书签 分享 收藏 举报 版权申诉 / 81

用自生真空工艺制造大复合体的方法及其产品.pdf

  • 上传人:Y94****206
  • 文档编号:412417
  • 上传时间:2018-02-14
  • 格式:PDF
  • 页数:81
  • 大小:3.25MB
  • 摘要
    申请专利号:

    CN90104633.7

    申请日:

    1990.07.16

    公开号:

    CN1048894A

    公开日:

    1991.01.30

    当前法律状态:

    终止

    有效性:

    无权

    法律详情:

    专利权的终止(未缴年费专利权终止)申请日:1990.7.16公告日:1996.10.16|||授权||||||公开

    IPC分类号:

    C22C1/09; B22F3/26; B22D19/14

    主分类号:

    C22C1/09; B22F3/26; B22D19/14

    申请人:

    兰克西敦技术公司;

    发明人:

    罗伯特·坎贝尔·坎特; 拉特尼师·库玛·德维瓦迪

    地址:

    美国特拉华州

    优先权:

    1989.07.21 US 07/383,935

    专利代理机构:

    中国国际贸易促进委员会专利代理部

    代理人:

    吴大建

    PDF完整版下载: PDF下载
    内容摘要

    本发明涉及一种制造大复合体的新工艺,其中基体金属与放置在附近的合适填料或预型接触,或者与至少一种第二种材料接触,在工艺中至少某点,反应气氛和熔融基体金属和/或填料或预型和/或不渗透容器之间发生反应。熔融基体金属渗透入填料或预型,使得仍然基体金属与至少一种第二种材料的至少部分接触。将基体金属冷却至其熔点之下,形成金属基体复合体,由固结在至少一种第二种材料的至少一部分上的金属基体复合体所组成。

    权利要求书

    1: 制造大复合体的方法,其步骤包括: 形成反应体系,其中包括基体金属,反应性气氛,不渗透容器,渗透物质,该物质包括至少一种选自疏松填料和预型,以及,与所说渗透物质邻接的至少一种第二种或附加的物体; 至少部分密封反应体系以使其与外界的周围气氛之间形成净压差,由外加密封层,内部物理密封层和内部化学密封层中的至少一种达到所说的密封;以及 加热密封后的反应体系以使基体金属熔融并使其至少部分渗流过所说至少一种物体形成金属基复合体,该复合体整体联结或固结在所说至少一种第二种或附加物体上,从而形成大复合体。
    2: 权利要求1的方法,其中所说至少部分密封包括基本上完全将所说反应性气氛与所说周围气氛隔离开。
    3: 权利要求1的方法,其中所说净压差在熔融基体金属至少部分渗流入所说可渗透物质期间存在。
    4: 权利要求1的方法,其中所说基体金属包括至少一种选自铝,镁,青铜,铜和铸铁的材料。
    5: 权利要求1的方法,其中进一步向所说反应体系提供至少一种湿润增强剂。
    6: 权利要求1的方法,其中进一步向所说反应体系提供至少一种密封促进体。
    7: 权利要求1的方法,其中所说至少部分密封是由外加密封层提供的,其中包括至少一种玻璃料。
    8: 权利要求1的方法,其中所说至少部分密封是由内部化学密封层提供的,其中包括所说基体金属和所说周围气氛的反应产物。
    9: 权利要求1的方法,其中所说至少部分密封是由内部物理密封层提供的,其中包括基体金属湿润不渗透容器。
    10: 权利要求1的方法,其中所说至少部分密封是由内部化学密封层提供的,其中包括所说基体金属和所说不渗透容器的反应产物。
    11: 权利要求1的方法,其中所说反应性气氛至少部分与所说基体金属,所说填料和所说不渗透容器中的至少一种反应,从而形成所说净压差。
    12: 权利要求5的方法,其中所说至少一种湿润增强剂与所说基体金属形成合成。
    13: 权利要求1的方法,其中包括提供阻挡层,该阻挡层限定至少一部分所说渗透物质表面。
    14: 权利要求13的方法,其中所说阻挡层包括至少一种选自碳,石墨,二硼化钛,熟石膏,氧化铝和二氧化硅的物料。
    15: 权利要求1的方法,其中所说阻挡层基本上不会被所说基体金属所湿润。
    16: 权利要求5的方法,其中所说基体金属包括铝,而所说湿润增强剂包括至少一种选自镁,铋,铝和锡的物料。
    17: 权利要求5的方法,其中所说基体金属包括青铜和铜中的至少一种,而湿润增强剂包括至少一种选自硒,碲和硫的物料。
    18: 权利要求1的方法,其中所说疏松填料包括至少一种选自 粉,薄片,片晶,微球,晶须,气泡,纤维,颗粒,纤维毡,碎段纤维,球粒,丸,管和耐火布的物料。
    19: 权利要求1的方法,其中所疏松填料包括至少一种选自氧化物,碳化物,硼化物和氮化物的物料。
    20: 权利要求1的方法,其中所说不渗透容器包括至少一种选自陶瓷,金属,玻璃和聚合物的物料。
    21: 权利要求1的方法,其中所说基体金属包括选自铝,铜和青铜的物料,而不渗透容器包括不锈钢。
    22: 权利要求20的方法,其中所说不渗透容器包括氧化铝或碳化硅。
    23: 权利要求1的方法,其中所说反应性气氛包括至少一种选自含氧气氛和含氮气氛的物料。
    24: 权利要求1的方法,其中所说基体金属包括铝,而所说反应性气氛包括空气,氧气或氮气。
    25: 权利要求1的方法,其中所说基体金属包括青铜基体金属,铜基体金属和铸铁基体金属中的至少一种,而反应性气氛包括空气,氧气或氮气。
    26: 权利要求1的方法,其中所说反应体系的温度高于所说基体金属的熔点,但低于所说基体金属的挥发点和所说不渗透容器的熔点。
    27: 权利要求1的方法,其中所说密封反应体系加热到:当所说基体金属包括铝时,约700-1000℃;当所说基体金属包括青铜或铜时,约1050-1125℃;而当所说基体金属包括铸铁时,约1250-1
    28: 权利要求4的方法,其中所说填料包括至少一种选自氧化铝,碳化硅,锆,氮化钛,碳化硼和其混合物的物料。 400℃。
    29: 权利要求1的方法,其中进一步包括定向固化所说大复合体中至少所说金属基体复合体成分。
    30: 权利要求1的方法,其中所说至少一种第二种或附加物体包括至少一种选自金属,陶瓷,陶瓷基体复合体,金属基体复合体和其混合物的物料。
    31: 按照上述权利要求中任一项的方法制造的大复合体。

    说明书


    本发明涉及制造大复合体。特别地,填料或预型放置在至少一种第二种材料旁,或与之相连触。然后,在不渗透的容器中,填料或预型在合适的反应气氛下,与熔融基体金属相接触,至少在工艺过程中的某点,在反应气氛与熔融基体金属和/或填料或预型和/或不渗透的容器之间发生反应,结果导致熔融基体金属渗透进入填料或预型。因此,由于,至少部分地由于,自生真空的产生,使熔融基体金属渗透进入了填料或预型。这样的自生真空渗透作用不需要施加外压或真空。在基体金属渗透过程的某点,基体金属与至少一种第二种材料相接触。将基体金属冷却至低于其熔点,制造出一种大复合体,它由固结在至少一种第二种材料的至少一部分上的金属基体复合体所组成。

        由基体金属与增强相材料如陶瓷颗粒、晶须、纤维或类似材料组成的复合产品具有广泛的应用前景,因为它们不仅具有增强相的刚性和抗磨损性,又具有金属基体的延展性与韧性。一般来说,金属基复合材料会对独石型金属材料的强度、刚度、抗接触磨损等性能有所改善,并能延长高温强度的滞留时间,但这些性能所能改善的程度主要取决于具体的成份,其体积或重量份数以及复合材料的制造工艺。某些情况下,复合体也可能比基体金属轻。例如:用颗粒状或层状碳化硅陶瓷或晶须增强的铝基复合材料之所以引起兴趣,正是因为它们相对于铝来说具有更高的刚度,耐磨损性和高温强度。

        关于铝基复合材料制造的各种冶金工艺已作过叙述,主要有粉末冶金技术,利用压力铸造、真空铸造、搅拌以及加入湿润剂等手段的液态金属渗透法。

        在粉末冶金工艺中,把粉末状金属与粉末状、晶须或纤维段增强材料混合在一起,然后冷压、烧结或者热压。利用传统工艺,用粉末冶金法制造的金属基复合材料产品相对于可得到地产品的性能来说有一定的局限性。陶瓷相在复合材料中的体积份数是有限的,在颗粒状情况下,典型值是百分之四十。另外,加压操作对所得产品的实际尺寸也有影响,它只能适用于没有后续工艺(如成型或机加工)或不需要复合加工的,形状相对简单的产品。而且这种方法不仅会因为成型与晶粒生长过程中的分凝得到微观结构不一致的产品,还会因为烧结过程中收缩不同,产品的尺寸与形状也不同。

        1976年7月20日授予J.C.Cannell等人的美国专利3,970,136号提出了用纤维状增强剂如碳化硅或氧化铝晶须制造金属基复合材料的工艺,可以预先确定纤维的取向。这种复合材料的制造工艺是这样的:把纤维排放在织物或毡上,再把这些织物平行排放在一个模型中,至少在部分织物之间放上熔融基体金属容器,然后加压,使熔融金属穿透织物,包裹在已取向好的纤维四周。熔融金属也可在加压过程中倾倒在毡堆上迫使它在毡之间流动而达到要求。据报导,通过提高增强纤维的体织份数,承载可提高达50%。

        上面叙述的渗透工艺,由于它必须依靠外界压力迫使熔融金属在纤维毡堆中渗流,因此会产生压力诱导流动过程所带来的问题,即基体层的不均匀性、气孔等等。即使能把熔融金属在纤维排列中重复引入,也可能产生性能的不一致性。因此,要想使纤维毡堆具有均匀、足够的穿透性,毡/容器的排列与流动道路必须设计得相当复杂。另外由于在大体积的织物中渗透非常困难,对于所希望获得的基体体积份数来讲,这种压力渗透法所获得的增强效果也相对较差。更有甚者,所用的模型也必须承受压力,这也增加了工艺的成本。最后,这种方法也局限于在排成一线的粒子或纤维中渗透,而不能用于无规取向的粒子、晶须或纤维等材料来增强的金属基复合材料。

        在用氧化铝填充的铝基复合材料中,铝并不能湿润氧化铝,因此很难形成凝聚的产品。其它一些基体金属与填料的结合也有同样的问题。对于这样问题已提出了一些解决方法,一种方法就是在氧化铝上涂上一层金属(如镍或钨),然后与铝一起热压。另一种方法是把铝与锂一起制成合金,再在氧化铝周围涂上氧化硅。然而,这些方法会对复合材料的性能有所影响,如涂层有可能会使填料的性能恶化,基体中的锂也会影响到基体的性能。

        R.W Grimshaw等人的美国专利4,232,091号克服了铝基-氧化铝复合材料的生产过程中所遏到的一些困难。这种方法是先把氧化铝的纤维或晶须毡加热到700到1050℃,然后再在75到375公斤/厘米2的压力下使熔化的铝(或铝合金)进入到毡中。在固体涂层中氧化铝与金属的体积比最大可达1/4。由于这种方法的渗透过程同样需要外力。因此也存在与Cannell等人的方法一样的困难。

        欧洲专利申请公开号115,742介绍了一种铝-氧化铝复合材料的制造方法,其特点是把事先制成的氧化铝基和熔融铝预型的空隙用电解电池填充。这一申请特别强调,由于氧化铝不能被铝湿润,因此需要用一些方法预先把氧化铝湿润。例如,把氧化铝涂上湿润剂(如钛、锆、铪、铌等的二硼化物)或金属(如锂、镁、钙、钛、铬、铁、钴、镍、锆、铪等),再引入惰性气体如氩气以促进湿润。这一方法表明同样需要施加应力使熔融氧化铝穿透未经涂覆的基体。在这方面,渗透需要先把气孔抽空,然后在惰性气氛如氩气中对熔化的铝加压。另外,在用熔融铝金属渗透空隙之前,也可把预型用气相铝沉积的方法而使表面湿润。为了保证金属铝在预型气孔中的滞留时间,必须在真空或氩气氛中在1400-1800℃的高温下进行热处理。而且在压力下渗透材料的气化或者渗透压的解除过程都会引起材料中铝的损失。

        欧洲专利申请公开号94353也提到了用在电解电池与熔融金属中加入湿润剂以改善氧化铝渗透性能的方法。该专利用电解沉积的方法制造铝,以电池衬或基片作为阴极,通过阴极电流进行填料。为了保护熔融冰晶石基片,必须在把氧化铝基片浸入由电解所产生的熔融铝金属中或开始电解之前,先在氧化铝基片上涂上一层薄薄的湿润剂与可溶性抑制栅的混合物。所用的湿润剂有钛、锆、铪、硅、镁、钒、铬、铌或钙,其中以钛为最好。硼、碳、氮等的化合物对于抑制湿润剂在熔融金属铝中的可溶性有一定的作用。然而该专利并没有提到金属基复合材料的制造。

        除了施加应力和使用湿润剂以外,还报道过真空也有助于熔融金属铝在多孔陶瓷压坯中的穿透。例如,美国专利3,718,441号中,1973年2月27日R.L.Landingham说明了陶瓷压坯(如碳化硼、氧化铝、氧化铍)与熔融金属铝、铍、镁、钛、钒、镍或铬在小于10-6乇的真空中的渗透。10-2-10-6乇的真空会在一定程度上使熔融金属对陶瓷的湿润性能恶化,因为金属此时不能在陶瓷空隙中自由流动。但是,当真空降低到10-6乇以下时会对湿润性能有所改善。

