书签 分享 收藏 举报 版权申诉 / 16

外腔式法布里珀罗激光器.pdf

  • 上传人:32
  • 文档编号:4068943
  • 上传时间:2018-08-13
  • 格式:PDF
  • 页数:16
  • 大小:2.49MB
  • 摘要
    申请专利号:

    CN201280074993.6

    申请日:

    2012.07.30

    公开号:

    CN104508921A

    公开日:

    2015.04.08

    当前法律状态:

    实审

    有效性:

    审中

    法律详情:

    实质审查的生效IPC(主分类):H01S 5/14申请日:20120730|||公开

    IPC分类号:

    H01S5/14; H01S5/10; H01S5/065; H04B10/50; H04B10/572; H04J14/02

    主分类号:

    H01S5/14

    申请人:

    奥普林克通信公司

    发明人:

    庄荣敏; 于让尘; D·笛莫拉; 黄松炳

    地址:

    美国加利福尼亚

    优先权:

    专利代理机构:

    中国国际贸易促进委员会专利商标事务所11038

    代理人:

    陈新

    PDF完整版下载: PDF下载
    内容摘要

    用于外腔式FP激光器的方法、系统和装置。一个方面,提供了包括以下的装置:FP激光器二极管;被耦合成接收FP激光器二极管的光学输出并使该光学输出的偏振旋转的法拉第旋转器(FR);在第一端被耦合成接收FR的输出的光纤;被耦合到光纤的第二端以从该光纤接收光学信号的WDM滤波器;和直接或间接地耦合到WDM滤波器的输出端的FRM,其中WDM滤波器的光学输出由FRM部分地反射,使得被反射光束的偏振被旋转,并且其中被反射的光学信号接着在被注入回到FP激光器二极管之前以其偏振由FR旋转地通过FR。

