胞的外层空间而不进入细胞内,而胞内合成的抗菌蛋白需要跨过液泡膜和质膜等才能进入细胞外层空间即它们不能很快接触到病菌,故限制了它发挥抑菌作用,细胞破裂后则又可能造成抗菌蛋白被降解。更多的时候,定位于胞内的抗菌蛋白可能是植物在被病原菌侵染后产生的过敏性反应中发挥作用。

        本发明的目的是为了提高抗菌蛋白的抑菌作用,通过对定位于细胞内的几丁质酶基因和β-1,3-葡聚糖酶基因的核苷酸序列进行修饰,在确保其抗菌活性不受影响的情况下使其表达产物分泌到细胞外,在细胞表面建立保护机制。

        本发明涉及含有菜豆几丁质酶基因或/和橡胶β-1,3-葡聚糖酶基因的重组表达载体,其特征为在生物体内能表达具有生物活性的几丁质酶或/和β-1,3-葡聚糖酶,其中所说的生物活性为降解几丁质或/和葡聚糖。

        根据本发明的重组表达载体,其中所说的生物体包括植物、动物和微生物,首选为植物。

        根据本发明的重组表达载体,其中所说的表达方式分为细胞内表达和细胞外表达两种。

        根据本发明的重组表达载体,其中细胞内表达是通过几丁质酶基因或/和β-1,3-葡聚糖酶基因本身的结构及重组载体的结构来实现的。

        根据本发明的重组表达载体,其中细胞外表达是通过几丁质酶基因或/和β-1,3-葡聚糖酶基因结构进行改造和修饰后实现的。

        根据本发明的重组表达载体,其中所说的对几丁质酶基因进行的改造和修饰,是指去掉决定几丁质酶基因在细胞内表达的定位信号--3’端酸性延伸部分(CTPP)。

        根据本发明的重组表达载体,其中所说的对葡聚糖酶基因进行的改造和修饰,是指通过去掉决定葡聚糖酶基因在细胞内表达的定位信号-5’端信号肽序列和3’端酸性延伸部分(CTPP),并在已修饰过的葡聚糖酶基因的5’端重新拼接上一个已确证能将细胞内定位的蛋白质分泌到细胞外的大麦α-淀粉酶信号肽序列。

        根据本发明的重组表达载体,所说的重组表达载体是指在编码几丁质酶基因或/和β-1,3-葡聚糖酶基因的5’端可操作地连接有一个或多个酶切位点、一个或多个不同来源的启动子序列、一个或多个不同来源的增强子序列、Ω序列、Kozak序列和分泌信号序列、编码几丁质酶基因或/和β-1,3-葡聚糖酶基因的DNA序列、以及3’端带有多酶切位点及一个或多个不同来源的终止序列。

        根据本发明的重组表达载体,其中所说的启动子序列是指任何能驱动结构基因在植物中表达的启动子,如甘露碱合成酶基因的启动子、花椰菜花叶病毒的35S启动子、由甘露碱合成酶基因的启动子与花椰菜花叶病毒的35S启动子相融合而成的启动子、带有两个增强序列的花椰菜花叶病毒的35S启动子、以及适用于在单子叶植物中表达的如Ubi、Emu、Actin启动子等等。在实施例中优选的是带有  两个增强序列的花椰菜花叶病毒的35S启动子。

        根据本发明的重组表达载体,其中所说的终止子是指任何能终止结构基因在植物中表达的终止子,如质粒pTiA6的T-DNA7’5’双向终止子、章鱼碱合成酶基因终止子、花椰菜花叶病毒35S RNA终止子等等。在实施例中优选的是章鱼碱合成酶基因终止子。

        根据本发明的重组表达载体,所说的重组表达载体是指任何与上述的构建思路相一致的含有几丁质酶基因或/和β-1,3-葡聚糖酶基因的载体。

        本发明进一步涉及由本发明的重组表达载体转化的植物细胞或其愈伤组织。

        本发明还涉及由根据本发明的被转化的细胞或愈伤组织再生的植物。

        根据本发明的上述的被转化的细胞或愈伤组织再生的植物,其中所说的植物可以是任何一种单子叶植物或双子叶植物的完整植株或部分或种子及其后代。转基因植物可以分别在细胞内或细胞外、或同时在细胞内和细胞外表达几丁质酶或/和β-1,3-葡聚糖酶基因,以便在植物细胞内、外分别或同时建立抗真菌病原物侵染的防御体系,这是本专利设计思想的核心部分。