        1975年2月4日授予G.E Gazza等人的美国专利3,864,154号利用真空来获得渗透。该专利是把冷压的AlBl2粉末坯体安置在冷压铝粉床上,再在AlBl2上面覆盖上一层铝粉,把这和“三明治”式的AlBl2放置在坩锅中,再在真空炉中烧结。炉中的真空度近似为10-5乇,然后把温度提高到1100℃,保温3小时。在这些条件下,熔融金属铝可以穿透多孔AlBl2压坯。

        1982年2月3日Donomoto的欧洲专利申请公开号045,002也提出了一种用增强材料如纤维、线材、粉末、晶须或类似材料制造复合材料的方法。这种复合材料的制造方法是:把不与气氛反应的多孔增强材料(如排布好的氧化铝或碳或硼纤维)与熔融金属(如镁或铝一起放在部分开口的容器中,向里面吹入大量的氧气,再把容器浸入到熔融金属池中,使熔融金属渗透到增强材料的空隙中。该专利表明熔化金属会与容器中的氧气发生反应生成固态的金属氧化物,从而在容器中产生真空,这会驱动熔化金属使之进入到增强材料的空隙及容器中。具体地讲,就是在容器中放入能与氧反应的元素(如镁)使之在容器中与氧气反应以产生真空。这个真空与50公斤/厘米2的氩气压一起把熔化金属(如铝)挤入到填充有增强材料(如排布好的碳纤维)的容器中。

        美国专利3,867,177号是1975年2月18日,J.J.Ott等人关于用金属浸渍多孔体的发明,其中首先把待浸渍体与“活化金属”相接触,然后再浸渍在“填充金属”中。其特点是用Reding等人的方法(专利3,364,976号,将在下面讨论)把填料毡或压块浸没在熔融的活性金属中,保持足够的时间使以熔融活性金属能完全填充到空隙中去。然后等活性金属固化后,再把复合体完全浸没到第二种金属中保持一段足够的时间,使第二种金属能取代第一种金属,直到符合要求为止。将所得到的型体冷却。这种方法还可以把多孔体部分或全部浸渍在熔化的取代金属中足够的时间。使一定量的取代金属溶解或扩散到多孔体中去,从而用至少是第三种金属来取代或至少是部分地取代多孔复合体中的填料。在所得到的复合体中也可能在填料的间隙之间存在金属互化物。用这种多步方法,包括用活性金属制造具有所需组成的复合材料,既费时又费钱。而且工艺上的局限性,如金属的互混溶体(即溶解度、熔点、反应性等等),也影响了具有特殊用途的材料性能的获得。

        美国专利3,529,655(1970年9月22日授予G.D.Lawrence)是关于镁或镁合金与碳化硅晶须复合材料的制造工艺的。其特点是将内部装有碳化硅晶须的模型(该模型至少有一个敞口)浸没在熔融镁池中,使所有开口都低于熔融金属镁表面,保持一段时间使之填充完模型的剩余部分。该专利表明当熔融金属进入到模型中后会与其中的空气反应,产生少量的氧化镁和氮化镁,这样就会形成真空从而驱使另外的熔融金属进入到碳化硅晶须的空隙中。最后将填充满的模型从熔融镁池中取出使其中的金属镁固化。

        美国专利3,364,976号(1968年1月23日授予John  N.Reding等)是关于在型体中产生自生真空从而加强熔融金属在型体中的渗透能力的方法的。其特点是把一个型体,如石墨模或钢模,也可以是多孔耐火材料,完全浸渍到熔融金属如镁、镁合金或铝合金中。模型的空隙中填有气体,如空气、它们可与熔融金属反应。模型至少有一个小孔,外面的熔融金属可通过此小孔进入到模型中去。当模型浸入到熔体中以后,孔隙中的气体会与熔融金属反应产生真空而使熔体填充到模型中去。注意,这种真空是金属形成固体氧化物所造成的。

        美国专利3,396,777(1968年8月13日授予,John  N.Reding,Jr)涉及产生自生真空以加强熔融金属在填料中的渗透能力的。其特点是用一个一端开口的钢制或铁制容器,容器中装有粒状多孔固体,如焦碳或铁,开口一段用含有钻孔或穿孔的盖子盖住,这种钻孔或穿孔要比多孔固体填料的粒径小。容器内的多孔填料的孔隙中也含有气体,如空气,这些气体会与(至少是一部分与)熔融金属如镁、铝等反应。容器的盖在熔融金属表面以下有一段足够的距离以保证外面的气体不会进入到容器中,同时也要保持一段足够的时间使容器中的气体与熔化金属反应生成固态化合物。气体与熔融金属的反应会在容器与多孔固体中产生低压或相当程度的真空而促使熔化的金属不断流进容器中与多孔固体中。

        Reding,Jr.的方法涉及欧洲专利公开号045,002,美国专利3,867,177号,3,529,655号以及3,364,976号,有关工艺在这里都已作了讨论。其特点是把装有填料的容器深深浸入到熔融金属池中,诱使空隙中的气体与熔融金属反应从而用熔融金属把空隙填满。这个专利的另一特点是,基体金属的熔化池表面在金属的熔化态可能会被与之接触的周围的空气氧化,因此把它用一层保护层或矿渣给覆盖住。在把容器放入熔融金属中之前把矿渣除去,但是绝不能把矿渣中的有害物质混入到熔融基体金属与/或容器与多孔固体材料中去,这些有害物质,即使非常少,也可能会影响到容器中真空的形成以及最后复合材料的物理性能。另外,当容器容顺从熔融基体金属池中取出时,由于重力的作用会使过量的基体金属从容器中排出,使渗透体中的基体金属造成损失。

        因此,长期以来,感到需要一种又简单又可靠的工艺,来生产含有金属基体复合体的金属基体复合体和大复合体,该工艺不依赖施加外压或真空,不会破坏湿润剂,不需要用熔融基体金属(槽),能克服上述附加的缺点。另外,长期以来,还需要一种工艺,它使生产含一种金属基体复合体的金属基体复合体或大复合体的最后加工操作为最少。本发明提供了一种工艺制造大复合体,它能满足这些和其它一些需要。本工艺涉及一种自生真空工艺,它涉及在常压下,在反应性气氛下(例如,空气、氮气、氧气等等),用熔融的基体金属(例如Al、Mg、青铜、Cu、铸铁,等等),渗透一种材料(例如,一种陶瓷材料),来制造预型。

        1988年1月11日Dwivedi等人提交的美国专利申请系列142,385号,题目是“金属基复合材料的制备方法”,提出了一种向装有填料的陶瓷基复合材料模型中渗透可渗透物质制造金属基复合材料的新颖方法,这个专利现已被批准。根据Dwivedi等人发明的方法,把一种熔融的先质金属或母体金属与氧化剂一起使之有控制地氧化制成一种模型,生长出一种多晶氧化反应产物,这种产物至少把一部分的含有适当填料(称作“第一种填料)的预型嵌在其中。然后再把所形成的陶瓷基复合材料模型装入第二种填料,第二种填料与模型一起与熔融金属接触,再把模型密封。最典型的是引入至少一种熔融金属或打开模型的密封。密封层可能含有夹杂的空气,但这种夹杂的空气与模型内的东西都是孤立的,或者说它们是被密封住的,所以它们与外部的或周围的空气并不接触。通过给予一定的封闭的环境,在适当的熔融金属的温度下,就可以使第二种填料有效地渗透。这种方法避免了使用湿润剂,不需要在熔融基体金属中加入合金的组分,不需要施加机械压力,不需要真空,也不需要特殊的气氛条件或其它一些渗透手段。

        上述的共同拥有的专利申请描述了一种生产金属基体复合体的方法,它可以固结在陶瓷基体复合体之上,然后生产新复合体。

        另一个有点关系的是共同拥有的未决美国专利申请,系列号No.168,284,1988.3.15提高,属于Michael  K.Aghajanian和Marc  S.Newkirk,题目为“金属基体复合体及其制造技术”。和该申请公开的方法一致,一种基体金属合金作为金属的初源,也作为基体金属合金储存器,例如,由于重力流动,该基体金属合金与熔融金属的初始源连通。特别地,在上述专利申请描述的条件下,在常压下,熔融基体合金的初源开始渗透进入填料,并且开始形成金属基体复合体。熔融基体金属合金的初始源在其渗透进入填料的过程中被不断消耗,如果需要的话,可以再添满,一种优选的连续方式是,当渗透继续时,来自熔融基体金属储存器。当所要求量的可渗透填料被熔融基体合金渗透之后,降低温度以固化合金,于是形成了一种固体金属基体结构,它埋入了增强的填料。应该理解的是使用金属储存器只是本专利申请描述的一个发明实施方案,没有必要将这个储存器实施方案与这里公开的每一个替代的实施方案结合起来,其中的某些与本发明结合来使用也会有益处。

        金属储存器的量是能够提供足够量的金属,渗透进入可渗透的填料至预定的程度。另一种方法是,一种能选的阻挡层可以在至少一个测面与可渗透的填料相接触,以限定表面周界。

        进一步地,所送达的熔融金属合金的量应该至少足以使渗透进行至基本上到可渗透填料的边界(例如阻挡层),储存器中合金的量应该有过剩,不仅有足够量的合金以完成渗透,而且还可以剩余过量的熔融金属合金,并与金属基体复合体相连接。于是,当存在过量的熔融合金时,得到的复合体将是一个复杂的复合体(例如一个大复合体),这里,含有金属基体的被渗透过的填料将直接与储存器中过量的金属剩余物固结。

        一种制造大复合体的方法,公开在共同拥有的未决的美国专利申请中,1989.7.7提交,属于Mare  S.Neukirk等人,题目为“制造大复合体的方法及大复合体产品”。该申请是系列申请号No.368564的部分继续申请,系列申请No.368564于1989.6.20提交,属于Marc  S.Newkirk等人,题目为“制造大复合体的方法及大复合体产品”,该申请依次又是系列申请No.269464的部分继续申请。系列申请No.269464于1988.11.10提交,属于Marc.S.Newkrik等人,题目为“制造大复合体的方法及大复合体产品”。这些申请公开了与制造大复合体有关的各种方法,通过自发地将熔融基体金属渗透进入一种可渗透的填料或预型,并且将自发渗透的材料与至少一种第二种材料例如陶瓷和/或金属固结在一起。特别地,一种渗透增强器和/或渗透增强基体和/或渗透气氛与填料或预型连通,至少在工艺过程中的某点,使熔融基体金属自发地渗透进入填料或预型。进一步地,在渗透之前,放置填料或预型与第二种材料的至少一部分相接触,结果在填料或预型的渗透之后,被渗透材料与该第二种材料固结,结果形成了大复合体。

        一种类似于本发明的方法的,利用自生真空技术制造金属基体复合体的方法公开在一件共同拥有的未决美国专利申请中,1989,7,18提交,属于Robert  C.Kantner等人,题目为“一种利用自生真空技术来制造金属基体复合体的方法”。该专利申请公开了一种方法,在反应气氛下,熔融基体金属与填料或预型相接触,并且,在工艺过程中的至少某点,熔融的基体金属,或者部分地或者基本上完全地,与反应气氛发生反应,结果,由于,至少部分地由于自生真空的产生,使熔融的基体金属渗透进入填料或预型。这样的自生真空渗透作用不需要施加外压成真空。

        上述共同所有的专利申请的整个公开的内容均合并在此供参考。

        在本发明中,用一种新颖的自生真空技术,把熔融的基体金属渗透到放置在不渗透的容器中的填料或预型可渗透物质中,制成了一种新型的金属基复合体。特别是,把熔融基体金属与反应性气体至少在整个工艺的某个环节中与可渗透的物质保持连通,通过反应性气体与基体金属与/或填料或预型与/或不可渗透的容器的接触,产生真空,导致熔融基体金属渗透到填料或预型中。但是,在渗透之前,填料或预型放在与至少一种第二种材料旁或与之接触,这样在填料或预型渗透之后,被渗透材料与至少一种第二种材料的至少一部分固结起来,从而形成大复合体。

        在本发明第一个优选的实施方案中,反应系统组成如下(1)一个不渗透的容器;(2)包含在容器中的填料成预型;(3)至少一种第二种材料放在填料或预型附近,或与之相接触;(4)一种熔融的基体金属;(5)一种反应气氛;以及(6)一种密封层,使反应系统与环境气氛相隔绝。在反应气氛和密封层的存在下,熔融的基体金属与填料或预型相接触。反应气氛,或者部分地或基本上完全地,与熔融基体金属和/或填料和/或不渗透容器发生反应,形成了一个反应产物,该反应产生了一个真空,至少部分地将熔融基体金属吸入填料内,并与至少一种第二种材料的至少一部分发生接触。反应气氛和熔融基体金属和/或填料和/或不渗透容器的反应可以继续一段时间,足以使熔融基体金属,或者部分地或者基本上完全地,渗透进入填料或预型。而且。熔融基体金属应该渗透进入填料或预型至这样一个程度,结果熔融基体金属与至少一种第二种材料的至少部分接触。为了密封反应系统,提供了一个外部密封层,其组成不同于基体金属。

        在另一个优选实施方案中,基体金属也可以与周围的气氛反应形成内在化学密封层,它与基体金属的成份不同,可以把反应体系与周围气氛分离开来。

        在本发明的又一个实施方案中,为了密封反应系统,不是提供一个外部密封层,而是制造一个内部物理密封,通过基体金属湿润不渗透的容器和/或至少一种第二种材料的任何部分,在熔融基体金属加到不渗透容器中之后,该内部密封可以扩展在熔融基体金属的表面之上,于是隔绝了反应系统和环境气氛。进一步地,有可能掺入合金化添加物于基体金属之中,这些添加物促进基体金属在不渗透容器和/或在至少一种第二种材料上的湿润性,结果隔绝了反应系统和环境气氛。

        在另一个优选实施方案中,填料至少可以部分地与反应气体反应,产生真空,从而驱使熔融的基体金属进入到填料或预型中。而且可以在填料中加入添加剂,使之部分地或相当完全地与反应气体反应产生真空,并能提高最终复合体的性能。更进一步的说,除了填料与基体金属外,不渗透容器至少可部分地与反应气体反应产生真空。