    权利要求书

    权利要求书1.  一种装置,包括:FP激光器二极管;法拉第旋转器FR,被耦合成接收FP激光器二极管的光学输出并将所述光学输出的偏振旋转大致45度;光纤,在第一端处被耦合成接收FR的输出;波分复用器WDM滤波器,被耦合到光纤的第二端以从所述光纤接收光学信号;和法拉第旋转镜FRM,被直接或间接地耦合到WDM滤波器的输出端,其中WDM滤波器的光学输出由FRM部分地反射,使得在传输通过FRM并由FRM反射之后被反射的光束的偏振被旋转大致90度,并且其中被反射的光学信号接着在被注入回到FP激光器二极管之前通过WDM滤波器、光纤,并且以其偏振由FR旋转另一个大致45度地通过FR。2.  如权利要求1所述的装置,还包括外部调制器EM,所述外部调制器EM位于FP激光器二极管和法拉第旋转器之间,并且被耦合成接收FP激光器二极管的光学输出并调制输出光学信号,使得产生经调制的信号以供所述装置传输。3.  如权利要求1所述的装置,还包括外部调制器EM,所述外部调制器EM位于法拉第旋转器和光纤之间,并且被耦合成接收法拉第旋转器的光学输出并调制输出光学信号,使得产生经调制的信号以供所述装置传输。4.  如权利要求1或2或3所述的装置,其中WDM滤波器具有以下的形式:具有被耦合成从光纤接收输出光学信号的一个输入端以 及被耦合到分光器的输出端的阵列波导光栅(AWG)WDM复用器。5.  如权利要求1或2或3所述的装置,其中WDM滤波器是可调谐滤波器。6.  如权利要求2或3或4或5所述的装置,其中EM是半导体光学放大器。7.  如权利要求2或3或4或5所述的装置,其中EM是基于Mach-Zehnder干涉仪的调制器。8.  如权利要求1到7中任一项所述的装置,其中光纤的长度从大致几百米到几千米。9.  如权利要求1到8中任一项所述的装置,还包括用于将FP激光器二极管的FP腔模与WDM滤波器对准的部件。10.  如权利要求9所述的装置,其中所述部件包括附接到FP激光器二极管和WDM滤波器中的任一者或两者的加热元件。11.  一种装置,包括:FP激光器二极管;光纤,在第一端处被耦合成接收FP激光器二极管的输出;波分复用器WDM滤波器,被耦合到光纤的第二端以从所述光纤接收光学信号;和法拉第旋转镜FRM,被耦合到WDM滤波器的输出端,其中WDM滤波器的光学输出由法拉第旋转镜FRM部分地反射,使得在传输通过FRM并由FRM反射之后被反射的光束的偏振被旋转大致90度,并且其中被反射的光学信号接着在被注入回到FP激 光器二极管之前通过WDM滤波器和光纤。12.  一种装置,包括:FP激光器二极管;保偏PM光纤,在第一端处被耦合成接收FP激光器二极管的输出;波分复用器WDM滤波器,被耦合到PM光纤的第二端以从所述PM光纤接收光学信号;和反射镜,被耦合到WDM滤波器的输出端,其中WDM滤波器的光学输出由反射镜部分地反射,并且其中被反射的光学信号接着在被注入回到FP激光器二极管之前通过WDM滤波器和PM光纤。13.  一种装置,包括:FP激光器二极管;光子集成电路PIC芯片,所述PIC芯片包括多个光学元件,所述多个光学元件包括:外部调制器EM,通过PIC芯片被耦合到FP激光器二极管以从FP激光器二极管接收光学信号;波分复用器WDM滤波器,被耦合到EM;和分光器,具有耦合到反射器的第一臂和耦合到PIC芯片的输出端的第二臂;其中WDM滤波器的光学输出由所述反射器部分地反射,并且其中被反射的光学信号接着在被注入回到FP激光器二极管之前通过PIC芯片。14.  如权利要求13所述的装置,其中PIC芯片上的所述多个光学元件通过同一基板上的一个或多个集成光波导而彼此耦合。15.  如权利要求13或14所述的装置,还包括:一个或多个第二FP激光器二极管,每个第二FP激光器二极管都被耦合到PIC芯片的对应的第二光波导,每个第二波导耦合对应的第二多个光学元件,所述第二多个光学元件包括相应的第二EM、第二WDM滤波器、第二分光器和第二反射器。16.  一种系统,包括:自接种波分复用无源光网络WDM PON,所述WDM PON包括:一个或多个光线路终结OLT点,被耦合到第一波分复用WDM复用器的输入端,每一个光线路终结包括:FP激光器二极管;外部调制器EM,从FP激光器二极管接收输出光学信号并提供输出光学信号作为到法拉第旋转器的输入;法拉第旋转器,被耦合成接收EM的光学输出并将所述光学输出的偏振旋转大致45度,并且法拉第旋转器的输出端被耦合到WDM复用器的输入端;第一分光器,用于从第一WDM复用器的输出端接收光学信号;第一法拉第旋转镜FRM,被耦合到第一分光器的一个输出端;第二分光器;第二法拉第旋转镜FRM,被耦合到第二分光器的一个输出端;光纤,被耦合在第一分光器和第二分光器之间;第二WDM复用器,具有耦合到第二分光器的输入端的输出端;一个或多个光网络单元ONU,被耦合到第二WDM复用器的输入端,每一个ONU包括:FP激光器二极管;法拉第旋转器,被耦合成接收FP激光器二极管的光学输出并将所述光学输出的偏振旋转大致45度;外部调制器EM,从法拉第旋转器接收输出光学信号并且提供所述输出光学信号作为到第二WDM复用器的输入;其中相应WDM复用器的光学输出由相应的法拉第旋转镜FRM部分地反射。17.  如权利要求16所述的装置,其中第一WDM复用器和第二WDM复用器中的一者或多者是阵列波导AWG复用器的形式。18.  一种方法,包括:从FP激光器二极管提供光学输出;将输出光学信号经由光纤耦合到光学复用器并复用所述输出光学信号以产生经复用的信号;分离所述经复用的信号并产生第一分离信号;将第一分离信号反射回到FP激光器腔;将FP激光器二极管的一个FP腔模与由光学复用器生成的光学通带中心对准,并且将FP激光器波长锁定到单模操作;和对通过光纤传播并被反射回到FP激光器二极管的光的偏振进行控制以与FP激光器二极管的偏振对准。