        根据本发明的上述的被转化的细胞或愈伤组织再生的植物,其中所说的植物包括由转基因植物作为亲本杂交或转育所产生的植物。

        附图简要说明

        图1为表达载体pBCE的质粒图谱。

        图2为表达载体pBGE的质粒图谱。

        图3为表达载体pBCI的质粒图谱。

        图4为表达载体pBGI的质粒图谱。

        图5为分泌型胞外定位双价基因表达载体pGCE的质粒图谱。

        图6为表达载体pGCI的质粒图谱。

        图7为转几丁质酶基因(Chi基因)棉花的分子检测结果图谱,其中,1:DNA分子量对照(DNA marker);

          2:阳性对照(即用含chi基因质粒DNA做为模板)扩增出一条约950bp的DNA条带;

          3~17:示部分阳性转基因棉花植株的PCR结果,即扩增出一条约950bp的DNA条带。

        图8为转葡聚糖基因(Glu基因)棉花的分子检测结果图谱。

        1:DNA分子量对照(DNA marker);

        2:阳性对照(即用含Glu基因质粒DNA做为模板)扩增出一条950bp的DNA条带;

        3,8,9,11,12,14,15,16,17示部分阴性转基因棉花植株的PCR结果,即均未能扩增出约950bp的DNA条带。

        下面结合附图对本发明进行详细说明。

        按照本发明,一方面我们构建了双价胞内定位的几丁质酶基因和β-1,3-葡聚糖酶基因的高效植物表达载体,胞内定位的几丁质酶基因和β-1,3-葡聚糖酶基因的核苷酸序列分别如SEQ ID NO:1和SEQ IDNO:2所示。该核苷酸序列所编码蛋白质的氨基酸序列如SEQ ID NO:3和SEQ ID NO:4所示。

        另一方面,我们构建了分泌型双价胞外定位的几丁质酶基因和β-1,3-葡聚糖酶基因的高效植物表达载体,分泌型几丁质酶基因和β-1,3-葡聚糖酶基因的核苷酸序列分别如SEQ ID NO:5和SEQ ID NO:6所示。该核苷酸序列所编码蛋白质的氨基酸序列如SEQ ID NO:7和SEQID NO:8所示。

        为了使外源基因在植物细胞中在转录和翻译水平上获得高效表达,在外源基因侧翼必须连接有适当的表达调控元件。本发明中设计了为在受体植物中高效表达上述几丁质酶基因和β-1,3-葡聚糖酶基因所需之启动子、增强子、终止子、多聚腺苷酸序列、以及便于在适当的培养基中筛选被转化细胞的选择标记基因等。

        根据本发明的一个优选实施方案,在所构建的表达载体中,5’端非编码区由两个增强子序列、一个启动子序列、一个衍生于植物病毒衣壳蛋白质基因的翻译增强序列、和一个外源基因在植物细胞内翻译过程中起促进作用的短核苷酸序列组成。

        上段提到的衍生于植物病毒衣壳蛋白质基因编码区的翻译增强序列是Ω序列。该序列富集AAC序列,在蛋白质合成的翻译过程中构成核糖体和rRNA结合位点(Richards et al.,Eur.J.Biochem.84:513-519,1987)。促进外源基因在植物细胞内翻译过程的短核苷酸序列是Kozak等人描述的Kozak序列(Kozak et al.,Nucleic AcidsResearch 12:857-872,1984;Kozak M.Cell,44:283-292,1986)。

        适于与本发明双价载体中的几丁质酶基因和β-1,3-葡聚糖酶基因连接,并在植物细胞中启动该编码DNA序列转录开始的启动子包括组成型、诱导型、组织或器官特异性或发育阶段特异性的启动子。例如,它们包括但不只限于花椰菜花叶病毒(CaMV)35S或19S启动子,甘露碱合成酶(MAS)启动子,胭脂碱合成酶和章鱼碱合成酶启动子,玉米乙醇脱氢酶启动子,二磷酸核酮糖羧化酶/加氧酶小亚基启动子、以及适于在单子叶植物中表达的Ubi、Emu、ActinI启动子等。本工作中选用的是带有加倍增强子元件的CaMV 35S启动子。该启动子全序列如SEQ ID NO:9所示。此外,很多植物病害是维管束病害或是由土传病原菌引起的,通过加接维管束特异表达或植物根部组织特异表达的启动子,可提高外源基因产物的抗菌作用。

        根据本发明的一个优选实施方案,在所构建的高效植物表达载体中,3’端非编码区包括一个多联终止密码子序列,一个mRNA切割序列和一个mRNA切割后加工序列及多聚腺苷酸化序列。