        说明书和权利要求书中所用术语定义如下:

        “合金面”是指在熔融金属渗透到填料和预型中去之前,金属基复合材料最初与熔融基体金属接触的一面。

        “铝”是指(包括)纯金属(如相对纯的,市场上可得到的未合金化的铝)或其它级别的金属与金属合金,如市场上可得到的具有杂质与/或合金组分(如铁、硅、铜、镁、锰、铬、锌等)的金属。所定义的铝合金是指铝作为主成份的金属互化物。

        “周围(环境)气氛”是指填料或预型与不透容器以外的气氛。其组成可以与反应气体基体一致,也可以不同。

        “阻挡”或“阻挡层”是与金属基复合体相连接的部分,它是指熔融基体金属表面影响,阻止或终止它向填料或预型中移动、运动等的一层适当的物质。适当的阻挡层可以是各种材料、化合物、元素、复合材料等等,在工艺条件下,它可保持一定的完整性而不会大量地挥发(即阻挡材料不会挥发到不能起阻挡作用的程度)。

        另外,适当的“阻挡层”包括在工艺条件下可被移动的熔融基体金属湿润的材料,也包括不能被湿润的材料,只要阻挡层的湿润不会在阻挡材料的表面大量进行(即表面湿润)。这种阻挡层可以对熔融基体金属的亲合性很小或完全没有亲合性,熔融基体金属在限定的填料或预型表面上的运动也被阻挡层所阻止了。阻挡层至少可以部分地减少最终金属基复合材料产品所需要的机加工与磨削加工。

        “固结”,在这里意为两个物体之间的连结。这种连接可以是物理的和/或化学的和/或机械的,一种物理连接方法需要,至少两者之一,通常为液体状态,渗透了另一物体的微观结构的至少一部分。这种现象通常称之为“湿润”。一种化学连接方法需要,至少两者之一,与另一物体发生化学反应,在两个物体之间形成至少一个化学固结。在两个物体之间形成机械连接的一种方法是,至少两者之一,渗透进入另一物体的内部。这种机械连接的一个例子是,两个物体中的至少一个,渗透进入另一物体表面的槽或缝中。这样的机械连接不是微观渗透即“湿润”,但是机械连接可以和这样的物理连接技术组合起来使用。

        机械连接的另一个方法是所谓的“收缩配合”,即一个物体与另一个物体通过压力配合而连接。在这个机械配合的方法中,一个物体置于另一个物体的压缩之下。

        “青铜”是指(包括)富铜的合金,其中可能含有铁、锡、锌、铝、硅、铍、镁和/或铅。特殊的青铜合金中,铜的重量百分比约为90%。硅约为6%,铁约3%。

        “残余”或“基体金属残余”是指金属基复合体的形成过程中没有被消耗而剩下的基体金属,在典型情况下,如果冷却下来,残余至少有一部分会与所形成的金属基复合体接触。必须明白的是可能包含第二种或外来的金属。

        “铸铁”是指整个铸铁合金系,其中碳的重量百分含量至少为2%。

        “铜”是指商品级的相当纯的铜,如重量比为99%的含有其它不同杂质的铜。另外它还指主成份是铜的合金或金属互化物。只要它不属于青铜的范围。

        “填料”可以是单一成份,也可是多成份的混合物,它们不会与熔融基休金属反应,在熔融基体金属中的溶解度也有限,可以是单相,也可以是多相。填料的形态可大不相同,可以是粉末,鳞片,片晶,微球,晶须,球泡等等,可以是致密的,也可以是多孔的。“填料”也可包括陶瓷填料,如制成纤维、碎段纤维、颗粒、晶须、球泡、球状、纤维毡等形式的氧化铝或碳化硅,也可包括具有陶瓷涂层的填料,如用氧化铝或碳化硅涂覆的碳纤维。这样可保护碳不受侵袭。例如,熔融的铝基体金属的侵袭。填料还包括金属。

        “不(渗)容器”是指在工艺条件下用来装盛反应气体与填料(或预型)和/或熔融基体金属和/或密封层的容器。容器的密实性必须很好,不能使气体或蒸气渗透过去。这样就有可能形成反应气氛与环境气氛的气压差。

        “大复合体”,在这里意为两种或多种材料的组合物,这些材料选自陶瓷基体,陶瓷复合体,金属体以及金属基体复合体。这些材料以任何形状固结在一起,这里至少一种材料由一种通过自生真空技术所制造的金属基体复合体所组成。金属基体复合体可以作为外表面和/或内表面存在。进一步地,金属基体复合体可以作为上述的两种或多种材料之间的一个界层而存在。应该理解的是,金属基体复合体相对于残留金属和/或上述材料组中的任何一种的次序,数目和/或位置,可以以无限的方式处理或控制。

        “基基金属”或“基体金属合金”是指用于制造金属基复合材料的金属(即渗透后的金属)与/或与填料互相混合形成金属基复合体的金属(即渗透后的金属)。如果指定一种金属为基体金属,应该把它理解为可以是有一定纯度的金属,也可以是商业上可得到的含有杂杂和/或合金成份的金属,还可以是金属互化物或以该金属为主导成份的合金。

        “金属基复合材料”(或复合体”或“MMC”是指嵌有预型或填料的合金或基体金属,这些合金或基体金属是二维或三维连通的。基体金属可能包括各种各样的合金元素,以获得必需的机械性能与物理性能。

        某种“不同于”基体金属的金属是指该金属的主要成份与基体金属不同(例如,如果基体金属的主成份是铝,那么“不同”的金属的主要成份就可能是镍)。

        “预型”或“可渗透的预型”是指多孔质的填料,它至少有一个表面层是加工过的,作为基体金属渗透的界面层。这种材料具有一定的形状完整性与坯体强度,因此在基体金属开始渗透之前不需要任何外力就可保持其尺度的精确性。这种预型必须有足够的孔洞以保证基体金属能够渗透。典型的预型都是由排列好的填料所组成的,其排列可以是均匀的,也可以是不均匀的。它可能含有特定的材料(如陶瓷与/或金属颗粒、粉末、纤维、晶须等以及它们的组合)。预型可以是单个存在的,也可以以组合形式存在。

        “反应体系”是能够形成自生真空使熔融基体金属渗透到填料或预型中去的所有材料的组合。它至少应包括装有可渗透的填料或预型的容器,反应性气氛及基体金属。

        “反应(性)气氛”是指可以与基体金属和/或填料(或预型)和/或不透容器反应而形成自生真空的气氛。它所产生的自生真空能使熔融的基体金属渗透到填料或预型中去。

        “储存器”是位于与填料或预型相对的位置而与基体金属分离的部分。当金属熔化时,它可以流动以补充与填料或预型相接触的基体金属。这种补充在某种情况下从一开始就逐步进行了。

        “密封”或“密封层”是指在工艺条件下不能使气体透过的一层物质,它可以是独立形成的(如外加密封)或由于反应体系所形成的(内部封密),它把环境气氛与反应气氛分离开来。密封或密封层的组成可能与基体金属不同。

        “密封促进体”是指可以通过促进基体金属与环境气氛和/或不透容器和/或填料或预型反应以形成密封层的材料。这种材料可加到基体金属中,而基体金属中的密封促进体的存在又可提高生成复合体的性能。

        “第二种材料”,这里指的是一种材料,选自陶瓷基体,陶瓷基体复合体,金属体,以及金属基体复合体。

        “湿润增强剂”是指加到基体金属与/或填料或预型中,可以增强基体金属对填料或预型的湿润(如减少基体金属的表面张力)的材料。湿润增强剂还可通过提高基体金属与填料之间的结合力来提高生成金属基复合体的性能。

        为了帮助理解本发明,提供下面的图,但并不以此限定本发明的范围,在每一张图中,可能使用类似的参考号,来表示类似的组件。如下:

        图1是根据本发明方法,使用一个外部密封层的典型结构的横截面的示意图;

        图2是适合于标准组合体的,本发明方法的简化工艺流程图;

        图3是实施例1制造的最终大复合体的水平横截面的照片;

        图4是实施例2,3,4,5和7中所使用的陶瓷基体复合体的上表面的四个槽的俯视图;

        图5是实施例2制造的最终大复合体的照片;

        图6是实施例3制造的大复合体的垂直截面图;

        图7是实施例4制造的大复合体的垂直截面图;

        图8是实施例4制造的大复合体的照片。

        图9是实施例5的制造的大复合体的垂直截面图;

        图10是实施例5制造的大复合体的照片;

        图11是实施例6中生产大复合体时所用组合件的垂直截面图。

        图12是实施例6制造的最终大复合体的照片;

        图13是实施例7制造的大复合体的垂直截面图;

        图14是实施例7制造的最终大复合体的照片;

        图15是实施例8制造的圆柱状复合体的水平截面图;

        图16是实施例9制造的大复合体的垂直截面图。

        图17是实施例9制造的大复合体的水平截面的照片;

        图18是实施例10制造的大复合体的水平截面图;

        图19是实施例11制造的大复合体的水平截面的照片;

        图20是实施例12制造的最终大复合体的水平截面的照片;

        图21是实施例13制造的大复合体的水平截面图;

        图22是实施例14制造的大复合体的垂直截面图;以及

        图23是实施例15制造的最终两层大复合体的水平截面的照片。

        参考图1,图1表示一个典型的组合体30,它用于制造由固结在第二种材料上的金属基体复合体组成的大复合体,通过自生真空技术来制造该金属基体复合体。特别地,一种填料或预型31,它可以是任何合适的材料,下面将作更详细的讨论,将填料或预型31放置在第二种材料附近,例如,一个陶瓷基体复合体放在一个不渗透的容器32中,该容器能够容纳熔融基体金属33和反应性气氛。例如,填料31可以与反应气氛相接触(例如,存在于填料或预型孔隙中的气氛),保持足够长的时间,使反应气氛或者部分地或者基本上完全地渗透进入不渗透容器32中的填料31中。基体金属33,或者以熔融形式或者以固体金属锭的形式,放置与填料31相接触。如下面在优选实施例中所更详细描述的那样,例如,可以提供一种外部密封或密封层34,位于基体金属33的表面,使反应气氛与环气氛37相隔绝。无论是外部密封层还是内部密封层,在室温下可以有密封层功能也可以没有密封层功能,但在工艺条件下(例如,高于基体金属的熔点),应该起密封层的作用,随后,或者在室温下或者已经预热到工艺温度下,将组合体30放入炉中。在工艺条件下,炉子的温度高于基体金属的熔点,通过自生真空的形成使熔融基体金属渗透进入填料或预型,并且与第二种材料的至少一部分相接触。

        图2给出了采用本发明工艺所需要的工艺步骤简化流程。第(1)步,必须制造或得到一定性能的不透气容器(这些性能要求将在下面详细说明)。例如,一个简单的顶端敞开口钢制(如不锈钢)园柱即是一个合适的模型。把钢制容器与GRAFOIL石墨带(GRAFOIL是联合碳化物公司的注册商标)任意地放置在一起来促进在容器中形成的大复合体的排出。在下面会更详细地讲解,其它一些材料,如涂在容器内部的B2O3粉末,加到基体金属中去的锡,也都可能会有助于容器或模型中形成的大复合体的排出。在容器内装入一定量的合适的填料或预型,然后再在上面用一层GRAFOIL石墨带随意地盖上,至少要盖上一部分。这一层石墨带有助于金属基复合材料从渗流后留下的基体金属的残余中分离开来。

        一些熔融的基体金属,例如,铝,青铜,铜,铸铁,镁等等,可以注入容器中。该容器可以在室温下,也可以预热至任何合适的温度。加之,可以先提供基体金属的金属锭,然后加热使金属锭熔融。可以形成一个合适的密封层(在下面将作更详细的描述),或者是外部密封层,或者是内部密封层。例如,如果希望形成一个外部密封的话,象玻璃料(例如B2O3),可以放在容器中熔融基体金属池的表面。玻璃料熔化,一般覆盖了熔融基体金属池的表面,但如下面更详细描述的那样,不需要完整的有效作用范围。当熔融基体金属与填料或预型接触,并且通过外部密封层使基体金属和/或填料与环境气氛相隔绝之后,如果需要的话,将容器放在合适的炉中,将炉子预热至工艺温度,保持足够长的时间使渗透发生。炉子的工艺温度可以因基体金属不同而不同(例如对某些铝合金为大约950℃,对某些青铜合金要求大约1100℃)。合适的工艺温度将随着基体金属的熔点和其它特性而改变,也取决于反应系统中各组件的特性,例如至少一种第二种材料,以及密封层。在炉子的温度下保持适当的时间,将在填料或预型体内造成一种真空(将在下面作详细描述),结果使熔融基体金属渗透进入填料或预型,与至少一种第二种材料的至少部分接触。然后,将容器从炉中移出并冷却,例如,将其放在冷却板中直接固化基体金属。然后,可以用任何方便的手段从容器中移出大复合体。

        上面对图1和图2的描述简单地强调了本发明的显著特点,这在后面可以看出。对工艺中每一步骤及本工艺中所用材料特性的进一步描述将在下面给出。

        不需要什么特殊的理论或解释,人们就能理解,当某一种适当的基体金属(一般是在熔化态)在不透气的、含有反应气氛的容器中与位于至少一种第二种材料附近或与之接触的一定的填料或预型相接触时,在反应性气氛和熔融基体金属与/或填料或预型与/或不透气容器之间就会发生反应而产生反应产物(可以是固态的,也可以是液态的或蒸汽状态的),这些产物所占有的体积要较原来的反应物所占的体积小。当反应气氛与周围气氛被分隔开时,就可能在可透气的填料或预型中产生真空而驱使熔融基体金属进入到填料的空隙之中。另外,真空的产生还可能促进湿润,反应气体与熔融基体金属和/或填料或预型和/或不透气容器之间的进一步反应可以使基体金属随着真空的不断产生而不断渗流到填料或预型中。反应可以继续进行一段时间,以使熔融的基体金属能部分地或相当完全地渗流到填料或预型中,填料或预型必须有中够的透气性使反应性气氛能至少部分地渗入到填料或预型中。此外,为了形成大复合体,熔融基本金属对填料或预的渗透应达到这样一个程度,即使熔融基体金属接触至少一种第二种金属的至少一部分。