    说明书

    说明书外腔式法布里-珀罗激光器
    背景技术
    波分复用(WDM)技术已经广泛应用于光纤通信,以便增加通过单个光纤的点到点连接的传输容量。多年以来,各种常规WDM激光器技术已经得到开发并广泛地得以部署。为了高效利用光纤来传递势不可挡地增长的数据传输需求——特别是在长距(long haul)和城域(metro)市场中,适合于密集WDM(DWDM)应用并具有10G或以上的高速调制性能的方案通常是所期望的。固定波长外部调制的分布式反馈(DFB)激光器(例如电吸收调制激光器(EML)和波长可调谐激光器)目前主宰着市场部署。可调谐激光器以对于更好的库存管理(inventory management)是无色的优点,在市场上逐渐增加了其份额。复杂且昂贵的制造工艺可能对可调谐激光器的市场份额的持续上升构成限制。
    WDM技术不仅对于长距和城域市场中的点到点传输是所期望的,对于通过单个光纤聚合的多点到多点连接——有时称为WDM无源光网络(WDM-PON)系统——也是所期望的。EML和可调谐激光器两者通常而言对于WDM-PON系统太过昂贵。具有成本效率的无色激光器方案对于WDM-PON应用是所期望的,并且在过去进行了相当多的研究和开发工作寻求这样的方案。在先前的努力中,已经提出了具有注入锁定的法布里-珀罗(FP)激光器和反射光学半导体放大器(RSOA)的光网络单元,其基于来自于由阵列波导光栅复用器/去复用器(AWG MUX/DEMUX)切割的高功率宽带光源或者来自于连续波(CW)WDM光源的种子光。已经提出了其它选项,包括自接种(self-seeding)架构,其通过将部分反射的反射镜放置在AWG MUX的输出端以反馈来自RSOA本身的一些光发射来使用来自ONU中的RSOA的光发射作为其自身的种子光。这种方法实际上形成了外腔式 激光器,该激光器具有与连接ONU和WDM-PON系统的无源WDM MUX节点的光纤的长度一样长的腔体长度。对于这种长的外腔式激光器的稳定性的担忧已经通过使用法拉第旋转镜(FRM)进行了研究以稳定通过长光纤的偏振。自接种架构极大简化了WDM-PON系统,因为它将光接种(seeding)配置限制到ONU和无源节点之间的ONU服务区域,这有利于WDM-PON服务的无缝部署并便于未来的WDM-PON和现有的时分复用–PON(TDM-PON)架构之间的潜在的融合。尽管如此,到目前为止所提出的相关方案在速度和距离上不能提供满意的传输性能。
    发明内容
    提出了用于外腔式FP激光器结构和WDM-PON架构的系统、方法和装置,该WDM-PON架构结合有外腔式FP激光器,以解决限制传输性能的上述问题和约束,并使得能够构造用于跨长度大于例如20km的单个光纤的高速多点连接的WDM-PON系统。
    在一些实现中,公开了一种结构,该结构包括FP腔半导体激光器二极管(例如FP激光器二极管),FP腔半导体激光器二极管的光学输出可选地通过法拉第旋转器(FR),FR将激光偏振旋转大致45度。激光束接着耦合到长度范围例如可从几百米到几千米的光纤(例如,长的光纤或保偏光纤)中,该光纤连接到WDM滤波器(例如DWDM滤波器),该WDM滤波器的光学输出由法拉第旋转镜(Faraday rotator mirror,FRM)部分地反射。该FRM由跟有部分反射的反射镜的FR组成。所传输的光学信号被用于信号传输。在一些实现中,仅需要部分反射的反射镜(例如,没有耦合器)。被反射的光学信号接着通过WDM滤波器和光纤以到达FR或者到达激光器二极管腔(如果不包括FR的话)。
    由FRM反射的激光束的偏振在FR和FRM之间的任何位置处保持与前向光学信号正交,即使在通过长且潜在应变的光纤时偏振可能失真。接着,在被注入回到FP激光器腔之前,被反射的激光束通 过FR使其偏振被FR旋转。双重通过FR和FRM产生被反射激光束的偏振的360度的总旋转,其很好地与来自FP激光器腔的原始激光偏振对准。FR、光纤、WDM滤波器、FRM和FP腔的前端面形成外部谐振腔,其中由WDM滤波器光谱提纯的光场在外部腔体内与FP腔谐振,并将FP激光器锁定到FP腔模中与WDM滤波器对准的一个。这种谐振放宽了对外部腔体中锁定FP激光器的损耗预算的要求。