        另外,在适用于本发明的几丁质酶基因和β-1,3-葡聚糖酶基因高效植物表达载体上还应包括衍生于花椰菜花叶病毒或胭脂碱合成酶(Nos)基因或其他基因的终止子。在本发明的一个实施方案中,我们使用了Nos基因的终止子。

        可使用本领域中已知的方法,将本发明提供的适于在植物细胞中表达几丁质酶和β-1,3-葡聚糖酶的融合基因构建体,连接到任何一种可在细菌细胞或植物细胞中自我复制的载体上。这样的载体例如包括衍生于大肠杆菌的质粒载体pUC18、pUC19(Yanisch-perron et al.Gene 33:103-119,1985)。尤其是植物表达载体pBI101,pBI121,pBI131系统(Jefferson,et al.,EMBO J.16:3901,1987)及pCAMBIA1301(Hajdukiewicz et al.Plant Mol Biol 25:989-994,1994;Hiei et al.The Plant J 6:271-282,1994)等等。在本发明的一系列优选实施方案中,携带上述几丁质酶基因和β-1,3-葡聚糖酶基因构建体的载体是pBlueScriptSK、pUC18、pUC19、pCAMBIA1301等,后者特别适于作为制备植物表达载体的工具质粒载体。

        当然,如前所述,为了正确地选择和鉴定被转化的植物细胞,本发明的上述重组表达载体还应含有可选择标记基因。所使用的选择标记基因的两侧可带有各自的调节序列,以促使它们在植物中的表达。适用的选择标记是本领域内已知的。编码选择标记的外源基因及其他基因可以包含于同一个表达载体中,或者包含于转化时同时应用的不同的载体中。本发明优选的选择标记基因是潮霉素磷酸转移酶基因(HPTII)基因,并一同包含于同一个重组表达载体内,从而保证了对被转化细胞或植株选择的可靠性。

        因此,归纳起来,本发明提供的适于在植物细胞中表达双价几丁质酶和β-1,3-葡聚糖酶的植物表达载体包含:

        1).几丁质酶基因和β-1,3-葡聚糖酶基因表达盒:

        a)5’端非编码区;

        b)编码几丁质酶基因和β-1,3-葡聚糖酶基因如SEQ ID NO:1、SEQID NO:2 SEQ ID NO:5和SEQ ID NO:6所示的核苷酸序列;

        c)3’端非编码区。

        2).来源于pCAMBIA1301的载体部分:

        a)潮霉素磷酸转移酶基因(HPT II)表达盒;

        b)起始复制子及与植物转化相关的T-DNA左右边界序列等功能结构。

        根据本发明的一个优选实施方案,所说的5’端非编码区和3’端非编码区分别具有如前所述的构成元件及其功能。例如,5’端带有加倍增强子元件的启动子、Ω序列和Kozak序列;3’端带有多联终止序列,正确切割和加工序列,多聚腺苷酸信号序列。

        应该指出,上面所描述的表达载体只是本发明的一个优选实施例,它并不限制本发明。凡是应用本发明所描述的两种几丁质酶基因和β-1,3-葡聚糖酶基因所构建的任何表达载体均包括在本发明之内。包括如下的实现方式:

        与其它一种或几种基因重组,构建多价基因的表达载体并转入植物;

        与其它一种或几种基因融合,构建表达载体并转入植物;

        与其它一种或几种基因相协同,分别构建植物表达载体,同时或分步导入同一种植物受体。

        为了在植物细胞中,特别是整株植物中表达外源抗病基因,以赋予整株植物及其种子和后代以抗病能力,必须使用适当的方法将携带几丁质酶基因和β-1,3-葡聚糖酶基因的重组表达载体转化或转导到适当的宿主细胞或植物体内。

        将携带外源基因的重组载体导入宿主植物或其细胞内的许多方法都是本领域技术人员熟知的。这些方法包括但并不仅限于:1)农杆菌介导的转化法(Agrobacterium-mediated transformation);2)物理法,如基因枪法(Particle bombardment或Particle gun或Genegun)、电击法(Electroporation)、显微注射法(Microinjection)、超声波法(Ultrasonic)、激光微束法(Laser microwave)、碳化硅纤维介导法(Silicon carbide fibet)、电泳法(Electrophoretictransfection)等;3)化学法,如PEG介导的转化法、脂质体介导转化法等;4)种质系统转化法,如花粉介导法、花粉管通道法(子房注射法)、浸泡法等;5)以花椰菜花叶病毒(CaMV)、双生病毒(Geminiviruses)或RNA病毒等病毒载体所介导的转化法等等。