        本申请讨论了金属基复合材料的形成的某个阶段,与反应性气氛的接触的各种基体金属。对一些特殊的能产生自生真空的基体金属/反应性气氛的组合体系进行了一些说明。尤其是对铝/空气体系;铝/氧气体系,铝/氮气系统,青铜/空气系统,青铜/氮气,铜/空气,铜/氮气以及铸铁/空气等系统所产生的自生真空的性能作了说明。然而,必须明白,其它一些基体金属/反应性气氛体系的特性与上述一些特殊的体系的特性基本相似。

        要使本发明中的自生真空技术实用化,必须把反应气氛与周围的气氛分隔开来,这样才能在渗流过程中所降低了的反应性气氛的压力不至于受到从周围气氛中传入的气体的严重影响。本发明中所用的不透气容气的尺寸、形状可以是任意的,其成份是否与基体金属和/或反应气氛反应也没有要求,但是在工艺条件下必须保证不能让周围气体渗入。重要的是,这种不透气容器的材料可以是任意的(如陶瓷、金属、玻璃、高分子材料等等),只要它们能在工艺条件下保持其形状与尺寸,并且不让周围的气体从容器壁上渗入。使用气密性相当好的容器,使气体不能通过容器壁渗入,就可能在容器中形成自生真空。另外,根据所使用的反应体系的性质,如果不透容器至少能部分地与反应气氛和/或基体金属和/或填料反应的话,则有可能在容器内产生或有助于产生自生真空。

        不透气容器的性质与气孔、裂纹或还原性的氧化物无关,但它们影响到自生真空的产生与保持。因此不难理解可用多种材料来制成不透气容器。例如,铸造成型的氧化铝或碳化硅就可以象在基体金属中溶解度很小的金属(如不锈钢,它在铝、铜及青铜等基体金属中的溶解度就很小)一样作为容器材料。

        另外,其它一些不合适的材料如多孔材料(象陶瓷体)也可通过适当的涂层来提高不透气性。这些不透气的涂层可以是各种釉料和凝胶,它们可用来把这些多孔材料粘结在一起并把气孔封住。而且某种合适的涂层在工艺温度下也可以是液态,只要在这种情况下涂料足够稳定,可以在自生真空中保持不透性即可,例如可通过在容器或填料或预型上的粘性流来做到这一点。这些合适的涂层材料包括玻璃态材料(如B2O3),氯化物,碳酸盐等等,只需填充材料或预型中的气孔尺寸足够小,使涂料能有效地堵住气孔而形成不透气的涂层。

        本发明中所用的基体金属可以是各种金属,只要它们在工艺条件下熔化时,可通过填料中所产生的自生真空渗流到填料或预型中去。例如,一些金属在工艺条件下,它们或其中一些成份能部分地或相当完全地与反应气氛反应,由于(至少是部分地)自生真空的产生而使熔融的基体金属渗流到填料或预型中去,这些金属即可作为基体金属。而且根据所用体系的不同,基体金属可以不与反应性气氛反应,真空可由反应性气氛与体系中的其它组成反应而形成,这样也可以使基体金属渗流到填料中去。

        在优选实施方案中,基体金属可以是与湿润增进剂组成的合金,从而可使它的润湿能力有所提高,这样还有助于形成基体金属与填料之间的结合力,减少所生成的金属基复合材料中的气孔率,减少完成渗流过程所需要的时间等等。另外,含有湿润增进剂的材料还可以作为密封促进剂,这在下面会讲到,它有助于将反应性气氛与周围的气氛分隔开。而且在另外一些具体装置中,湿润增进剂还可以直接加入到填料中去,而不是与基体金属制成合金。湿润增强剂也可促进基体金属对至少一种第二种材料的润湿能力,从而制成强度更高且粘结性更好的大复合体。

        因此,基体金属对填料的湿润可以提高所生成的金属基体复合体的性能(如抗张强度,抗腐蚀性等等),另外,熔融基体金属对填料的湿润可以使填料在金属基复合材料中均匀分散,并且改善基体金属与填料的结合性能。对铝基体金属有效的湿润增强剂有镁、铋、铅、锡等等,而对青铜和铜则有硒、碲、硫等等。而且,正如上面所讨论的那样,至少有一种湿润增强剂可加入到基体金属与/或填充材料中去赋予所形成的金属基复合体所必要的性能。

        除此之外,还可以使用一个基体金属的储存器以保证基体金属向填料中的渗流的完成或提供一种与第一种金属成份不同的金属,尤其在某种情况下需要储存器中的基体金属的成份与第一种基体金属源的成份不同。例如,如果铝合金是第一种基体金属的话,事实上任何其它金属或金属合金都可以是储存器中的金属,只要在工艺温度下它是处于熔融态的。熔融金属经常是彼此互溶的,这样就使得储存器中的金属能与第一种金属源相混合(如果给予足够的时间的话)。因此,使用与第一种基体金属源成份不同的储存金属,就可以获得具有不同性能的基体金属以满足各种操作要求,从而也就可以获得所需要的金属基复合体的性能。

        所设计的反应体系的温度(如操作温度)可以随所使用的基体金属,填料或预型第二种材料,和反应性气氛而变。例如,对于基体金属铝,其自生真空至少在700℃才能逐渐产生,而到850℃以上才比较有利。超过1000℃是不必要的,最有效的温度范围是850-1000℃。对于青铜或铜基金属,1050-1125℃最好,而对铸铁,1250-1400℃最合适。一般来说,所采用的温度应在基体金属的熔点以上,气化点以下。

        可以通过控制大复合体中金属基体复合体成份的形成过程中金属基体的组成与/或微观结构来获得所必要的大复合体产品性能。例如,对于一给定的体系,可以通过工艺条件的选择来控制诸如金属互化物、氧化物、氮化物等的形成。另外,除了可控制金属基体的组成以外,金属基体复合体成份的其它一些物理性能如气孔率等等,也可通过控制金属基复合体成份的冷却速率来调节。在一些情况下,希望金属基复合体成份能定向固化,这可通过把装有合成好的大复合体的容器放置到冷却板上和/或有选择性地在容器内放置绝缘材料。大复合体中金属基复合体成份的其它性能(如抗张强度)可以用热处理的方法来控制(例如,标准的热处理主要是对基体金属单独的热处理,也可以是经过部分或大量调节过的热处理)。用以提高大复合体中金属基复合体成份的性能的技术可用来改变或改善最终大复合体的性能而满足某些工业要求。

        在本发明方法所用条件下,填料或预型,放在至少一种第二种材料附近,或者与之相接触,填料或者预型应该是充分可渗透的,使得在环境气氛与反应气氛隔绝之前,在工艺过程中的某点,反应气氛渗入或穿透填料或预型。通过提供一种合适的填料,反应气氛可以,或者部分地或者基本上完全地,与熔融基体金属和/或填料和/或不渗透容器接触发生反应,结果造成了一种真空,使熔融基体金属吸入填料中,并与至少一种第二种材料的至少一部分相接触。此外,反应气氛在填料内的分布不必须是基本均匀的,当然,一种基本均匀分布的反应气氛会有助于形成所需要的金属基体复合体。

        本发明中的金属基复合材料的合成方法可应用于多种填料中,材料的选择主要取决于以下因素,如基体金属,至少一种第二种材料工艺条件,熔融基体金属与反应性气体的反应能力,填料与反应性气体的反应能力,熔融基体金属与不透气容器的反应能力,以及所希望得到的最终大复合体产品中金属基体复合体成份的性能。例如,当基体金属含有铝时,合适的填料包括(a)氧化物(如氧化铝);(b)碳化物(如碳化硅);(c)氮化物(如氮化钛)。如果填料不利于与熔融基体金属反应,那么这种反应就可用减少渗流时间、降低渗流温度或在填料中加入反应性涂层来调节。填料可以组成基片,如碳或其它的非陶瓷材料,再加上一层陶瓷涂料以保护基片不受侵害或恶化。适当的陶瓷涂料包括氧化物,碳化物和氮化物。本方法中最希望用的陶瓷包括颗粒状、片状、晶须和纤维状的氧化铝和碳化硅。纤维可以是不连续的(碎段状的)或连续的细丝,如多丝纤维束。另外,填料或预型的成份与/或开关也可以是均匀的或不均匀的。

        填料的形状与尺寸可以是任意的,它们可根据所希望得到的最终大复合体产品中金属基体复合体成份的性能而定。因此,由于渗流不受填料的形状的限制,因此材料的形状就可以是粒状的,晶须,片状或纤维状,其它形状如球状,管状,丸状,耐火纤维布,以及其余类似的形状都可采用。另外,材料的开关并不影响渗流,尽管对于颗粒小的材料需要更高的温度和更长的时间才能完成渗流过程。在大多数情况下,填料的平均尺寸在略小于24号粒度至约500号粒度的范围内最好。而且,通过调节填料或预型的渗透体的尺寸(如粒径)可以获得所希望的最终大复合体产品中金属基体复合体成份的物理与/或机械性能以满足各种工业应用。再者,把含有不同粒径的填料相混合,可以获得堆积密度更高的填料的复合体。如果需要的话,还可以在渗流过程中对填料进行搅动(如晃动容器)或在渗流之前把粉末状的粘结金属与填料相混合,以得到颗粒承载更低的复合体。

        本发明中所使用的反应性气体可以是任何气体,它们至少能部分地或相当完全地与熔融基体金属和/或填料和/或不透容器反应,生成的反应产物所占的体积要比反应前气体与/或其它反应物所占的体积小。特别是,当反应性气体与熔融基体金属和/或填料和/或不透容器接触时,可以与反应体系中的一个或几个组元反应生成固相、液相或汽相的产物,这些产物所占体积要小于单个组元所占体积的总和,这样就产生了空隙或真空从而有助于熔融基体金属进入到填料或预型中去。反应性气体与基体金属和/或填料和/或不透容器中的一种或几种之间的反应,可以持续一足够的时间,可以使基体金属至少部分地或相当完全地渗流到填料中去。但是,熔融基体金属应渗透填料或预型达到这样的程度,以使其接触位于填料或预型附近或与之接触的至少一种第二种材料的至少一部分。例如,当用空气作为反应性气体时,基体金属(如铝)与空气之间的反应就会导致反应产物(如氧化铝与/或氮化铝)的产生。在工艺条件下,反应产物所占的体积要比所反应的熔融铝与空气的总体积要小,结果就形成真空,从而导致熔融基体金属向填料或预型中渗流。根据所选用的体系,填料与/或不透容器也可跟反应气体发生类似的反应,产生真空,从而有助于熔融基体金属向填料中的渗流。自生真空反应可持续一段足够的时间而导致金属基复合体的形成,并使该复合体固结到至少一种第二种材料上而形成大复合体。

        另外,已经发现必须用密封层或密封烙以阻止或限制气体从环境中流入到填料或预型中(即阻止周围气体流入反应性气体),参看图1,不透容器(32)和填料(31)中的反应性气体必须与周围的气体(37)分隔得很好,这样就可使反应性气体与熔融基体金属(33)和/或填料或预型(33)和/或不透容器(32)之间的反应得以进行,并在反应性气氛与环境气氛之间形成并维持一个压力差,直到完成所希望的渗流过程。可以理解的是,反应性气体与周围气体之间的隔离并不要求特别好,只要足够形成一个净压力差(例如,只要从周围气体中向反应气体中的流速低于补充反应掉的气体所需要的量,这种流动就是允许的)。正如上面所描述的,环境气氛与反应气氛的隔离部分由容器(32)的不透气率所决定。由于大多数的基体金属对于周围气体来说其渗透率也相当低,因此有一部分隔离是通过熔融基体金属池(33)来实现的。但是必须注意到,在不透容器(32)与周围气氛及反应气氛的界面上存在一个泄漏通道,因此密封必须足以禁止或阻止这种泄漏。

        适当的密封或密封手段可分为机械的、物理的或化学的这三类,每一类又可以再分为外部的或内部的两种。外部的密封是指这种密封作用与熔融基体金属无关,或者是附加于由熔融基体金属所提供的密封作用之上的(例如,由加到反应体系的其它组元之上的材料所产生的作用),内部密封则是指密封作用毫无例外的由基体金属的一种或几种特性所产生的(例如由基体金属与不透容器的湿润能力所产生的)。内部的机械密封可以用足够深的熔融基体金属池或把填料或预型浸没在熔融基体金属中这样的简单的方法来实现,在上面所引述的Reding等人的专利以及其它一些相关的专利中就是采用的这种方法。

        然而,已经发现Reding,Jr等人提出的内部机械密封法对于大量的情况是无效的,它们需要大量过量的熔融基体金属。根据我们的发明,外部密封及内部物理及化学密封可以克服内部机械密封的缺陷。在一个外部密封的具体装置中,密封料可以从外部以固体或液体的形式加入到基体金属表面,在工艺条件下,它们可以与基体金属不发生反应。已经证明这种外部密封阻止了,或者说至少相当程度上制止了周围气氛中的汽相成份流入到反应气氛中。用作外部物理密封的材料可以是固态,也可以是液态,它包括玻璃(如硼玻璃或硅玻璃,B2O3,熔融氧化物等等)或其它一些在工艺条件下可在相当程度上阻止周围气体流入到反应气体中去的材料。

        外部机械密封可通过把不透容器与基体金属池接触的表面事先光滑或刨光的方法来实现,这样可以在相当程度上禁止周围气体与反应气体之间的流动。象B2O3这样的釉或涂料也可加入到容器中以增强不透气性而形成适当的密封。