    此外,双重FR架构的实现在比先前的实现更大的程度上稳定来自长外部腔体的偏振并锁定FP的波长。结果,FP激光腔中的光学增益不需要具有低的偏振依赖。由于被反射的激光束由WDM滤波器滤波,所以回到FP激光器腔的注入将其激射模(lasing mode)锁定到FP腔模中的一个腔模,该腔模与由WDM滤波器定义的波长窗口一致并创建对于高速长距离传输是重要的单模操作。典型地,FP激光器本身被设计为具有合理低的腔体损耗,并远高于阈值地操作以给出具有很好地抑制的自发发射和由多纵激射模之间的模分割支配的噪声的可接受的相对强度噪声(RIN)水平。在一些实现中,一旦激光模由经滤波的外部光学反馈注入被锁定到单个模,RIN被进一步降低。通过这种设置,可以产生低噪声并且对来自传输系统的反射较不敏感的光学信号。在一些实现中,需要将FP腔模与WDM滤波器中心对准。这可以通过控制FP腔体温度来实现。在一些实现中,数据传输可以通过直接调制到FP腔体中的电流注入来实现。
    使FP激光器偏压得远高于阈值可以使能高速调制,尽管这种直接电流调制可能由于光纤中的色散而导致波长啁啾并限制传输距离。在一些实现中,为了解决这个问题,外部调制器(EM)被放置在FP腔体和FR之间。为了便于WDM激光源覆盖宽的波长范围,EM可以是宽带调制器。基于Mach-Zehnder(马赫-曾德尔)干涉仪(MZI)的强度调制器可以用作EM,其通常是宽带具有高速调制能力的。半导体光学放大器(SOA)也可以被用在一些实现中,使得能够进行调制光学增益的电流注入的调制。
    在一些实现中,通过EM的被反射的光将被重新调制,这可以潜 在地对MZI和SOA调制器实例两者中的前向信号调制引起干扰。另外,当采用SOA调制器时,被反射的光可以潜在地影响饱和光学增益并降低前向信号调制的质量。通过FP激光器远高于阈值地操作,由返回注入光的重新调制造成的前向信号质量的降低通常很小。在一些实现中,可以实现进一步的改进,其中FR放置在FP和EM之间。在这种架构中,通过EM的被反射的激光束将具有相比于EM的设计偏振偏离45度的偏振,从而降低了通过EM的被反射的激光束的重新调制的作用。在这种配置中,注入回到FP激光器的光保持与原始偏振很好地对准,以保持波长锁定性能。
    在一些实现中,外腔式激光器被结合到WDM-PON架构中。在一种示例配置中,基于阵列波导光栅(AWG)的WDM MUX(或可调谐DWDM滤波器)代替原始结构中的WDM滤波器。AWG MUX起到外腔式激光器结构中的WDM滤波器功能,其中AWG的每个输入端口定义连接到该特定输入端口的FP激光器的不同的激射波长,并且AWG MUX在输出端口处将所有激光器输入组合在一起,以便于单个光纤传输。
    在一些实现中,自接种WDM-PON架构用于光线路终结(OLT)和光网络单元(ONU)两者。为了便于通过单个光纤的双向传输,用于OLT发射器的波长可以被分配在L波段(L-band)中,同时用于ONU的传输波长可以被分配在C波段(C-band)中。循环AWG可被用于适应用于通过单个光纤的上行和下行MUX及DEMUX的不同的波长波段。WDM耦合器可以可选地用在发射器和FR之间,以对于ONU收发器中的信号接收分离下行信号中的L波段光,以及对于OLT收发器中的信号接收分离上行信号中的C波段光。在一些实现中,每个收发器单元包括发射器、接收器、WDM耦合器和FR,它们可以与电子器件一起被集成到例如小形状因数可插拔设备中,所述电子器件是以数字数据和控制接口来操作该设备所需的。
    利用激光器架构的性质,可以将外腔式FP激光器无缝地添加到TDM-PON系统中,作为具有单通道WDM滤波器的单独WDM激光 器或者作为使用AWG的一组ONU。由于激光器特性不依赖于来自系统(诸如OLT侧)的种子光,所以不存在由将其添加到现有系统而引起的激光器特性的性能折中。