        一种特别令人感兴趣的在整体植株上导入外源基因的方法是本发明人使用的所谓种质系统转化法中改进的子房注射法(参见CN95119563.8,1995;Zhou et al.,Enzymol.Method.101:433-481,1983)。

        根据本发明一个优选实施方案,我们首选棉花作为双价基因转化的受体植物。棉花作为一种经济作物,我们考虑其主要作为纺织工业的原料,因此转基因植物的安全性好;其次,在世界范围内被广泛种植的棉花每年因病害造成的经济损失是十分巨大的。

        因此,本发明涉及编码菜豆几丁质酶基因和橡胶β-1,3-葡聚糖酶基因的DNA序列,包含所说的DNA序列的高效植物表达载体,用所说的表达载体转化植物细胞、组织和整株植物的方法,以及由此产生的对植物病害具有抵抗能力的转基因植物,特别是对黄、枯萎病具有抵抗能力的转基因棉花。

        本发明提供了获得对病原菌有抗性,尤其是对黄、枯萎病菌具有抗性的植物的方法,该方法包括:

        1).构建包含所说定位于细胞内的几丁质酶基因和β-1,3-葡聚糖酶基因的双价植物表达载体;

        2).构建包含所说定位于细胞外的几丁质酶基因和β-1,3-葡聚糖酶基因的双价植物表达载体;

        3).用任何一种可行方法将步骤1)和2)中得到的植物表达载体分别或同时导入到植物细胞内,并由此获得对病原菌有抗性能力的转基因植物及其后代,包括任何部分的植物器官、组织和种子。

        这里应特别指出的是,虽然在下述实施例中以转基因棉花的产生为例详细描述了本发明,但这绝不意味本发明的两种几丁质酶基因和β-1,3-葡聚糖酶基因的双价植物表达载体只能限用于转化和生产具有抗病能力的转基因棉花。

        因此,使用具有本发明所描述的两种几丁质酶基因和β-1,3-葡聚糖酶基因的双价植物表达载体,以本领域技术人员已知的任何一种方法导入任何植物或其组织或细胞中,以及由此而获得的具有抗病能力的植物,其后代及其种子和植物部分,均包括在本发明之内。以该抗病转基因植物作亲本,通过杂交或转育所产生的植株、品系或品种,亦均包括在本发明之内。

        实施例1:分泌型几丁质酶基因(Chi-E)的制备及其植物表达载体的构建

        1.1分泌型几丁质酶结构基因的克隆

        根据菜豆几丁质酶基因的DNA序列,设计PCR引物进行PCR扩增。

        PCR引物:YZ1:5’AATGAAGAAGAATAGG 3’

                            Pst I

                 YZ3:5’TGTCACTGAGAGGT 3’

                               Xho I

        扩增条件为94℃30秒、55℃30秒、72℃1.0分钟。循环30次。PCR产物经电泳分离后,用Geneclean试剂盒(天象人生物公司)回收约950bp的DNA片段,克隆到pGEM-T载体上,命名为pCE。该基因与天然的菜豆几丁质酶基因相比,由于少了一段决定细胞内定位的30个碱基的CTPP序列,可使表达产物定位于细胞外。连同起始密码子ATG和终止密码子TGA共954个碱基对,其核苷酸序列如SEQ IDNO:5所示。它所编码的分泌型几丁质酶氨基酸序列如SEQ ID NO:7所示。

        1.2对pCE中所克隆的分泌型几丁质酶基因作序列分析

        (1)变性模板的制备:用小量提取质粒DNA方法,制备待测pCE质粒DNA。取1.5~2μg DNA(约2~5μl)加水至总体积32μl,然后加入8μl 2M NaOH,轻轻混匀,室温变性10分钟,然后加入4μl H2O,7μl 3M NaAc(pH4.8),120μl无水乙醇,12000rpm离心8分钟,用70%乙醇洗2次所得的沉淀,真空抽干,溶于10μl水中,放冰上待用。

        (2)退火:向变性后的模板DNA中加入2μl退火缓冲液、2μl测序引物,轻轻混匀,瞬时离心后于65℃温育退火5分钟,迅速移至37℃继续温育10分钟,然后于室温放置5分钟以上。

        (3)标记反应:先吸2μl酶稀释Buffer,然后向其中加入0.5μl T7测序酶,置于冰上,然后向退火后的模板、引物混合物中加入Label Mix 3μl、α-32P dATP 1μl、稀释后的T7测序酶2μl,在管中轻轻吸打混匀,瞬时离心甩一下,室温反应5分钟。