        外部化学密封可通过把能与如不透容器反应的材料放于熔融基体金属表面来实现。反应产物可以是金属互化物,氧化物,碳化物等等。

        在优选的内部物理密封的具体实施方案中,基体金属可以与周围气体反应形成与基体金属成份不同的密封或密封料,例如,由基体金属与周围气氛反应的产物(如Al-Mg合金与空气反应生成的MgO或镁铝尖晶石MgAl2O4,或青铜合金与空气反应生成的氧化铜)可以把反应气氛与周围气氛分隔开。另外一个内部密封的具体实施方案中,可把密封促进剂加入到基体金属中,促进基体金属与周围气氛的反应而增强密封效果(例如,在铝金属中加入镁、铋、铅等,在铜或青铜中加入硒、碲、硫等)。在形成内部化学密封时,基体金属可以与不透容器反应(例如,容器或其涂料的部分分解,或反应产物或金属互化物的形成等等),这样可以把填料与周围气体分隔开来。

        另外,还应懂得密封必须能适应反应体系的体积变化(膨胀或收缩)或其它一样变化而不让周围气体流入到填料(如反应气体)中去。特别是当熔融基体金属向填料或预型的可渗透部分渗流时,容器中熔融金属的深度会减小。在这种体系中的密封料必须有足够的柔性,当容器中熔融基体金属的水平向下降时也能阻止气体从周围气氛中流入填料中去。

        在本发明的某些实施方案中,在基体合金放置在不渗透容器内之后,在制造大复合体中所用的至少一种第二种材料,可以扩展在熔融基体合金的表面水平面之上。在这种情形下,熔融基体金属,也应该在熔融基体金属、第二种材料,和环境气氛之间的界面上,与第二种材料形成一个密封。上面有关熔融基体金属和不渗透容器之间的密封层的讨论,同样适用于熔融基体金属和第二种材料之间的密封层,如果需要这样的密封层的话。

        在本发明中还用到了阻挡手段。特别是,本发明中所用的阻挡手段可以是任何能干扰、禁止、防止或终止熔融金属在所限制填充材料的表面层之外运动、移动等等的一切手段。适当的阻挡层可以是各种材料,化合物,元素,组合物等等。在本发明所采用的工艺条件下能保持一定的结构完整性,不挥发,并且能在局部禁止或停止或干扰或阻止在限定的填料表面之外的继续渗流或任何其它运动。阻挡层可用在自生真空渗透的过程中,也可用在用与自生真空技术相关的制造金属基复合物的不透气容器中,这在下面将作更详细的讨论。这些阻挡层促进成型大复合体的形成。

        适当的阻当层包括在所采用的工艺条件下可被或不被移动的熔融基体金属湿润的材料,只要阻挡层的湿润不在阻挡材料的表面(即湿润表面)之外大面积地发生。这种阻挡层似乎对熔融的基体合金的亲合能很小,或没有亲合力,在所限定的填料或预型的表面层外的运动也就被阻挡层止住了。阻挡层减少了最终大复合产品的最终机加工或磨削加工。

        对铝基体金属特别有效的阻挡层材料是含碳,尤其是碳的多晶态同素异形体--石墨。在以后描述的工艺条件下,石墨基本不被熔融的铝合金所湿润。最好的石墨是GRAFOIL的石墨带产品,它具有能阻止熔融的铝合金在限定的填料的表面之外流动的特性。这种石墨带还可抗热,基本上是化学惰性的。GRAFOIL石墨带是柔软的,协调的,有弹性的,可以制成各种形状,适合作多种阻挡层材料。石墨阻挡层还可以制成浆状、糊状甚至印刷膜状而用于填料或预型表面。GRAFOIL带是柔软的片状,石墨,因此它是最好的。这种纸似的石墨片的一种用法是把它们裹在填料或预型上,这样填料或预型就只被GRAFOIL阻挡层内的基体金属所渗入了。这种石墨片还可制成所希望得到的金属基复合体的复型,再在复型内装入填料。

        另外,其它一些磨细粒状材料,如500号粒度的氧化铝,也可用作阻挡层材料,在一些情况下,只要粒状阻挡层材料的渗透速率比填料小即可。

        阻挡层可用各种方法设置,如在所限定的表面层上覆盖上一层阻挡材料。这层阻挡材料可用涂覆、浸渍、印刷、蒸发、或加上液态、浆状、糊状阻挡材料,或喷涂上可蒸发的阻挡材料,或简单地沉积上一层固态粒状阻挡材料,或施加一层固体薄片或薄膜状阻挡材料等方法来实现。有了阻挡层,当渗透的基体金属到达与阻挡层相接触的限定表面时,渗透就基本上被终止了。

        本发明中的制造大复合体中金属基体复合体成份的自生真空技术,结合阻挡层的使用,与原有工艺相比有许多重要的优点。尤其是,采用本发明的方法,不需要昂贵的和复杂的工艺过程即可生产金属基复合材料。本发明的一个方面是不透容器,它可从市场上得到,也可根据特殊要求来制造,可以容纳位于至少一种第二种材料附近或与之接触的要求形状填料或预型,反应气体以及用于阻止金属基体在所形成的大复合体的表面之外的渗流的阻挡材料。通过反应气体与基体金属(可注入到不透容器中)和/或填料在工艺条件下的接触,可以产生自生真空,从而使熔融基体金属进入到填料中去且必要时接触至少一种第二种材料的至少一部分。这种方法避免了复杂工艺的使用,例如,形状复杂的模型的机加工,熔融金属池的保持,从形状复杂的模型中取出产品等等。另外,由于容器基本稳定,不需要浸没到熔融金属池中,因此熔融基体金属所引起的填料的位移也就大大减小了。

        本发明的各种详细说明包含在后面的例子中。但是这些例子应看作是解释性的,而不是象权利要求书那样是对本发明保护范围的限制。

        实施例1

        下面的实施例描述一种方法,通过利用一种铝金属基体复合体界层,将陶瓷基体与不锈钢体固结起来。

        一根不锈钢棒,近似尺寸为,半径是1/2英寸,长度是2 1/2英寸,直立地放入一个不渗透的容器中,该容器是一个市售的氧化铝坩锅,近似尺寸为,内径是1 1/2英寸,高是2 1/2英寸,结果不锈钢棒的一端放入氧化铝坩锅的底部。不锈钢棒的外表面和氧化铝坩锅的内表面之间的环状空间,用近似3/4英寸厚的填料层填塞,该填料是54号粒度的碳化硅颗粒。先在钢棒的外表面上涂敷一层B2O3粉末的水溶液。B2O3粉末来自Aesar Company of Seabrook,New Hampshire,一些含有铝合金的固体基体金属,近似的重量组成为:2.5-3.5%Zn,3.0-4.0%Cu,7.5-9.5%Si,0.8-1.5%Fe,0.20-0.30%Mg,<0.50%Mn,<0.35%Sn,<0.5%Ni,以及其余为Al。在室温下,将固体基体金属放在不渗透的容器中,放在碳化硅填料的顶部。这个组合体,由不锈钢容器和其内含物所组成,放入预热到大约600℃的箱式空气电阻炉中。在1.5hr内炉温升至大约900℃,在此期间,固体基体合金熔化,在不锈钢棒和氧化铝坩锅之间的环状空隙内形成了大约3/4英寸的熔融基体合金层。然后,熔融基体金属被一层密封材料所覆盖。特别地,B2O3粉末,(Aeser Company of Seabrook,New Hampshire),放在熔融的铝基体金属表面。在大约900℃保持大约15mins之后,B2O3材料基本上完全熔化,形成了一个玻璃层。此外,B2O3内含有的水也基本上被完全蒸发,于是形成了一个气密的密封。这个组合体在大约900℃的炉子中再保持大约1hr。然后,组合体从炉中移出,直接放入水汽冷却铜板中,直接固化基体金属,结构的最终分析表明,熔融基体金属渗透进入了碳化硅填料,形成了金属基体复合体,它不仅与氧化铝坩锅固结,而且与不锈钢棒固结,于是形成了一个固体大复合体,在这里,一个陶瓷体(氧化铝坩锅),通过金属基体复合体间层,与金属体(不锈钢棒)相固结。另外,一层残余的母体金属,它没有渗透进入碳化硅填料,与氧化铝坩锅、金属基体复合体间层,不锈钢棒,以及组合体的上表面相固结。

        图3是一张本实施例制造的最终大复合体的水平截面的照片。这个横截面位于基体金属的残留层之下和氧化铝坩锅底部之上。这个截面说明不锈钢棒(50),通过金属基体复合体间层(64),与氧化铝坩锅(62)相固结。

        实施例2

        下面的实施例描述一种制造大复合体的方法,该大复合体由固结在铝金属基体复合体上的陶瓷基体复合体所组成。本实施例还说明机械固结方法和其它固结方法结合起来的使用。

        园柱形陶瓷基体复合体由埋入基体中的碳化硅填料所组成,将它放在一层500号粒度的氧化铝粉末(38Alundum,Norton  Company)之上,这层500号粒度的氧化铝粉末放在一个不渗透的容器中。该容器内径大约1  1/2英寸,高大约2  1/4英寸,用16号AISI  304型不锈钢构成。该容器是将内径为大约1  1/2英寸,长度为大约2  1/4英寸的16号304型不锈钢管,焊接到1  3/4英寸×1  3/4英寸的16号不锈钢板上而制成的。上述的园柱形陶瓷基体复合体的制备按照下面的共同拥有的美国专利申请提出的技术,该申请的整个公开内容合并在此参考:美国专利申请系列No.4,851,375,1989.7.25提高,现在已被审定,属于Marc  S.Newkirk等人,题目为“复合体陶瓷制品以及制造具有埋入填料的复合体陶瓷制品的方法”,以及美国专利申请系列号07/338,471,1989.4.14提交,该申请是美国专利系列申请No.06/861025的细则62继续申请,每个专利系列申请No.06/861025于1986.5.8提交,现在已放弃了,两者均属于Marc  S.Newkirk等人,题目为“成型陶瓷复合体及其制造方法”,相应于园柱形陶瓷基体的外径的陶瓷基体复合体的外表面,和不渗透容器的内表面之间的环形空隙,用上述的500号粒度的氧化铝粉末填塞,直至粉末平面与陶瓷基体复合体的上表面差不多齐平。在本实施例的条件下,500号粒度的氧化铝粉末,作为阻挡材料,它对熔融基体金属是不渗透的,陶瓷基体复合体的上表面有四个0.035英寸宽×0.030英寸深的槽,其取向如图4所示。这些槽(66)从园柱形陶瓷基体复合体的垂直轴倾斜大约8°500号粒度的粉末没有覆盖陶瓷基体复合体的上表面,也没有进入陶瓷基体复合体上表面的槽中。园柱形陶瓷母体复合体的近似尺寸为,直径是1  3/8英寸,高度是5/16英寸。厚度为大约0.125英寸的填料,即90号粒度的碳化硅颗粒,放在陶瓷基体复合体的上表面上。这些碳化硅颗粒填塞了陶瓷母体复合体上表面的四个槽。一些含有铝合金的熔融的基体金属,近似的重量组成为:2.5-3.5%Zn,3.0-4.0%Cu,7.5-9.5%Si,0.8-1.5%Fe,5.2-5.3%Mg,<0.50%Mn,<0.35%Sn,<0.50%Ni,以及其余为Al。在室温下,熔融基体金属的温度大约800℃。然后,熔融的基体金属用密封材料覆盖。特别地,B2O3粉末,(Aeser Company of Seabrook,New Hampshire),放在熔融铝体金属上。这个组合件,由不锈钢容器和其内含物所组成,放入预热到大约800℃的箱式空气电阻炉中。在此温度下大约15min后,B2O3材料基本上完全熔化,形成了一个玻璃层。此外,B2O3内含有的水也基本上被完全蒸发,于是形成了一个气密的密封。这个组合体在大约800℃的炉子中再保持大约2hrs。然后,该组和不锈钢盘从炉中移出,该不锈钢盘限定了不渗透容器的底部,将组合体直接放入水冷却铜板中,直接固化基体金属。当组合体冷至室温时,将其拆开,得到一个大复合体,它由固结在一个陶瓷基体复合体上的金属基体复合体所组成。然后,将大复合体的金属基体段后至大约0.015英寸厚。最终的大复合体,如图5所示,受到一系列热冲击试验,以确定金属基体复合体(68)会不会由于热冲击,而与陶瓷基体复合体相分离。热冲击试验是一个热循环,在一个空气炉中,大复合体升温至500℃,并保持15min,然后将其从炉中移出,在室温下的空气气氛环境中保持15min。在此之后,将它放回500℃的炉中,重复这一循环。当这样的循环重复六次之后,没有发现固结失败,金属基体复合体与陶瓷基体复合体相分离。

