制造挤塑型材的组合物和制造该组合物的方法 【发明背景】
【发明领域】
本发明涉及制造复合结构材料的组合物与方法。
现有技术的说明
许多年来,木材已成为一些结构应用如桥面和门廊所选择的材料。然而,木材的主要缺点是它容易受到霉菌、霉、真菌和昆虫的进攻。通常通过保护涂层或通过用化学品或金属如砷处理,来提供对这些因素的防护。然而,这些保护方法的缺点是要求周期性的维护或使用人类毒素。
另外,木材由于暴露于阳光或自然环境下导致也易于色变。在一些应用如户外桥面中,这种反应性以各种方式在家具或垫子下显示出颜色污点以及其它非所需的方面。
为了避免这些问题,在现有技术的结构中,有时使用金属材料作为木材的替代品。金属材料不受真菌和昆虫危害的影响,但它们易遭受腐蚀过程。另外,金属材料的重量和/成本使它们不适合于许多应用。
为了克服这些问题,在现有技术中已开发出木材桥面厚板和类似结构元件的各种替代品。作为一个实例,Erwin的美国专利5660016公开了桥面厚板,它由用硬质聚氨酯泡沫体芯填充的挤塑聚氯乙烯外壳组成。作为另一实例,Meenan的美国专利6128880公开了一种预制桥面体系,其中设计各种体系的组件用于联结或配合组装。然而,这种特殊的体系常要求特殊的零件如固定厚板地联结体系。复合桥面的其它改进已针对于装饰零件,如美国外外观计专利Des.418926中所示。
在制造复合组件的一些方法中,乙烯基聚合物与木材元件结合使用。例如,美国专利2926279和3432885公开了与木材元件结合形成建筑组件的热塑性聚氯乙烯包层。根据其它技术,热塑性树脂层可粘接到热固性树脂层上。例如,在美国专利5074770中,处理真空成形的料坯,以改性树脂表面的聚合物结构和改进与热塑性树脂层的粘合。如在Breitigam的美国专利5098496中所述的由可热固化的热固性聚合物组合物制造制品的方法也是现有技术公知的。
在其它情况下,乙烯基聚合物材料由乙烯基聚合物结合一种或多种添加剂组成。硬质和软质热塑性材料二者均已通过挤出和注塑方法成形到结构材料内。在一些情况下,这些材料还包括纤维、无机材料、染料和其它添加剂。制造复合材料而共混热塑性聚氯乙烯和木材纤维的实例见美国专利5486553、5539027、5406768、5497594、5441801和5518677。
在一些情况下,配方材料也已用于制造结构元件。典型地通过在整个液体聚合物相内分散或膨胀气相,来制造发泡的热塑性塑料,生成含聚合物组分和具有闭孔或开孔结构的夹杂的气体组分的泡沫体。通过发泡剂产生气相。这种发泡剂可以是化学发泡剂或物理发泡剂。例如,Blaupied的美国专利5001005公开了发泡芯层压的板,其中发泡芯,如热固性塑料泡沫体配有硬质平片或网状软质面层片材(facersheet)。面层片材由用树脂粘合剂粘接的各种材料如玻璃纤维形成。其它面层材料包括纸张、塑料、铝箔、金属、橡胶和木材。
在一些情况下,尤其采用由发泡的热塑性聚合物和木材纤维制造结构组件的方法。在美国专利6054207中示出了一个实例。泡沫体填充的挤出塑料桥面厚板的其它改进已针对功能特征,如在丙烯酸油漆上砂砾材料的防滑表面涂层,如Erwin的美国专利5713165中所述。