        (4)链延伸终止反应:在4个离心管上分别标上A、C、G、T,并分别加入2.5μl相应的链终止液(Mix short)在37℃至少保温1分钟,从(3)中标记反应液中分别移取4.5μl反应物加入到A、C、G、T四个管中,混匀后置37℃反应5分钟,各加入5μl终止液,于37℃保温2分钟。

        (5)测序胶的制备:应用Bio-Rad公司的测序仪。

        量取50ml 6%测序丙烯酰胺凝胶贮备液(6%Sequencing gel:1.5g甲叉双丙烯酰胺,28.5g丙烯酰胺,240g尿素,50ml 10×TBE,加水定容至500ml),加入500μl 10%过硫酸胺、50μl TEMED,混匀,缓慢注入到洗净的测序板装置中,插入点样梳,室温聚合45分钟以上。

        (6)装置好电泳装置,加入1×TBE电泳缓冲液(10×TBE:108gTris,9.3g Na2EDTA.2H2O,55g硼酸,用H2O定溶至1000ml(pH8.3))。将样品80℃变性2分钟,置于冰上,上样电泳。如有必要,当溴酚兰到达板底部时,进行二次上样,继续电泳到二次上样溴酚兰至板底部。

        (7)停止电泳,下胶,压片,-70℃放射自显影过夜,冲片阅读。

        结果证明该质粒中带有与设计相符的分泌型几丁质酶基因插入片段。

        1.3分泌型几丁质酶基因表达盒的构建

        如前所述,本实施例所构建的分泌型几丁质酶基因表达盒中包括以下基因表达调控元件:5’端的CaMV 35S启动子、加倍的增强子、Ω序列及Kozak序列,3’端的多联终止序列、切割序列、NOS终止子。利用质粒pTΩ4A,经Pst I和Xho I双酶切后,回收3.5kb片段作为载体,将pCE中的Chi-E基因用Pst I和Xho I切下后连接到所回收的载体上去,得到重组质粒pTCE。

        1.4分泌型几丁质酶基因植物表达载体的构建

        用Hind III/EcoR I切下pTCE中的约2.3kb的Chi-E基因表达盒,克隆到植物表达载体pBI121中的Hind III/EcoR I位点上,获得重组质粒pBCE。这就是所构建的分泌型几丁质酶基因植物表达载体。其质粒图谱如附图1所示。

        实施例2:分泌型β-1,3-葡聚糖酶基因(Glu-E)的制备及其植物表达载体的构建

        2.1分泌型β-1,3-葡聚糖酶基因的克隆

        根据橡胶β-1,3-葡聚糖酶基因的DNA序列,设计PCR引物进行PCR扩增。PCR引物:Hev5:5’TGCAGGTAGTTGTTTG 3’

                  BamHI

             Hev3:5’GATCAACCAAAATTGAGA 3’

                  EcoRI

        扩增条件为94℃30秒、55℃30秒、72℃1.0分钟。循环30次。PCR产物经限制性内切酶BamHI和EcoR I切割,电泳分离后用Geneclean试剂盒(天象人生物公司)回收约1137bp的DNA片段,克隆到pSS载体上,命名为pGE。该基因与天然的橡胶β-1,3-葡聚糖酶基因相比,在N端多了一段69个碱基的大麦α淀粉酶的细胞外定位的信号肽序列;在C端少了一段决定细胞内定位的30个碱基的CTPP序列,经过改造修饰的β-1,3-葡聚糖酶可分泌到细胞外。连同起始密码子ATG和终止密码子TGA共1137个碱基对,其核苷酸序列如SEQ ID NO:6所示。它所编码的分泌型几丁质酶氨基酸序列如SEQID NO:8所示。

        2.2对pGE中所克隆的分泌型β-1,3-葡聚糖酶基因的序列分析与1.2所描述的方法相同。

        2.3分泌型β-1,3-葡聚糖酶基因表达盒的构建

        如前所述,本实施例所构建的分泌型β-1,3-葡聚糖酶基因表达盒中包括以下基因表达调控元件:5’端的35S启动子、加倍的增强子、Ω序列及Kozak序列,3’端的多联终止序列、切割序列、NOS终止子。利用质粒pTΩ4A,经Pst I和Hpa I双酶切后,回收3.5kb片段作为载体,将pGE中的Glu-E基因先用EcoRI酶切,经Klenow酶补平后再用PstI切下目的片段,最后连接到所回收的载体上去,得到重组质粒pTGE。

        2.4分泌型β-1,3-葡聚糖酶基因植物表达载体的构建

        用Hind III/EcoR I切下pTGE中的约2.3kb的Glu-E基因表达盒,克隆到植物表达载体pBI121中的Hind III/EcoR I位点上,获得重组质粒pBGE。这就是所构建的分泌型β-1,3-葡聚糖酶基因植物表达载体。其质粒图谱如附图2所示。