        实施例3

        下面的实施例描述一种制造大复合体的方法,通过利用铝金属基体复合体间层,陶瓷基体复合体固结在不锈钢体之上,从而形成了大复合体。

        一个园柱形陶瓷基体复合体,近似尺寸为,直径为1英寸,高度为1/4英寸,它由埋在铝基体中的碳化硅填料所组成,将这个园柱形陶瓷基体复合体放在一层500号粒度的氧化铝粉末(38  Alundum,Norton  Company)之上,并一同放入一个不渗透的容器中,该容器的内径为1  1/2英寸,高度为2  1/4英寸。生产陶瓷基体复合体的技术见实施例2中所讨论的共同拥有的专利申请。陶瓷基体复合体的上表面有四个0.035英寸宽×0.030英寸深的槽,其取向如图4所示。这些槽从园柱形陶瓷基体复合体的垂直轴倾斜大约8°。不使它容器是由16号AISI  304型不锈钢构成的,该容器是将内径为大约1  1/2英寸,长度为大约2  1/4英寸的16号304型不锈钢管,焊接到1  3/4英寸×1  3/4英寸的16号不锈钢盘上而制成的。在相应于园柱形陶瓷基体复合体的外径的外表面上,缠绕一张写字纸,这张纸在陶瓷基体复合体的上表面上扩展了大约1/2英寸,于是造成了一个容纳区域。一些90号粒度碳化硅颗粒的填料加入这个容纳区域,结果陶瓷基体复合体的上表面的四个槽被碳化硅填料填满。然后,在这个容纳区域另外再加入一些90号粒度的碳化硅,使得陶瓷基体复合体的上表面有近似1/16英寸厚的一层90号粒度的碳化硅。一个钻孔的不锈钢板放在碳化硅颗粒层的顶部。园形钻孔板的近似尺寸为:直径是1英寸,厚度是0.030英寸。这个钻孔板上有近似40%的面积上布满了直径近似为1/16英寸的小孔。当钻孔的不锈钢板放在碳化硅颗粒层的顶部之后,再在容纳区域加入另外的90号粒度的碳化硅颗粒。这些再加入的碳化硅颗粒填满了不锈钢板上的孔,并在钻孔的不锈钢板的上表面堆起了近似1/16英寸厚的一层碳化硅。此时,在容纳区域的外表面和不锈钢不渗透容器的内表面之间的环形空间中再加入一些50号粒度的粉末。加入500号粒度的粉末直至与容纳区域的平面基本上齐平。一些熔融基体金属的近似重量组成为:2.5-3.5%Zn,3.0-4.0%Cu,7.5-9.5%Si,0.8-1.50%Fe,0.20-0.30%Mg,<0.50%Mn,<0.35%Sn,<0.50%Ni,以及其余为Al。在室温下将熔融的基体金属注入容器中,覆盖了碳化硅填料和500号粒度粉末。熔融基体金属的温度为大约900℃。然后,用一层密封材料覆盖熔融基体金属。特别地,B2O3粉末(Aesar Company of Seabrook,New Hampshire),放在熔融的铝基体金属上。该组合体,由不锈钢容器和其内容物所组成,放入一个预热到大约900℃的空气箱式电阻炉中。在该温度下保持15min后,B2O3材料基本上被完全熔化,形成了一个玻璃层。进一步地,B2O3中的水基本上蒸发,形成了一个气密的密封。该组合体在900℃的炉子中再保持大约1.5hr。然后,将组合体从炉中移出,不锈钢板限定了不渗透容器的底部,将组合体直接放入水冷却铜板中,直接固化基体金属。冷却至室温后,从组合体中分离出大复合体。该大复合体体一个截面如图6所示。如图6,该大复合体(72),通过一个金属基体复合材料的间层,而使陶瓷基体复合体(74)固结在铝孔的不锈钢板(76)上,上述的金属基体复合材料的间层(78),由埋在上述铝合金基体内的90号粒度的碳化硅填料所组成。该大复合体的间层,还通过不锈钢板上的铝孔而扩展,于是与位于上述钻孔的不锈钢板上的金属基体复合体的残余物相固结。

        实施例4

        下面的实施例描述一种制造大复合体的方法,该大复合体由固结在铝金属基体复合体上的陶瓷基体复合体所组成,而该铝金属基体复合体又固结在一些基体金属上。

        一个园柱形陶瓷基体复合体,是用实施例2中讨论的共同拥有的专利申请的技术所制造的。该园柱形陶瓷基体复合体由埋在铝基体中的碳化硅填料所组成,放在一层500号粒度的氧化铝粉末(38  Alundum,Norton  Company)之上,这层500号粒度的氧化铝粉末放在一个不渗透的容器中。该不渗透容器由16号AISI304型不锈钢构成。该容器是将内径为大约2  1/8英寸,长度为大约3英寸的16号不锈钢管,焊接到2  1/2英寸×2  1/2英寸的16号不锈钢板上而制成的。相应于园柱形陶瓷基体的外径的陶瓷基体复合体的外表面,和不渗透容器的内表面之间的环形空隙,用另外的500号粒度氧化铝粉末填塞。直至粉末平面与园柱形陶瓷基体复合体的上表面差不多齐平。园柱形陶瓷基体复合体的近似尺寸为,直径是1  9/16英寸,高度是1/2英寸。另外,陶瓷基体复合体的上表面上,有四个近似0.035英寸宽×0.03英寸深的槽。这些槽的取向如图4所示。这些槽相对于元柱形陶瓷基体复合体的垂直轴倾斜大约8°。大约1/4英寸厚的一层90号粒度的碳化硅颗粒填料放在陶瓷基体复合体上表面和500号粒度粉末之上。90号粒度碳化硅粉末填料也填满了陶瓷基体复合体上表面的槽。一些熔融基体金属的近似重量组成为:2.5-3.5%Zn,3.0-4.0%Cu,7.5-9.5%Si,0.8-1.5%Fe,0.20-0.30%Mg,<0.50%Mn,<0.35%Sn,<0.50%Ni,以及其余为Al。在室温下,将熔融的基体金属注入不渗透的容器中,覆盖了碳化硅填料和500号粒度粉末。熔融基体金属的温度为大约850℃。然后,用一层密封材料覆盖熔融基体金属。特别地,B2O3粉末,(Aesar Company of Seabrook,New Hampshire)放在仍然铝基体金属的表面上。然后将该组合体放入一个预热到大约850℃的箱式空气电阻炉中,在该温度下保持15min后,B2O3材料基本上被完全熔化,形成了一个玻璃层,进一步地,B2O3中的水基本上完全蒸发了,形成了一个气密的密封。该组合体为850℃的炉子中再保持大约3hrs。然后,将组合体从炉中移出,不锈钢板限定了不渗透容器的底部,将组合体直接放入水冷却铜板中,直接固化基体金属。冷却至室温后,拆开组合体,使大复合体分离出来。图7是该大复合体的一个垂直截面图。如图7,该大复合体由固结在金属基体复合体(86)的陶瓷基体复合体(84)所组成,而该金属基体复合体又固结在基体金属体(88)上。金属基体复合体,由埋在上述铝基体合金内的90号粒度的碳化硅填料所组成。该大复合体的基体金属段经过加工,直至获得图8所示的大复合体。图8中的引线号与图7中的引线号表示同一部件。

        如图7和图8所示,金属基体复合体(86)被机械地固结在陶瓷基体复合体(84)上,通过金属基体复合体材料,该材料渗透进入陶瓷基体复合体上表面的四个槽中。在图7的大复合体的截面图上,以及在图8的大复合体的照片上,有三个被渗透的槽(90)可以看到。正如本实施中前面所述,这些槽有点倾斜于园柱形陶瓷基体复合体的垂直轴。当金属基体复合体在这些槽中固化时,在金属基体复合体和陶瓷基体复合体之间形成了一种机械固结。这种机械固结,加强了陶瓷基体复合体和金属基体复合体之间可能存在的任何其它固结(例如,化学固结)的强度,于是形成了一种更牢固更有结合力的大复合体。另外,要是陶瓷基体复合体和金属基体复合体之间的任何或所有其它的固结都失败了的话,机械固结仍然能将两者结合在一起。这就可以避免,当大复合体处在某种应力下的整体的灾难性破坏。

        实施例5

        下面的实施例描述一种制造大复合体的方法,该大复合体由固结在铝金属基体复合体上的陶瓷基体复合体所组成。

        在一个不渗透容器中,有一层500号粒度的氧化铝粉末(38  Alundum,Norton  Company),将一个陶瓷基体复合体放在这层粉末上面,该陶瓷复合体由包含在铝基体中的至少一种填料所组成。该不渗透容器内径为大约3  1/8英寸,高约2英寸,由16号AISI  304型不锈钢构成。该容器是将内径为大约3  1/8英寸,长度为大约2英寸的16号不锈钢管,焊接到3  5/8英寸×3  5/8英寸的16号不锈钢板上面制成的。制造陶瓷基体复合体的方法公开在共同拥有的美国专利No.4818734中,该专利于1989.4.4出版,属于Robert C.Kantner等人,题目为“就地制造陶瓷制品的金属部件的方法”,共同拥有的美国专利No.4818734的整个公开内容合并在此供参考。陶瓷基体复合体是圆柱形的,近似尺寸为,直径是3英寸,高度是1/4英寸。另外,陶瓷基体复合体的上表面有四个0.035英寸宽×0.03英寸深的槽。这些槽的取向如图4所示。相应于园柱形陶瓷基体的外径的陶瓷基体复合体的外表面,和不锈钢不渗透容器的内表面之间的环形空隙,用另外约500号粒度氧化铝粉末填塞,直至粉末平面与园柱形陶瓷基体复合体的上表面差不多齐平。大约0.060英寸厚的一层90号粒度的未烧结碳化硅填料放在陶瓷基体复合体上表面和500号粒度粉末之上。这些90号粒度的未烧结碳化硅也填塞了陶瓷基体复合体上表面的槽。一些熔融基体金属的近似重量组成为:2.5-3.5%Zn,3.0-4.0%Cu,7.5-9.5%Si,0.8-1.5%Fe,0.20-0.30%Mg,<0.50%Mn,<0.35%Sn,<0.5%Ni,以及其余为Al。在室温下,将熔融的基体金属注入容器中,覆盖了碳化硅填料,熔融基体金属的温度为大约850℃。然后,用一层密封材料覆盖熔融母体金属。特别地,B2O3粉末(Aesar Company of Seabrook,New Hampshire)放在熔融铝基体金属上。组合体,由不锈钢不渗透容器和其内含物所组成,将组合体放入一个预热到大约850℃的空气箱式电阻炉中。在该温度下保持15min后,B2O3材料基本上熔化形成了一个玻璃层。进一步地,B2O3中的水基本上完全蒸发了,形成了一个气密的密封。该组合份850℃的炉子中再保持大约2.5hrs。然后,将组合体从炉中移出,不锈钢板限定了不渗透容器的底部,将组合体直接放入水冷却铜板中,直接固化基体金属。冷却至室温,拆开组合体,分离出圆柱形大复合体。图9是制造的大复合体的垂直截面图。如图9所示,大复合体(92)包括固结在一个金属基体复合体(96)之上的陶瓷基体复合体(94),该金属基体复合体又固结在一层残留的基体金属(98)上,这层残留的基体金属没有渗透进入填料。该金属复合体由埋在上述铝合金基体中的90号粒度碳化硅填料组成。该大复合体经过修整步骤,磨去残留的基体金属层。在此修整步骤完成之后,在陶瓷基体复合体的金属基体复合体之间的界面上切一凹槽。该凹槽沿该元柱形大复合体的整个圆周扩展。最终的大复合体见图10,凹槽标号(102),在图9和图10中用相同的引线号表示类似的部件和/或结构。

        图9也表示了金属基体复合体填塞的槽(100)所造成的机械固结,详细讨论见实施例4。

        实施例6

        本实施例描述一种制造大复合体的方法,该大复合体包括一系列陶瓷基体复合体,通过铝金属基体复合体材料的一个间层以及一个基体金属薄层而彼此固结。

        图11表示本实施例中用于生产大复合体的组合体(104)的一个垂直截面。制造组合体(104)时,在五个陶瓷基体复合体的表面上,涂覆了一层Elmer′s木胶(Borden Company),然后将有涂覆表面(106)的陶瓷基体复合体(108)彼此接触,制造陶瓷基体复合体的技术按照实施例5中描述的共同拥有的美国专利,每个陶瓷复合体都由埋在铝基体内的至少一种填料所组成。另外,该陶瓷基体复合体是矩形的,在具表面上有槽(110)。见图11,相对于组合体(104)的线A-A,或线B-B,这些槽倾斜大约8°。涂胶之后,4英寸长×1 3/4英寸宽的组合体(104)放在一层90号粒度的碳化硅填料上,该层填料放在一个不渗透容器中,该容器直径大约为5英寸,高度大约为2 1/2英寸。该不渗透容器由16号AISI 304型不锈钢构成。该容器是将内径为大约5英寸,长度为大约2 1/2英寸约16号不锈钢管,焊接到6英寸×6英寸的10号不锈钢板上而制成的。在不渗透容器中再加入另外的90号粒度碳化硅填料,直至整个组合体埋在一层碳化硅填料下。碳化硅填料的最后平面比组合体的表面(112)高大约1/8英寸。槽(110)也被90号粒度碳化硅填料所填塞,一些熔融基体金属的近似重量组成为:2.5-3.5%Zn,3.0-4.0%Cu,7.5-9.5%Si,0.8-1.5%Fe,0.2-0.30%Mg,<0.50%Mn,<0.35%Sn,<0.50%Ni,以及其余为Al。在常温下,将熔融的基体金属注入不渗透容器中,覆盖了90号粒度的碳化硅填料。熔融基体金属的温度为大约850℃。然后,用一层密封材料覆盖熔融基体金属。特别地,B2O3粉末(Aesar Company of Seabrook,New Hampshire),放在熔融铝基体金属上。组合体,由不渗透容器和其内含物所组成。将组合体放入一个预热到大约850℃的箱式空气电阻炉中。在该温度下保持15minm后,B2O3材料基本上熔化形成一个玻璃层。进一步地,B2O3中的水基本上完全蒸发了,形成了一个气密的密封。该组合体在大约850℃的炉子中再保持大约3.5hrs。然后,将组合体从炉中移出,不锈钢板限定了不渗透容器的底部,将组合体直接放入水冷却铜板中,中间固化基体金属。冷却至室温后,拆开组合体,分离出大复合体。该大复合体由完全埋入一个金属基体复合体内的陶瓷基体复合体的组合体所组成,该金属基体复合体则由埋入上述的铝基体金属内的90号粒度碳化硅填料所组成。从陶瓷基体复合体的组合体的外表面上切削掉金属基体复合体材料,于是得到图12所示的最终大复合体。该大复合体(114)包括五个陶瓷基体复合体(108),它们构成了组合体,并通过金属基体复合体材料的间层(116)而固结在一起。该金属基体复合体材料在每个单个的陶瓷基体复合体(108)的至少一部分之间扩展。另外,陶瓷基体复合体(108)通过基体金属的间层(118)而固结在一起。该基体金属渗透进入组合体中原来被Elmer木胶占据的那些部分。于是,最后的大复合体(114)包括了一个陶瓷基体复合体的组合体,该陶瓷基体复合体固结在金属基体复合体间层(116)上,并且,另外,金属基体复合体间层(116)和陶瓷基体复合体(108)都固结在基体金属的薄间层(118)上,该薄层位于单个陶瓷基体复合体(108)之间。