然而,在现有技术中尚未已知使用与玻璃纤维结合的发泡聚合物材料,尤其聚氯乙烯。正如结合本发明优选实施方案进一步所述的,已发现,在结构应用中,发泡聚合物和玻璃纤维的这种结合提供性能特别适合于用作木材替代品的材料。在其它优点中,已发现该材料是高度耐候的,因为它耐受因暴露于阳光或自然环境下所致的褪色或色变。另外,已发现该材料具有低的热膨胀系数、高的模量(弯曲强度)和高的耐龟裂性。
发明概述
根据本发明,在挤塑结构组件中使用的组合物包括均匀包埋了玻璃纤维的热塑性聚合物材料。该组合物进一步包括内部密闭的泡孔或孔隙。优选组合物包括用量为1%-18%重量的玻璃纤维和用量为82%-99%重量的热塑性聚合物。也优选热塑性材料是其中具有密闭孔隙或泡孔的聚氯乙烯,在集料内的孔隙或泡孔占材料体积的30%-70%。还优选组合物的比重范围是0.5-1.0。
根据本发明还公开了制造结构型材的方法包括以下步骤:结合热塑性聚合物材料与玻璃纤维作为成分,形成均匀的原料。然后液化原料内的热塑性聚合物材料,并与玻璃纤维共混,形成热塑性塑料/玻璃熔体,其中玻璃纤维的浓度范围是1%-18%重量。将热塑性塑料/玻璃熔体暴露于发泡剂下,其中所述发泡剂配合热塑性塑料/玻璃熔体,在熔体内形成闭孔。然后通过模头挤出热塑性塑料/玻璃熔体,以生产其截面限定预定异形的长结构元件。
优选地,制造结构型材的方法进一步包括将发泡剂与热塑性材料和玻璃纤维混合以形成均匀的原料,所述发泡剂其后发生化学反应以响应热塑性塑料/玻璃熔体的增加温度,气体与熔体结合,在其中形成闭孔。还优选,化学反应的发泡剂选自偶氮二碳酰胺、柠檬酸和碳酸氢钠。
或者,该方法包括混合发泡剂与热塑性塑料/玻璃熔体,在熔体内物理地形成闭孔。在此情况下,可单独或与化学发泡剂结合使用物理发泡剂。优选物理发泡剂选自氮气、二氧化碳、丁烷和含氯氟烃。
更优选,根据该方法制造的组合物包括用量为82%-99%的聚氯乙烯的热塑性材料,和用量为1%-18%重量的玻璃纤维。更优选玻璃纤维的筛号范围是1/64英寸-1/4英寸;纤维直径范围是5微米-30微米;和纤维长度范围是50微米-900微米。
对于本领域的技术人员来说,根据随后本发明优选的实施方案,本发明目前所述的其它特征、优点或者目的将变得显而易见。
附图的简要说明
结合附图,示出并公开了本发明所披露的目前优选的实施方案,其中:
图1是说明制造所披露组合物的方法的优选实施方案的示意图;
图2是沿图1的2-2线所示的位置处,图1所述的挤出机的截面。
图3是说明制造所披露组合物的方法的另一优选实施方案的示意图;和
图4是与图3所示的挤出机结合使用的气体注射装置图。
本发明优选实施方案的详细说明
如图1所示,挤出机10包括机械连接到挤出机机筒14上的动力驱动和齿轮箱12。挤出机10进一步包括喂料器16。优选挤出机10是锥形双螺杆挤出机如获自Milacron,Inc.的锥形双螺杆挤出机或等价物。然而,商购的单螺杆挤出机或平行双螺杆挤出机也可在所披露的本发明的实践中使用。
相关领域的技术人员公知,在这种商购的挤出机中,原料从喂料器16流入到机筒14的供料端18。根据图1和2的优选实施方案,机筒14限定沿纵轴21取向的内部锥形腔室20,该锥形腔室20在机筒14的供料端18和出料端22之间延伸。在图1和2的优选实施方案中,挤出机10是锥形双螺杆挤出机,以便沿着远离供料端18并朝出料端22的方向移动的轴21,腔室20的横截面面积在纵向位置处沿纵轴21降低。挤出机10进一步包括螺杆24和25(仅图1示出),它们位于锥形腔室20内并机械地连接到齿轮箱12上。