        实施例3:胞内定位的几丁质酶基因(Chi-I)植物表达载体的构建

        3.1胞内定位的几丁质酶基因表达盒的构建

        质粒PK35CHN641-4和载体pBluescript SK+DNA经Hind III/ClaI酶切后,分别回收约2.2kb和2.7kb目的片段进行连接,得到重组质粒pCI。如前所述,利用质粒pTΩ4A,先用BamH I酶切;经Klenow酶补平后再用Xho I酶切;回收3.5kb片段作为载体,将pCI中的Chi-I基因先用Hind III酶切,经Klenow酶补平后再用Xho I切下目的片段,最后连接到所回收的载体上去,得到重组质粒pTCI。

        3.2胞内定位的几丁质酶基因植物表达载体的构建

        与1.4所述方法相同,将得到的胞内定位的几丁质酶基因植物表达载体命名为pBCI。其质粒图谱如附图3所示。

        与1.4所述方法相同,将得到的胞内定位的几丁质酶基因植物表达载体命名为pBCI。其质粒图谱如附图3所示。

        实施例4:胞内定位的β-1,3-葡聚糖酶基因(Glu-I)植物表达载体的构建

        4.1胞内定位的β-1,3-葡聚糖酶基因表达盒的构建噬菌体m13mpl8 DNA经EcoR I酶切后,回收约1.2kb的目的基因片段,克隆于载体pBluescript SK+的EcoR I位点之间。为使目的基因符合载体pTΩ4A的阅读框架,将克隆于载体pBluescript SK+的目的基因用EcoR I切割后再用Klenow酶补平,得到的片段再克隆于先用Sal I和BamH I酶切再经Klenow酶补平的pUC19上。此重组质粒经Pst I和Sma I切割后再克隆于pTΩ4A的Pst I和Hpa I位点之间,得到重组质粒pTGI。

        4.2胞内定位的β-1,3-葡聚糖酶基因植物表达载体的构建与1.4所述方法相同,将得到的胞内定位的β-1,3-葡聚糖酶基因植物表达载体命名为pBGI。其质粒图谱如附图4所示。

        实施例5:双价抗真菌病基因植物表达载体的构建

        5.1分泌型胞外定位双价抗真菌病基因植物表达载体的构建

        质粒pBCE和pBGE经Hind III/EcoR I酶切后,分别回收目的片段,加入到与经Hind III酶切制备的pCAMBIA1301载体,同时进行三个片段的连接,重组质粒经酶切鉴定,得到双价基因载体pGCE。其质粒图谱如附图5所示。

        5.2胞内定位双价抗真菌病基因植物表达载体的构建质粒pBCI和pBGI经Hind III/EcoR I酶切后,分别回收目的片段,加入到与经Hind III酶切制备的pCAMBIA1301载体,同时进行三个片段的连接,重组质粒经酶切鉴定,得到双价基因载体pGCI。其质粒图谱如附图6所示。

        实施例6:制备花粉管通道法转化植物用植物表达载体超纯度质粒DNA

        6.1质粒的大量提取

        (1)接单菌落于20ml带有相应抗生素的液体LB(每1000ml培养基中含蛋白胨10g、酵母提取物5g、氯化钠10g)培养基中,37℃,250rpm条件下振荡培养过夜。

        (2)将菌液转入4000ml液体LB培养基中,继续培养8-12小时;

        (3)用5000rpm离心5分钟,收集菌体;

        (4)用STE 100ml悬浮洗涤菌体,合并各管于2个500ml离心管中,重新离心去上清;

        (5)分别向每管加入80ml Solution I(50mM蔗糖,10mM EDTA,25mM Tris-HCl pH8.0),将菌体悬浮后加入160ml新配制的SolutionII(0.2M NaOH,1%SDS),轻轻混匀数次,冰上放置10分钟,再加入120ml预冷的Solution III(每100ml含5M KAC 60ml,冰乙酸11.5ml,蒸馏水28.5ml),轻轻混匀,冰上放置30分钟;

        (6)8000rpm离心15分钟,收集上清,加入0.6倍体积的异丙醇,室温放置10分钟;

        (7)8000rpm离心15分钟,70%乙醇洗涤一次,溶于4ml TE(10mM Tris,1mM EDTA pH8.0)中,加RNase 8μl(10mg/ml)37℃处理1小时;

        (8)用酚、氯仿抽提纯化一次,乙醇沉淀后溶于3ml TE中。

        6.2超速离心进一步纯化所提取的质粒DNA(用Beckman公司超速离心机)