    本发明的一个或多个实施例的细节在以下说明和附图中进行阐述。从说明和附图以及从权利要求,本发明的其它特征、目的和优点将变得明晰。
    附图说明
    图1示出了具有直接调制的外部腔体耦合FP激光器结构的示例。
    图2示出了具有外部调制的外部腔体耦合FP激光器结构的示例。
    图3示出了在FP激光器和外部调制器之间具有FR的外部腔体耦合FP激光器结构的示例。
    图4示出了包括AWG MUX/DEMUX的WDM-PON架构的示例。
    图5示出了基于WDM-PON系统的通过单个光纤的完整的多点到多点连接器的示例。
    图6示出了将作为WDM激光器的单通道自注入锁定的FP激光器添加到现有TDM-PON系统中。
    图7示出了用于将一组自接种WDM-PON ONU融合到现有TDM-PON系统中的示例。
    图8示出了使用光子集成电路芯片的示例性WDM激光器。
    图9示出了示例性WDM激光器阵列。
    相同的参考数字以及名称在不同的附图中表示相同的元件。
    具体实施方式
    现在参考图1,示出了外腔式FP激光器结构100的示例,该结构使得能够在长距离上以高速实现高性能WDM传输。在所示的实现中,基本的激光器结构包括FP激光器腔,例如FP激光器二极管102,其输出首先通过法拉第旋转器(FR)104、并接着耦合到长度范围例 如从几百米到几千米的光纤106中。法拉第旋转器(FR)104使激光偏振旋转45度。在一些实现中,该结构中不包括FR。类似地,在一些实现中,该光纤可以由保偏光纤代替。
    光纤106耦合到波分复用(WDM)滤波器108,例如密集WDM复用器,其输出光学信号耦合通过分光器110并由法拉第旋转镜(FRM)112部分地反射。在传输通过FRM并由该FRM反射后,被反射激光束的偏振被旋转270度。所传输的光学信号被提供为输出114并且被用于信号传输。在操作中,被反射的激光信号再次通过WDM滤波器108和FR 104并到达回FP激光器二极管102处的FP腔。
    双重通过FR 104和FRM 112对于被反射的光学信号产生大致360度的总偏振旋转,并使其能够很好地与位于同一偏振平面的来自FP激光器腔(例如来自FP激光器二极管102)的原始激光输出对准。该经滤波的反射被注入回到FP激光器腔并将其激射模锁定到FP腔模中与WDM滤波器108所定义的波长窗口相一致的一个,并创建对于高速长距离传输是重要的单模操作。数据传输可以通过直接调制到FP腔中的电流注入来使能。FP激光器腔中的光学增益不需要具有低的偏振依赖。
    使用这种架构,FR、光纤、WDM滤波器、FRM和FP腔的前端面形成光学耦合到FP腔的外部谐振腔。由WDM滤波器光谱提纯的光场在外部腔体内与FP腔谐振,并将FP激光器锁定到FP腔模中与WDM滤波器对准的一个。谐振的这种性质放宽了对外部腔体中有效地锁定FP激光器的损耗预算的要求。而且,双重FR架构的实现稳定了来自长外部腔体的偏振并且在之前实现的很大程度上锁定FP的波长。
    在一些实现中,不包括耦合器,并且WDM复用器的输出被直接提供到部分反射的组件。在一些实现中,可以使用不同的方式来实现FRM的部分反射。例如,可以使用部分反射的反射镜而不使用分光器。在另一个示例中,可以使用两端口阵列波导(AWG)滤波器,其中一个端口连接到FRM而另一个端口用于传输。
    在一些另选的实现中,可以去除FR。在该方案中,长腔体中的偏振仍然是稳定的,但是FP激光器二极管必须具有合理低的偏振相关增益(PDG)但不是非常低的PDG,因为需要双重往返通过腔体来恢复偏振。合理低的PDG将确保有效锁定FP激光器波长。这相对于常规实现仍是改进,在常规实现中偏振状态不稳定,并且因此激光器性能对PDG非常敏感,所以需要非常低的PDG。
    在一些其它实现中,所用的光纤是偏振(PM)光纤,FR和FRM两者从该结构被去除。PM光纤用于稳定长腔体中的偏振。