相关领域的技术人员公知,随着物料从喂料器16供应到机筒14的供料端18,当驱动齿轮箱时,它引起挤出机的螺杆24和25在腔室20内旋转。挤出机的螺杆24和25的旋转携带朝机筒14出料端22的方向通过腔室20。具有带选择周长剖面的模头排出口的模头26在出料端22处连接到机筒14上。当物料从供料端18流到机筒14的出料端22时,腔室20的横截面面积减少和物料被压缩。在物料上的压缩和摩擦力使物料的压力和温度增加。在机筒14的腔室20内,在供料端18和出料端22之间的某一点处,温度升高到物料形成流动熔体的温度。在机筒14的一端22处,流动熔体受迫通过模头26的排出口,产生挤塑长度。在与纵轴21相垂直的方向上,材料的挤塑长度的横截面剖面与模头26内模头排出口的剖面相对应。
根据目前披露的本发明,物料包括作为成分的热塑性聚合物材料和玻璃纤维。正如此处所披露的,热塑性聚合物材料选自聚氯乙烯、聚乙烯和聚丙烯。优选热塑性聚合物材料是聚氯乙烯珠,因为已发现聚氯乙烯产生高度耐候的组合物。当材料从喂料器16流到机筒14的供料端18时,通过一起混合聚氯乙烯和玻璃纤维或在喂料器16内将它们一起共混,来复合它们。在任一情况下,聚氯乙烯和玻璃纤维形成原料混合物,该原料混合物在供料端18处喂入到机筒14内。
在机筒14内部,在沿轴21的常规方向上,螺杆24和25将原料混合物经腔室20远离供料端18并朝出料端22传输。当原料混合物穿过腔室20时,聚氯乙烯/玻璃纤维混合物被压缩。在挤出机的机筒14内原料混合物的温度升高,引起聚氯乙烯熔融或液化,并与玻璃纤维结合,形成其中用玻璃纤维包埋聚氯乙烯的热塑性塑料/玻璃纤维熔体。此后,通过模头26的模头排出口,挤出热塑性塑料/玻璃纤维熔体或聚氯乙烯/玻璃纤维熔体,形成具有选择横截面剖面的元件。
已发现,若在原料混合物内使用的玻璃纤维具有选择范围内的直径时,挤出产品具有相对高的模量,即较大的弯曲强度。这种组合物特别地用于其中挤出产品将暴露于相对高剪切负载的一些应用中,如户外桥面。根据所披露的本发明,玻璃纤维具有下述参数:筛号1/64英寸-1/4英寸;纤维直径5微米-30微米;纤维长度50微米-900微米;和堆积密度为0.275g/cc-1.05g/cc。
图1和2说明了所披露的本发明的优选实施方案,其中化学发泡剂用作与热塑性聚合物材料和玻璃纤维结合的原料混合物的一种成分。作为原料混合物的一种组分,化学发泡剂是一种与热塑性塑料材料和玻璃纤维混合的发泡剂。化学发泡剂可与聚合物材料和玻璃纤维混合,形成原料混合物,或者它可与聚合物材料和玻璃纤维一起共混,当那些材料从喂料器16喂入到挤出机的原料供料口时。
在图1和2的实施方案中,当挤出机的螺杆24和25将物料从腔室20的供料端18传输到出料端22时,相应于挤出机机筒14的腔室20内的温度和压力增加,化学发泡剂发生化学反应。发泡剂的化学反应产生反应物气体,这些反应物气体与热塑性塑料/玻璃纤维熔体混合,在热塑性塑料/玻璃纤维熔体内形成密闭的内泡孔。在优选的实施方案中,闭孔确定了组合物内的孔隙,该孔隙占最终复合元件表面内所定义的体积的30%-70%。通过化学发泡剂形成的闭孔降低热塑性塑料/玻璃纤维熔体的密度,和因此也降低挤塑型材的密度。优选复合材料的比重范围为0.5-1.0。