        (1)在一个50ml离心管中加入2.9ml DNA溶液,6.6ml饱和氯化铯溶液,1ml溴化乙锭溶液(EB,10mg/ml),混匀待用。

        (2)上步中如有许多沉淀,则8000rpm离心5分钟。

        (3)将上述混合液转入两个5.2ml超速离心管中,用Beckman超速离心机专用设备热封管口。

        (4)用vTi80转头室温真空离心20小时,65000rpm。

        (5)在暗室中紫外光下,先在离心管上部用针头穿孔,然后用5ml一次性注射器吸出质粒亮带。

        (6)用水饱和正丁醇抽提数次去FB。

        (7)用TE稀释三倍后用二倍无水乙醇4℃沉淀,离心,溶解后稀释待用。

        实施例7:子房注射法花粉管通道法转化棉花

        编码定位于细胞外及定位于细胞内几丁质酶和β-1,3-葡聚糖酶的抗真菌蛋白质的基因在植物中的高效表达,对于产生具有高抗病性的转基因植物是最为关键的,但是外源基因转化植物是否能获得成功,也是至关重要的环节。在本发明之前,本领域科技人员熟知的利用农杆菌介导法、基因枪法、PEG法、电激法等方法转化植物虽然有许多成功的例子,但都存有不利的因素。如上述方法不仅受到实验室条件和昂贵的仪器及费用极高等的限制,更重要的是上述方法都有一个不利的共性,那就是受到植物基因型的限制。目前在生产上发挥着重要作用的优良植物品种,由于基因型的不同,不能通过器官发生或胚胎发生途径再生成植株;或再生植株极为困难。在种情况下,本发明采用子房注射法成功地获得了具有高抗病能力的转基因棉花。子房注射外源基因的优点在于:1)适用于植物的所有基因型;2)方法简单,有效;3)不受实验室条件、仪器的限制,且费用低;4)速度快,一年内即可获得转基因植物种子及后代。

        在本实施例中,子房注射外源基因是在棉花开花授粉后的大约10-24小时之间。如在珠心孔道封闭之前,用微量注射器将外源基因溶液注射到子房内,外源基因即可通过珠孔和珠心孔道,逐渐扩散到或在珠心孔道封闭的过程中被挤压到刚受精后的胚囊内。在受精卵分裂的过程中,外源基因被整合到受精卵细胞的基因组中,从而完成外源基因导入和整合的过程。

        棉花是常异花授粉作物,为保持品种(系)的相对纯度,在开花的前一天下午,将要在第二天开花的蕾用线扣紧,使花辨不能张开,以使其自花授粉。开花后约10小时左右,即当天开花的晚6点钟左右花粉管进入胚囊后,即可进行外源基因的注射。注射前将花辨连同雄蕊剥去,露出幼铃,抹去幼铃顶端的花柱,用微量注射器吸取预冷的外源基因溶液,从抹掉幼铃的顶端沿中轴垂直插入幼铃大小的2/3处,再将微量注射器向上提到1/3的地方,留下约幼铃1/3的注入空间,缓慢将注射装置内的外源溶液注射到注入空间内。此后,外源DNA溶液将沿着珠孔和珠心孔道向受精胚囊内扩散,或由于珠心孔道在逐渐封闭而被挤压进受精胚囊中而实现基因的整合。一般注射的外源基因溶液为10μl,含外源基因DNA总量约为0.25-0.5μg。当然,对于不同的作物可根据其子房内胚珠数目的多少,适当地增加或减少外源基因的注射量。外源基因注射后,为了防止和减少幼铃的脱落,提高成铃率,在幼铃柄基部用毛笔涂沫40ppm的赤霉素或用浸有40ppm赤霉素的棉球夹在幼铃柄基部和茎(枝)之间,同时将注射外源基因的幼铃所在的枝条项端摘掉,以保证幼铃的充分营养,有利于成铃和铃内种子的发育。

        实施例8:转基因棉花的分子生物学鉴定

        8.1转基因棉花植株的DNA提取方法

        取70-100毫克棉花鲜叶片,液氮研磨至粉末状;

        加入1ml Buffer I(50mM Tris-HCl pH8.0,5mM EDTA pH8.0,350mM Sorbitol,0.1%Mercaptoethanol,10%Polyrthylene-glycol6000)混匀后转至2ml的离心管中;

        4℃,12000rpm离心5分钟;

        去掉上清;