        图12也表示了通过金属基体复合体填充槽(120)而造成的机械固结。详细讨论见实施例4。应该注意到,本实施例的大复合体有水平的,被金属基体复合体填满的槽,该槽在位于大复合体每个端部的陶瓷基体复合体上。这些被金属基体复合体所填满的水平槽,连同其它陶瓷基体复合体上被金属基体复合体填满的垂直槽,使该大复合体在一个二维机械连接系统。

        实施例7

        本实施例描述一种制造大复合体的方法,该大复合体包括一个铝金属基体复合体,它不仅固结在一个陶瓷基体复合体上,而且固结在一个焊接在一个丝扣不锈钢棒上的铝孔不锈钢板的组合体上。

        陶瓷基体复合体的制造按照实施例2中所描述的共同拥有的美国专利申请中的技术,该陶瓷基体复合体由埋入铝基体内的填料所组成,并放在一个不渗透容器中。该容器由16号AISI  304型不锈钢构成。该容器是将内径为大约2  1/8英寸,长度为大约3英寸的16号不锈钢管,焊接到2  1/2英寸×2  1/2英寸的16号不锈钢板上而制成。园柱形陶瓷基体复合体的直径近似等于不渗透容器的内径。另外,陶瓷基体复合体的上表面上有四个0.035英寸宽×0.03英寸深的槽。这些槽的取向如图4所示。进一步地,这些槽相对于园柱形陶瓷基体复合体的垂直轴,倾斜大约8°。一些90号粒度的碳化硅颗粒的填料放在陶瓷基体复合体的表面上,填满了这些槽,并在该表面上扩展了一个薄层。一个组合体,它包括一个钻孔的不锈钢板,该板焊接在丝扣的不锈钢棒的一端上。将该组合体放在碳化硅填料上,使得钻孔不锈钢板的一面与碳化硅填料层相接触,而与不锈钢棒焊接的一面,则背离陶瓷基体复合体。钻孔的不锈钢板是园形的,近似尺寸为,直径是1  3/4英寸,厚度是0.03英寸。此外,这个钻孔板上有近似40%的面积上布满了直径近似为1/16英寸的小孔。在不渗透容器中再加入另外的90号粒度的碳化硅填料,直至钻孔的不锈钢板的上表面被近似1/8英寸厚的一层碳化硅填料所覆盖。碳化硅填料进入不锈钢板上的孔,与该板下面的碳化硅填料相接触,碳化硅填料也围绕并与不锈钢棒的底部相接触。一些熔融基体金属的就使重量组成为:2.5-3.5%Zn,3.0-4.0%Cu,7.5-9.5%Si,0.8-1.5%Fe,0.20-0.30%Mg,<0.50%Mn,<0.35%Sn,<0.50%Ni,以及真为Al。在室温下,将熔融的基体金属注入容器中,覆盖了碳化硅填料并围绕着不锈钢棒的一部分。熔融基体金属的温度为大约850℃。然后,用一层密封材料覆盖熔融基体金属。特别地,B2O3粉末,(Aesar Company of Seabrook,New Hamshire),放在熔融铝基体金属上。组合体,由不渗透容器和其内含物所组成。将组合体放入一个预热到大约800℃的空气箱式电阻炉中。在该温度下保持15min后,B2O3材料基本上熔化形成了一个玻璃层。进一步地,B2O3材料中的水基本上完全政府了,形成了一个气密的密封。该组合体在800℃的炉子中再保持大约2hr。然后,将组合体从炉中移出,不锈钢板限定了不渗透容器的底面,将组合体直接放入水冷却铜板中,直接固化基体金属。冷却至室温,拆开组合体,分离出大复合体。图13是大复合体的垂直截面图。该大复合体(122)包括陶瓷基体复合体,它通过一个金属基体复合材料的间层(130),固结在由钻孔的不锈钢板(126)和丝扣棒(128)所组成的组合体上。另外,金属基体复合体间层(130)又与一些残余的未渗透基体金属(132)相固结,后者又与丝扣不锈钢棒(128)相固结。金属基体复合体材料由埋入上述铝基体金属中的90号粒度碳化硅填料所组成。金属基体复合体材料完全包围了钻孔的不锈钢板,也进入了板上的孔,使板上,板下的金属基体复合体材料相互固结。

        图14是一张加工过的大复合体的照片,大部分残余基体金属被厉去了。图13和图14中用相同的引线号表示类似的部件或结构。如图14所示,在丝扣不锈钢棒基(128)的周围,留下了一个残余基体金属的环(134)。在图14中看不见钻孔的不锈钢板,它完全埋入金属基体复合体间层(130)中了。

        图14也表示了金属基体复合体堵塞的槽(136),所造成的机械固结,详细讨论见实施例4。

        实施例8

        本实施例描述一种制造大复合体的方法,该大复合体包括两个同心地固结在一起的不锈钢管,通过一个铝金属基体复合体间层,该间层位于内不锈钢管的外表面和外不锈钢管的内表面之间。

        将内径为大约9/16英寸,长度为大约4  3/4英寸约16号AISI  304型不锈钢管,焊接到2  1/2英寸×2  1/2英寸的不锈钢板上,制造出第一个组合体。第二根内径为大约2  1/8英寸,长度为大约6  1/4英寸的16号AISI  304型不锈钢管,同心地套入第一根不锈钢管中。第二根不锈钢管又焊接在2  1/2英寸×2  1/2英寸的16号不锈钢板上,造成一个不渗透的容器。内管填入500号粒度的氧化铝粉末(38 Alundum from Norton Company),直至500号粒度粉末的平面与内管的上缘几乎持平。内管的上端用一层铝酸钙混合物密封,覆盖了内管的上表面,该铝酸钙混合物由Secar 71水泥与水混合而成。用14号粒度碳化硅颗粒填充内管的外表面和外管的内表面之间的环状空间。填满之后,一层50号粒度碳化颗粒放在14号粒度碳化硅层之上,并超声振动进入14号粒度碳化硅颗粒层中。于是,在超声振动之后,内管的外表面和外管的内表面之间的环状空间,被14号和50号粒度碳化硅颗粒的混合物所填满,几乎接近内管的密封上端。一些熔融的基体金属,是市售的标号为6061的铝合金,在室温下,注入外管的内表面所限定的空间中,覆盖了碳化硅填料以及内管的密封上端。熔融基体金属的温度为大约900℃。然后,用一层密度材料覆盖熔融基体金属。特别地,B2O3粉末(Aesar Company of Seabrook,New Hampshire),放在熔融铝基体金属上。组合体,由不渗透容器和其内含物所组成。将组合体放入一个预热到大约900℃的空气箱式电阻炉中。在该温度下保持大约15min后,B2O3材料基本上完全熔化形成了一个玻璃层。进一步地,B2O3材料中的水基本上完全蒸发了,形成了一个气密的密封。该组合体在900℃的炉子中再保持大约2hrs。然后,将组合体从炉中移出,不锈钢板限定了组合体的底面,将组合体直接放入水冷却铜板中,直接固化基体金属。将组合体冷却至室温后,将不锈钢板从不锈钢管和金属基体复合体上切割下来。另外,将不锈钢外管的上端切断,使其平面略低于密封的不锈钢管的上端。最终的园柱形大复合体由通过金属基体复合体间层而固结在一起的两个同心的不锈钢管所组成,金属基体复合体由埋入上述铝基体合金中的14号和50号粒度碳化硅的混合物所组成。图15是本实施例中所制造的园柱形大复合体的水平截面图。不锈钢外管标号(138),内管标号(140),金属基体复合体间层标号(142)。

        实施例9

        本实施例描述一种制造大复合体的方法,该大复合体由固结在金属体上的金属基体复合体所组成。

        不渗透容器的底部覆盖了一层大约1/4英寸厚的180号粒度不烧结碳化硅颗粒。该容器是将内径为大约2  1/8英寸,长度为大约3英寸的16号AISI  304型不锈钢管,焊接到2  1/2英寸×2  1/2英寸的不锈钢板上而制成的。一个6061铝合金园柱形金属锭,直径为大约0.75英寸,高为大约1英寸,放在这层碳化硅颗粒上面,使得园柱体的园形端直立在颗粒中,而1英寸的高度方向与碳化硅颗粒层相垂直。另外在不渗透容器中加入1/2英寸厚的碳化硅颗粒层,使得园柱体铝金属锭周围的碳化硅颗粒层的厚度近似为园柱体高度的1/2。一些含铝合金的熔融基体金属的近似重量组成为:2.5-3.5%Zn,3.0-4.0%Cu,7.5-9.5%Si,0.8-1.5%Fe,0.20-0.30%Mg,<0.50%Mn,<0.35%Sn,<0.50%Ni,以及其余为Al。在室温下,将熔融的基体金属注入容器中,覆盖了碳化硅填料以及埋没了1/2的6061铝合金金属锭。熔融基体金属的温度为大约800℃。然后,用一层密封材料覆盖熔融母体金属。特别地,B2O3粉末,(Aesar Company of Seabrook,New Hampshire),放在熔融铝基体金属上。组合体,由不渗透容器和其内含物所组成。将组合体放入一个预热到大约800℃的空气箱式电阻炉中。在该温度下保持大约15min后,B2O3材料基本上完全熔化形成了一个玻璃层。进一步地,B2O3材料中的水基本上完全蒸发了,形成了一个气密的密封。该组合体在800℃的炉子中再保持大约3.5hrs。然后将组合体从炉中移出,不锈钢板限定了不渗透容器的底部,将组合体直接放入水冷冷却铜板中,直接固化基体金属。冷却至室温,拆开组合体,分离出大复合体。图16是从组合体中分离出的大复合体的垂直截面图。如图16所示,大复合体(144)由固结在金属基体复合体(148)上的铝金属体(146)所组成。金属基体复合体由埋入上述基体金属内的180号粒度碳化硅填料所组成。

        图17是实施例中所制造的大复合体的水平截面的一张照片。图17所示的截面略低于金属基体复合体的上表面。如图17所示,金属基体复合体(148)固结在铝金属体(146)上。

        实施例10

        本实施例描述一种制造大复合体的方法,该大复合体由固结在金属体上的铝金属基体复合体所组成。

        一个不渗透容器内径为大约1  9/16英寸,高度为大约4  3/4英寸,由16号AISI  304型不锈钢构成。该容器是将内径为大约1  9/16英寸,长度为大约4 3/4英寸的16号不锈钢管,焊接到2 1/2英寸×2 1/2英寸的16号不锈钢板上而制成的。一根市售6061铝合金棒近似尺寸是,直径为1英寸,长度为3英寸,放在该不使它容器中,一端竖立在容器的底部。与容器底部相接触的棒的一端有一个园形的端面板,该端面板增加了棒的直径,使其和不渗透容器的园柱形部分的内径(1 9/16英寸)几乎相等。该端面板的高度为大约1/4英寸。用24号粒度碳化硅颗粒填料来填塞,端面板上方的棒的外表面和不渗透容器内表面之间的环形空间。碳化硅颗粒的平面与铝棒的上端几乎齐平。一些含有铝合金的熔融基体金属的近似重量组成为,2.5-3.5%Zn,3.0-4.0%Cu,7.5-9.5%Si,0.8-1.5%Fe,0.20-0.30%Mg,<0.50%Mn,<0.35%Sn,<0.50%Ni,以及其余为Al。在室温下,将熔融基体金属注入不渗透容器中,覆盖了碳化硅填料和铝棒的上表面。熔融基体金属的温度为大约900℃。然后,用一层密封材料覆盖熔融基体金属上。特别地,B2O3粉末(Aesar Company of Seabrook,New Hampshire),放在熔融铝基体金属上。组合体,由不渗透容器和其内含物所组成。将组合体放入一个预热到大约900℃的空气箱式电阻炉中,在该温度下保持15min后,B2O3材料基本上完全熔化形成了一个玻璃层。进一步地,B2O3材料中的水基本上完全蒸发了,形成了一个气密的密封。该组合体在900℃的炉子中再保持大约2hrs。然后,将组合体从炉中移出,不锈钢板限定了组合体的底部,将组合体直接放入水冷却铜板中,直接固化基体金属。冷却至室温后,在略高于铝棒的端面板的地方切断组合体的下部,并且,在略低于铝棒上端的地方切断组合体的上部。移去不锈钢园柱体,显露出一个大复合体。它由一个固结在园柱形金属基体复合体壳体上的铝合金棒所组成。该金属基体复合体由埋入上述基体金属中的24号粒度碳化硅颗粒所组成。