化学发泡剂如本发明所述的那些,可以是放热或吸热型化学发泡剂。放热发泡剂当它分解时产生热量。根据此处所披露的本发明,放热发泡剂的优选实例是偶氮二碳酰胺。当被充分地加热时,偶氮二碳酰胺分解成氮气、二氧化碳、一氧化碳和氨气。吸热发泡剂当它分解时吸收热量。根据目前所披露的本发明,优选的吸热发泡剂的实例是碳酸氢钠和柠檬酸。此外,可结合使用吸热与放热发泡剂。例如,偶氮二碳酰胺可与柠檬酸和与碳酸氢钠结合。
在目前披露的图3和4的实施方案中,机筒进一步配有注射端口28和30。使用注射端口28和30引入物理发泡剂,其中物理发泡剂拟降低熔体密度,在此处将更具体地描述它。如图3和4所示,通过挤出机机筒和注射器组件将发泡剂引入到熔体内。在一些挤出应用中,热塑性材料增加的压力和温度引起在挤出机机筒14的一端22处产生气体。为了建立释压段,释放不想要的气体,有时在挤出机的机筒内提供排气口。然而,在图3和4所示的实施方案中,没有释压段。
与化学发泡剂相类似,物理发泡剂引起熔体在液态熔体内掺入内部闭孔结构。根据图3和4的优选实施方案,发泡剂是物理发泡剂型(它是一种气体)。物理发泡剂通过图4所述的注射体系和通过挤出机机筒14,注射到热塑性塑料/玻璃纤维熔体内。根据优选实施方案,物理发泡剂可以是加压气体,如氮气、二氧化碳、分馏丁烷或含氯氟烃。气体输送压力不需大于熔体压力。典型的注射压力范围是约2000-4000psi。在注射器端口28和30与模头26之间的内部腔室20内发生物理混合。
图4所示的注射器组件包括两个注嘴32和34,这两个注嘴通过管线38和40连接到三通36上。三通36通过控制阀44、调节器46和管线48、50和52连接到加压气体供应站42上。在注射器组件的操作中,在比内部腔室20压力相对高的压力下,在注嘴32和34位置处注射加压气体的物理发泡剂。典型地,注射压力范围是2000-6000psi。气体发泡剂从气体供应站42经调节器46、控制阀44、三通36以及管线38和40流到注嘴32和34。气体发泡剂从注嘴32和34流入挤出机10的腔室20内,并在其中与液体聚合物或熔体混合。当与注射的气体混合时,聚合物形成内闭孔。与化学发泡剂一样,物理发泡剂暴露于熔体下,并导致闭孔孔隙,该闭孔孔隙占总熔体体积的30%-70%。熔体的比重范围是0.5-1.0。在熔体挤出通过模头26,产生剖面相应于模头26内模头排出口形状的线性产品之后,这种闭孔结构导致熔体较低的密度以及挤出材料较低的密度。
或者,图1和2所披露的化学发泡剂可与图3和4所披露的物理发泡剂结合使用。
发现在发泡剂存在下,聚氯乙烯/玻璃纤维熔体的结合导致复合的挤出产品,该产品耐候且在诸如户外桥面之类的应用中,具有用作木材替代品的合适密度。此外,认为由于使用玻璃纤维,所披露的组合物具有高的模量和低的热膨胀系数。发现玻璃纤维和聚氯乙烯的闭孔挤出组合物具有优选的机械性能,亦即,较大的拉伸强度、弯曲强度和抗冲击强度。还发现相应于温度增加,它具有较大的尺寸稳定性和较小的机械扭曲。
尽管在此处已示出了本发明目前优选的数个实施方案,但目前所披露的本发明并不限制至此,而是可以变化地体现在下述权利要求的范围内。