    在一些实现中,要求FP激光器二极管的FP腔模与WDM滤波器对准(例如与WDM滤波器的中心频率对准)——例如在它们固有地不对准时。在一些实现中,可以通过调谐FP腔或WDM滤波器来实现对准。在一些实现中,加热元件可以耦合到FP激光器二极管和WDM滤波器中的一者或两者来完成该调谐。另选地,可以使用一个或多个热电冷却器(TEC)。
    现在参考图2,在另一实现中,示出了示例的具有外部调制的自注入锁定的FP激光器结构200。外部调制器(EM)202位于FP激光器二极管102和FR 104之间以实现较高的传输性能。在一些实现中,EM可以是半导体光学放大器(SOA)或基于Mach-Zehnder干涉仪(MZI)的强度调制器。在所提出的架构中解决了现有RSOA研究中SOA的调制速度通常很慢的担忧。这归因于从远高于阈值地操作的FP激光器到SOA中的高得多的功率注入,这降低了SOA中的载流子寿命并使能更高速的调制性能。
    现在参考图3,在另一实现中,示出了具有外部调制的外腔式FP激光器结构300的第二示例。在该示例中,FR 104可以放置在FP激光器二极管102和EM 202之间。FR 104在FP激光器二极管102和EM 202之间的放置可以减小通过EM 202的被反射激光束的重新调制。在此架构中,通过EM的被反射的激光束将具有相比于EM的设计偏振偏离45度的偏振,并降低通过EM的被反射激光束的重新调制的作用。另外,注入回到FP激光器的光保持与原始偏振很好地对 准,以确保波长锁定的有效性。通过对比,在图2所示的示例中,通过EM的被反射的光将被重新调制,这在MZI和SOA调制器两者的情况下可能引起对前向信号调制的干扰。同样在SOA调制器的情况下,被反射的光可能影响饱和光学增益并降低前向信号调制的质量。
    通过FP激光器远高于阈值地操作,由返回注入光的重新调制导致的前向信号调制质量的降低应当很小,因为前向信号不是来自于放大返回注入光的重新生成过程,而是直接来自于FP激光器本身,并且比被用于锁定FP激光器模的返回注入光强很多。然而,当使用图3所示的架构时,可以实现进一步的改进。
    现在参考图4,在另一个实现中,示出了示例的架构400,其中通过使用复用器(例如基于阵列波导光栅(AWG)的WDM MUX402),外腔式FP激光器二极管可以结合到WDM架构中。AWG MUX在外腔式激光器结构中提供WDM滤波器功能,其中AWG的每个输入端口定义用于连接到该特定输入端口的FP激光器的不同的激射波长,并在输出端口处将所有激光器输入组合在一起,以便于单个光纤传输。在常规WDM-PON系统中,WDM MUX/DEMUX和光网络单元(ONU)用户之间的距离可以是在几百米到几千米的范围。双重FR架构的实现稳定了来自长的外部腔体的偏振,并且对于确保FP激光器的波长锁定的有效性是关键的。如图4所示,提供了图2的架构,其中用AWG MUX来代替DWDM复用器。
    图5示出了基于上述WDM-PON系统的通过单个光纤的完整的多点到多点连接器的示例。波分复用无源光网络(WDM PON)包括耦合到第一复用器504(例如第一阵列波导光栅(AWG)复用器(MUX))的输入的一个或多个光线路终结(OLT)点502。每个光线路终结点502包括FP激光器二极管、外部调制器(EM),外部调制器(EM)从FP激光器二极管接收输出光学信号并提供输出光学信号作为到法拉第旋转器的输入。法拉第旋转器的输出可以被提供作为到第一复用器504(例如第一AWG MUX)的输入。每个光线路终结还可以包括所示的接收器光学组装件(ROSA)。多个OLT 502可以 被包括在WDM-PON系统中,各自提供到第一复用器504的输入。