        用500μl的Buffer II(50mM Tris-HCl pH8.0,5mM EDTA pH8.0,350mM Sorbitol,0.1%Mercaptoethanol,1%Sodium sarkosyl,710mM NaCL,0.1%CTAB)重悬沉淀;

        60℃,保温10分钟;

        分别用等体积的苯酚(Tris-HCl pH8.0平衡)和氯仿各抽取一次;

        将上清滴入等体积的异丙醇中进行沉淀;

        4℃,12000rpm离心去除异丙醇;

        DNA沉淀用70%乙醇洗后,干燥待用。

        8.2点杂交鉴定:

        (1)将8.1中提取的DNA溶于适量无菌水,各样品DNA溶液均取10μl经98℃5分钟热变性后在抽真空的情况下用点膜器点在杂交膜上;杂交膜经80℃、30分钟烤干待用。

        (2)探针的标记:采用Promega公司随机引物试剂盒标记。取适量待标记DNA片段,95-100℃变性2分钟,迅速置于冰上,在一新的Eppendrof管中,依次加入:

                 5×labeling buffer                    10μl

                 dCTP,dGTP,dTTP,混合物              2μl

                 变性模板                              25ng

                 BSA                                   2μl

                 α-32P-dATP                           5μl

                 Klenow酶                              1μl

                 加H2O至总体积                        50μl

        轻轻混匀,室温反应60分钟。95℃变性2分钟后置于冰上。

        (3)将NC膜卷入杂交瓶中,加入20ml预杂交液(6×SSC,5×Denhardt,0.5%SDS,200μg/ml鱼精DNA),使膜均匀浸润无气泡,然后置于DNA分子杂交仪中65℃预杂交2小时以上。

        (4)向预杂交完毕的袋中加入变性探针30~50μl,重新封好继续于68℃杂交8~10小时。

        (5)取出杂交膜用2×SSC、0.5%SDS洗膜30分钟,用2×SSC、0.1%SDS洗15分钟,再用0.1×SSC,0.5%SDS于42℃洗膜30分钟~数小时,中间更换新的洗膜液。

        (6)0.1×SSC洗膜2分钟,用吸水纸吸去水珠,用保鲜膜包好膜,暗室中压片。

        (7)-70℃放射自显影适当时间后洗片。

        结果表明,一些转基因棉花的点杂交结果为阳性。

        8.3 Southern杂交鉴定:

        (1)将按8.1中提取的DNA用EcoR I酶切过夜,通过0.8%琼脂糖凝胶进行电泳并照相。

        (2)将胶置于小盘中加入200ml变性液(0.5M NaOH,1.5M NaCl)振荡45分钟。

        (3)弃去变性液,用蒸馏水漂洗数次,加入中和液(1M Tris,pH7.4,1.5M NaCl)200ml,振荡30分钟,然后更换新的中和液,继续中和15分钟。

        (4)剪相应大小的硝酸纤维素膜(NC膜),于蒸馏水中均匀湿透后,将NC膜浸于10×SSC(20×SSC:每1000ml含NaCl 175.3g,柠檬酸钠88.2g pH7.0)中,放置20分钟。

        (5)使用Bio-Rad公司的转膜仪转膜1小时。

        (6)去掉胶块,标记好加样孔位置,用6×SSC洗膜5分钟,然后紫外照射5分钟,以固定DNA。2×SSC洗膜,室温风干。

        (7)探针的标记、膜的杂交及随后的操作方法与8.2中所描述的相同。

        结果表明,一些转基因棉花的Southern杂交结果为阳性。

        8.4 PCR检测分析

        将8.1中提取的DNA溶于适量的无菌水,并将各样品DNA溶液稀释10倍后取2.0μl作为PCR的模板。按所要扩增的目的基因选择各自的引物进行PCR扩增,扩增条件为94℃30秒、52℃30秒、72℃1.0分钟;循环30次。扩增结束后电泳检测。

        结果表明,一些转基因烟草的PCR检测结果为阳性(附图7)。

        实施例9:棉花的抗病性鉴定

        转基因棉花播种出苗后,用枯萎7号小种按3%(w/w)的比例混入营养钵土壤进行接种。四周后再用黄萎北京菌系接种,具体方法是用1.2×107cfu/ml的黄萎病菌液,每个营养钵加10ml,进行大菌量枯、黄萎病混合鉴定。结果表明,转基因棉花抗黄、枯萎病的能力明显高于对照棉花(附图8)。

    关 键  词:
    协同 表达 两种抗 真菌 基因 培育 抗病 作物
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:胞内或胞外协同表达两种抗真菌病基因培育抗病作物.pdf
    链接地址:https://www.zhuanlichaxun.net/p-438521.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1