        图18是本实施例制造的大复合体的水平截面。如图18所示,大复合体(150)由固结在一个园柱形金属基体复合体壳体(154)上的铝合金棒(152)所组成。

        实施例11

        本实施例描述一种制造大复合体的方法,它由通过青铜金属基体复合体间层固结在一起的两个同心不锈钢管所组成。

        将内径为大约1  9/16英寸,长度为大约4  3/4英寸的16号不锈钢管,焊接在2  1/2英寸×2  1/2英寸约16号AISI  304型不锈钢板上,形成第一个组合件。将第二个更大的16号AISI  304型不锈钢管与第一个不锈钢管同心放置。第二个不锈钢管,内径为大约2  1/8英寸,长度为大约6  1/2英寸,长度为大约6  1/2英寸,焊接在相同的2  1/2英寸×2  1/2英寸的16号不锈钢板上,形成一个不使它容器。和不锈钢内管有相同直径的16号AISI  304型不锈钢园板,焊接在不锈钢内管的顶端,使该管的顶断密封。用90号粒度氧化铝填料(38Alundum,Norton  Company),填充不锈钢内管的外表面和不锈钢外管的内表面之间的环形空间。90号粒度氧化铝填料的平面与密封的不锈钢内管的顶端几乎齐平。一些含有青铜合金的熔融基体金属的近似重量组成为:90%Cu,5%Si,2%Fe,3%Zn。在室温下,将熔融基体金属注入不使它容器中,覆盖了填料和不锈钢内管的密封表面。熔融基体金属的温度为大约1100℃。然后,用一层密封材料覆盖在熔融基体金属上。特别地,B2O3粉末(Aesar Compary of Seabrook,New Hampshire),放在熔融青铜基体金属上。组合体,由不渗透容器和其内含物所组成。将组合体放入一个预热到大约1100℃的空气箱式电阻炉中。在该温度下保持大约15min后,B2O3材料基本上完全熔化形成了一个玻璃层。进一步地,B2O3材料中的水基本上完全蒸发了,形成了一个气密的密封。该组合体在1100℃的炉子中再保持大约4hrs。然后,将组合体从炉中移出,不锈钢板限定了组合体的底部,将组合体直径放入水冷冷却铜板中,直接固化基体金属。将组合体冷却至室温后,将不锈钢板从不锈钢馆和金属基体复合体上切割下来。另外,将第二根不锈钢管的上端切断,切断面略低于不锈钢内管的密封顶端。得到的大复合体由通过一个金属基体复合体间层而固结起来的两个同心的不锈钢管所组成。

        图19是本实施例制造的大复合体的水平截面的照片。如图19所示,大复合体(156)包括两个同心的不锈钢管,外管(158)和内管(160),通过一个青铜金属基体复合体间层(162)相固结。

        实施例12

        本实施例描述一种制造大复合体的方法,该大复合体由固结在青铜金属基体复合体上的不锈钢空管所组成。

        一个不渗透容器,是将内径为大约1  9/16英寸,长度为大约4  3/4英寸的16号AISI  304型不锈钢管,焊接在2  1/2英寸×2  1/2英寸的16号不锈钢板上,形成第一个组合件。将第二个更大的16号AISI  304型不锈钢管与第一个不锈钢管同心放置。第二个不锈钢管,内径为大约2  1/8英寸,长度为大约6  1/2英寸,焊接在相同的不锈钢板上,形成一个不渗透容器。一个园形的16号AISI  304型不锈钢板焊接在不锈钢内管的顶端。这块不锈钢元板的直径比不锈钢内管略大,焊上后即密封了不锈钢内管的顶端。密封之后,铝一个放气孔,穿过2  1/2英寸×2  1/2英寸的不锈钢板的底部,进入不锈钢内管的内壁所限定的空间。

        当组合体从室温升温至工艺温度时,这气孔可避免压力升高。这个气孔不会影响组合体的不渗透性,因为内管的顶端是密封的。用16号粒度的氧化铝填料(38Alundum,Norton Company),填充不锈钢内管的外表面和不锈钢外管的内表面之间的环形空间。氧化铝填料的平面与密封的不锈钢内管的顶端几乎齐平。一些含青铜含金的熔融基体金属的近似重量组成为:90%Cu,2%Fe,5%Si和3%Zn。在室温下将熔融基体金属注入不渗透容器中,覆盖了氧化铝填料和不锈钢内管的密封顶端。熔融基体金属的温度为大约1100℃。然后,用一层密封材料覆盖熔融基体金属。特别地,B2O3粉末(Aesar Company of Seabrook,New Hampshire),放在熔融青铜基体金属之上。组合体,由不渗透容器和其内气物所组成。将组合体放入一个预热到大约1100℃的箱式空气电阻炉中。在该温度下保持大约15min,B2O3材料基本上完全熔化形成了一个玻璃层。进一步地,B2O3材料中的水基本上完全蒸发了,形成了一个气密的密封。该组合体在1100℃的炉子中再保持大约2hrs。然后,将组合体从炉中移出,不锈钢板限定了组合体的底面,将组合体直接放入水冷却铜板中,直接固化基体金属。将组合体冷却至室温后,将下面的不锈钢板从两个不锈钢管和金属母体复合体间层上切割下来。另外,将组合体的上端切断,使其平面略低于不锈钢内管的顶端。从组合体中分离出的大复合体,由通过一个金属基体复合体间层而固结在一起的两个同心的不锈钢管所组成。该金属基体复合体间层由埋入上述青铜基体合金中的14号粒度氧化铝填料所组成。当组合体的两端移去后,将不锈钢外管也移去,形成一个最终大复合体,它由固结在一个青铜金属基体复合体壳体上的不锈钢管所组成。

        图20是本实施例中制造的最终大复合体的水平截面的照片。如图20所示,大复合体(164)由固结在金属基体复合体壳体(168)上的不锈钢内管(166)所组成。

        实施例13

        本实施描述一种制造大复合体的方法。该大复合体由通过一个青铜金属基体复合体间层,而固结在一起的不锈钢棒和不锈钢管所组成。该不锈钢棒和不锈钢管是同心的。

        将一个直径为大约1英寸,高度为大约4.5英寸的不锈钢棒,焊接到2  1/2英寸×2  1/2英寸的16号不锈钢板上,形成第一个组合件。一个内径为大约1 3/8英寸,长度为大约6英寸的16号AISI 304型不锈钢管,同心地套入不锈钢棒。然后,该不锈钢管被焊接到2 1/2英寸×2 1/2英寸的不锈钢板上,形成一个不渗透容器。用90号粒度氧化铝填料(38Alundum,Norton Company),填充不锈钢棒的外表面和不锈钢管的内表面之间的环形空间。90号粒度填料的平面与不锈钢棒的顶端几乎齐平。一些含青铜合金的熔融基体金属的近似重量组成为:90%Cu,5%Si,2%Fe,3%Zn。在室温下,将熔融基体金属注入不渗透容器中,覆盖了氧化铝填料和不锈钢棒的顶端。熔融基体金属的温度为大约1100℃。然后,用一层密封材料覆盖在熔融基体金属上。特别地,B2O3粉末(Aesar Company of Seabrook)放在熔融的青铜基体金属上。组合体,由不渗透容器和其内含物所组成。将组合体放入一个预热到大约1100℃的箱式空气电阻炉中,在该温度下保持大约15min后,B2O3材料基本上完全熔化形成了一个玻璃层。进一步地,B2O3材料中的水基本上完全蒸发了,形成一个气密的密封。该组合体在1100℃的炉子中再保持大约4hrs。然后,将组合体从炉中移出,不锈钢板限定了组合体的底部,将组合体直接放入水冷却铜板中,直接固化基体金属。组合体冷却至室温后,将组合体的底部切断,切断面略高于不锈钢板的底面。另外,切断组合体的上端,切断面略低于不锈钢棒的顶端。从组合体中分离出最终的园柱形大复合体,它由通过一个金属基体复合体间层而固结在一根不锈钢管上的一根不锈钢棒所组成。金属基体复合体由埋入上述青铜合金基体中的90号粒度氧化铝填料所组成。

        图21是实施制造的大复合体的水平截面图,如图21所示,大复合体(170)由通过一个金属基体复合体间层(176)而固结在一根不锈钢管(174)上的一根不锈钢棒(172)所组成。

        如图21所示,本实施例制造的园柱形大复合体的一个大约5/16英寸厚的截面,受到剪切试验,以硝定金属基体复合体材料与不锈钢棒的固结强度。截面园片放在一个钢环上,使得氧化铝填充的青铜金属基体与钢环相接触。一个压头与不锈钢中心相接触,加压于压头,在垂直于大复合体园片的直径方向,推压不锈钢中心。实验在Forney,Inc.,Wampum,PA制造的Forney  Compression/Universal试验机(Model  FT-0060-D)上进行,在0.989平方英寸的剪切面上,最大荷载为大约8210磅,剪切强度为大约8300psi。

        实施例14

        本实施例描述一种制造大复合体的方法,该大复合体由固结在金属体上的青铜金属基体复合体所组成。

        一片由Union Carbide生产的,市售GRAFOIL石墨带材料,放在一个不渗透容器的底部,覆盖了整个底部。该不渗透容器是将16号不锈钢板焊接在一起,形成一个内边长为4英寸,高度为1/2英寸的方型容器。一层大约1/8英寸厚的90号粒度氧化铝填料(38Alundum,Norton Company),放在GRAFOIL层上面。一块边长为大约3 1/2英寸,厚度为大约3/8英寸的方形冷成型钢放在这层氧化铝填料上。在不渗透容器中,再加入90号粒度氧化铝填料,直至氧化铝填料的平面与冷成型不锈钢片的上表面几乎齐平。第二层石墨GRAFOIL放在冷成型钢片上面。GRAFOIL层扩展到冷成型钢片的边缘,部分覆盖了氧化铝填料层。在GRAFOIL的边缘和不渗透容器的内表面之间存在着1/4英寸的空隙。一些含有青铜合金的熔融基体金属的近似重量组成为:90%Cu,5%Si,2%Fe,3%Zn。在室温下,将熔融基体金属注入不渗透容器中,覆盖了GRAFOIL层和暴露的氧化铝填料。熔融基体金属的温度为大约1100℃。然后,用一层密封材料覆盖在熔融基体金属上。特别地,B2O3粉末(Aesar Company of Seabrook,New Hampshire)放在熔融青铜基体金属上。组合体,由不渗透容器和其内含物所组成。将组合体放入一个预热到大约1100℃的箱式空气电阻炉中,在该温度下保持大约15min后,B2O3材料基本上完全熔化形成了一个玻璃层。进一步地,B2O3材料中的水基本上完全蒸发了。形成了一个气密的密封。该组合体在1100℃的炉子中再保持大约3hrs。然后,将组合体从炉中移出,不锈钢板限定了不渗透容器的底部。将组合体直接放入水冷冷却铜板中,直接固化基体金属。将组合体冷却至室温,拆开组合体,分离出大复合体。该大复合体由固结在冷成型钢片上的金属基体复合体所组成。

        图22是本实施例制造的大复合体的垂直截面图。如图22所示,大复合体(178)由固结在冷成型钢片(182)上的青铜金属基体复合体(180)所组成。

        实施例15

        本实施例描述一种制造大复合体的方法,该大复合体由两个填料不同的青铜金属基体复合体固结在一起。另外,本实施例还描述一种制造低密度大复合体的方法。

        在不渗透容器的底部铺一层1/8英寸厚的90号粒度碳化硅填料,该不渗透容器是将内径为大约2英寸,长度为大约2  1/2英寸的16号AISI  304型不锈钢管,焊接到2  3/8英寸×2  3/8英寸的16号不锈钢板上。一层大约3/4英寸厚的氧化铝空心球放在90号粒度碳化硅层的上面。氧化铝空心球是球形的,直径为3.2mm,由Ceramic  Fillers  Inc.,Atlanta,Georgia生产。另外一层90号粒度碳硅化填料放在这些氧化铝空心球上。组合体,由不渗透容器和其内含物所组成,缓缓振动,使90号粒度碳化硅填料下沉并填充(即位于)氧化铝空心球之间的空隙的至少一部分。当再没有90号粒度碳化硅沉入空心球之间的空隙时,在组合体中再加入一些90号粒度碳化硅,在氧化铝空心球上面造成一层1/8英寸厚的碳化硅层。一块不锈钢板,直径为大约1  7/8英寸,厚度为大约1/8英寸,将已放在碳化硅层的上面。不锈钢板的直径比不渗透容器的内径略小,使得在不锈钢板的边缘和不锈钢管的内表面之间有一个小空隙。一些含青铜合金的熔融母体金属的近似重量组成为:90%Cu,5%Si,2%Fe,3%Zn。在室温下,将熔融基体金属注入不渗透容器中,覆盖了不锈钢板和暴露的碳化硅填料。熔融基体金属的温度为大约1100℃。然后,用一层密封材料覆盖在熔融基体金属上。特别地,B2O3粉末(Aesar Company of Seabrook,New Hampshire)放在熔融基体金属之上。组合体,由不渗透容器和其内含物所组成。将组合体放入一个预热到大约1100℃的箱式空气电阻炉中。在该温度下保持大约15min后,B2O3材料基本上完全熔化形成了一个玻璃层。进一步地,B2O3材料中的水基本上被完全蒸发了,形成了一个气密的密封。该组合体在1100℃的炉子中再保持大约2hrs。然后,将组合体从炉中移出。不锈钢板限定了不渗透容器的底面。将组合体直接放入水冷却铜板中,直接固化基体金属。组合体冷却至室温后,拆开组合体,分离出大复合体。该大复合体包括第一层金属基体复合体材料,它由埋在上述青铜基体金属中的90号粒度碳化硅填料组成,固结在第二层金属基体复合体材料上,它由埋在上述青铜基体金属中的氧化铝空心球组成,第二层金属母体复合体材料又固结在第三层金属基体复合体材料上,后者由埋在上述青铜基体金属中的90号粒度碳化硅填料组成。从大复合体中移出最上面的金属基体复合体层,得到一个双层的大复合体,它包括一个含有空心球的金属基体复合体,它与含有90号粒度碳化硅填料的金属基体复合体相固结。该复合体块的密度近似为3.9g/cm3。而一个通常的金属基体复合体,它由埋入类似本实验中所用的青铜合金中的90号粒度碳化硅填料所组成,它的密度近似为5.5g/cm3。

        图23是本实施例制造的最终的双层大复合体的水平截面的照片。如图23所示,大复合体(184)由一个含有氧化铝空心球作为填料的青铜金属基体复合体(186),固结在一个含有90号粒度碳化硅填料的青铜金属基体复合体(188)上所组成。

    关 键  词:
    自生 真空 工艺 制造 复合体 方法 及其 产品
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:用自生真空工艺制造大复合体的方法及其产品.pdf
    链接地址:https://www.zhuanlichaxun.net/p-412417.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1