    WDM-PON系统还包括用于从第一复用器504的输出接收光学信号的第一分光器506和耦合到第一分光器506的一个端口的第一法拉第旋转镜(FRM)508。如上所讨论的,被反射的光学信号在被注入到OLT的FP激光器腔中之前被反射回到FR和EM中。第一分光器的第二端口将来自OLT的输出光学信号耦合到光纤510,光纤510的另一端耦合到第二分光器512。第二分光器512类似于第一分光器506地被配置,并具有耦合到第二法拉第旋转镜514的一个端口(以产生另一个被反射的光学信号)。第二分光器512的输入耦合到第二复用器516(例如第二阵列波导光栅AWG MUX)的输出。第二复用器516的输入分别耦合到一个或多个光网络单元(ONU)518。在一些实现中,每个ONU 518包括类似于OLT的结构——尽管光的不同波长可用于激光器,包括FP激光器二极管、外部调制器(EM)和法拉第旋转器(FR)。在操作中,相应复用器的光学输出由相应的法拉第旋转镜(FRM)部分地反射,如上所讨论的。
    可以实现WDM激光器和WDM-PON架构与现有TDM-PON系统的无缝融合而不需要折中激光器特性。图6和图7示出了用于与现有TDM-PON系统集成的示例架构。更具体地,图6示出了将单通道外腔式FP激光器作为WDM激光器添加到现有TDM-PON系统中。
    图7示出了将一组WDM-PON ONU融合到现有TDM-PON系统中的示例。在又一个实现中,通过使用单通道DWDM滤波器,外腔式FP激光器二极管可以用作单独的WDM激光器。
    对于诸如光线路终结(OLT)的某些应用,多个WDM激光器可以都放置在同一设备中。外部腔体耦合的FP激光器的构造可以被实现而无需FP与WDM滤波器之间的长的光纤。另外,不需要管理由长的应变光纤潜在引入的偏振失真。
    在一些实现中,为了实现WDM激光器,FP激光器被耦合到所谓的光子集成电路(PIC)芯片,该芯片具有集成在同一基板上的多个光学元件。图8示出了使用光子集成电路芯片的示例的WDM激光 器。
    在这样的实现中,PIC芯片可依次包含EM、WDM滤波器和分光器,分光器的一个臂耦合到反射器,另一个臂耦合到PIC芯片的输出端。PIC芯片上的所有元件可以通过同一基板上的一个或多个集成光波导而相互耦合,这些光波导在PIC的一端上用来耦合到FP激光器,并且在另一端上用来耦合到用于输出应用的光纤。由于所有元件被集成在同一芯片上,偏振得以很好地保持。在一些另选的实现中,为了避免PIC的复杂性,分光器和反射器可以从PIC移出并通过使用例如短长度的PM光纤而被放置在输出光纤中。
    图9示出了示例的WDM激光器阵列。由于多个WDM激光器可以都放置在同一OLT设备中,可以通过以下来实现紧凑且高密度的集成WDM激光器阵列:将FP激光器的阵列耦合到包含光波导阵列的PIC,这些光波导耦合到同一PIC基板上的EM的阵列。EM的阵列接着耦合到WDM MUX(诸如AWG)、并由该WDM MUX复用到耦合到分光器的一个波导中,其中该分光器的一个臂耦合到反射器,另一个臂耦合到同一PIC的输出端。
    虽然上面是参照特定的结构和装置,但是本技术的各个方面可被具体实现为一个或多个方法。在一个示例方法中,提供了来自FP激光器二极管的光学输出。输出光学信号通过光纤(光纤或PM光纤)耦合到光学复用器,输出光学信号在光学复用器处被复用以产生经复用的信号。经复用的信号可选地被分离,产生第一分离信号。经复用的信号(或第一分离信号)被反射回到与FP激光器二极管关联的FP激光器腔。该方法包括:将FP激光器二极管的一个FP腔模与由光学复用器生成的光学通带中心对准,和将FP激光器波长锁定到单模操作。该方法进一步包括控制通过光纤传播并被反射回到FP激光器二极管的光的偏振以与FP激光器二极管的偏振对准。
    已经描述了本发明的多个实施例。然而,可以理解,可以进行各种修改而不背离本发明的精神和范围。因此,其它实施例在权利要求的范围内。

    关 键  词:
    外腔式法布里珀罗 激光器
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:外腔式法布里珀罗激光器.pdf
    链接地址:https://www.zhuanlichaxun.net/p-4068943.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1