书签 分享 收藏 举报 版权申诉 / 16

接合衬底的方法.pdf

  • 上传人:大师****2
  • 文档编号:4066421
  • 上传时间:2018-08-13
  • 格式:PDF
  • 页数:16
  • 大小:616.42KB
  • 摘要
    申请专利号:

    CN201280074905.2

    申请日:

    2012.07.26

    公开号:

    CN104508809A

    公开日:

    2015.04.08

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效IPC(主分类):H01L 21/60申请日:20120726|||公开

    IPC分类号:

    H01L21/60

    主分类号:

    H01L21/60

    申请人:

    EV集团E·索尔纳有限责任公司

    发明人:

    M.温普林格

    地址:

    奥地利圣弗洛里安

    优先权:

    专利代理机构:

    中国专利代理(香港)有限公司72001

    代理人:

    徐予红; 刘春元

    PDF完整版下载: PDF下载
    内容摘要

    本发明涉及一种将第一至少大致透明衬底(1)的第一接触面(3)接合至第二至少大致透明衬底(2)的第二接触面(4)的方法,在所述接触面的至少一者上使用氧化物来进行接合,在第一及第二接触面(3、4)上由该氧化物形成至少大致透明的连接层(14),其具有:至少10e1S/cm2的电导率(测量:四点法,相对于300K的温度)及大于0.8的光透射率(针对400 nm至1500 nm的波长范围)。

    权利要求书

    权利要求书1.   一种将第一至少大致透明衬底(1)的第一接触面(3)接合至第二至少大致透明衬底(2)的第二接触面(4)的方法,其中在所述接触面(3、4)的至少一者上使用氧化物来进行接合,在所述第一及第二接触面(3、4)上由所述氧化物形成至少大致透明的连接层(14),其具有:-至少10e1 S/cm2的电导率(测量:四点法,相对于300K的温度)及-大于0.8的光透射率(针对自400 nm至1500 nm的波长范围)。2.   一种制造具有用于接合至第二衬底(2)的第二接触面(4)的第一接触面(3)的第一衬底(1)的方法,其中对所述第一衬底(1)施加具有以下特性的第一氧化物层(6):-至少10e1 S/cm2的电导率(测量:四点法,相对于300K的温度)及-大于0.8的光透射率(针对自400 nm至1500 nm的波长范围)。3.   如上述权利要求中任一项所述的方法,其中所述第一接触面(3)尤其在形成接触之前经等离子体活化。4.   一种制造具有用于接合至第一衬底(1)的第一接触面(3)的第二接触面(4)的第二衬底(2)的方法,其具有以下步骤,尤其是以下流程:-对第二衬底(2)施加第二氧化物层(11),-对所述第二氧化物层(11)施加第三氧化物层(10),其中所述第三氧化物层(10)具有小于所述第三氧化物层(10)的最大氧体积S最大的70%的氧体积S1,及-对所述第三氧化物层(10)施加第四氧化物层(9)。5.   如上述权利要求中任一项所述的方法,其中所述氧化物或所述氧化物层(6、9、10、11)中的一或多层尤其以掺杂形式包含以下组分中的至少一者:-铟,-锡,-铝,-锌,-镓,-氟或-锑。6.   如上述权利要求中任一项所述的方法,其中所述氧化物或所述氧化物层(6、9、10、11)中的一或多层是通过以下列举方法中的一者施加:-金属有机化学气相沉积(Metalorganic Chemical Vapor Deposition),-金属有机分子束沉积(Metal Organic Molecular Beam Deposition),-喷雾热解(Spray Pyrolyse),-脉冲激光沉积(Pulsed Laser Deposition)或-溅镀。

    说明书

    说明书接合衬底的方法
    本发明涉及一种如权利要求1的将至少对特定波长范围大致透明的第一衬底的第一接触面接合至至少对特定波长范围大致透明的第二衬底的第二接触面的方法、一种如权利要求2的用于制造第一衬底的方法及一种如权利要求4的用于制造第二衬底的方法。
    该一般方法尤其被用于制造多层半导体、玻璃或陶瓷复合体。一种尤其重要的应用涉及制造光电多层电池。
    制造多层电池的其中一个主要限制是单个半导体材料的晶格结构在其尺寸及形状方面的不兼容性。在通过于彼此上方直接生长层来制造单个层时,此不兼容性导致于通过其实现的半导体层中的缺陷。该缺陷不利地影响所制得层的质量,及尤其是可达到的光能转换成电能的效率。关于以下参数的限制实际上是由此所导致:
    a)结构中可实现的活性层的数量。由于上述问题所致,目前此数量受限于2至最多三层。
    b)单个层针对最优波长范围的最优化。实际上,目前尚不可能完全自由地针对最优波长范围及光能转换成电能的相关转换特性将单个层最优化,这是因为始终必需针对晶格结构的兼容性达成折衷。
    c)使用更有利的材料:就特定波长而言,将希望使用(例如)硅或锗,因该材料将容许在效率与成本之间的理想折衷。然而,通常不可能使用该材料,因为晶格结构无法适当地与用于电池中的其它结构兼容。
    因此,本发明的目标是设计一种能更有效率地制造前述多层复合体且可实现更多样参数的方法。
    通过权利要求1、2及4的特征达成此目标。在从属权利要求中给出本发明的有利改进方案。在本说明书、权利要求书及/或附图中给出特征中的至少两者的所有组合也落在本发明的范围内。在给定值范围内,在所指示界限内的值也将被视为公开地作为边界值且将以任何组合主张。
    本发明是基于以接合两衬底来替代生长两层及可通过该接合来提供若干具有不同特性(尤其是光学特性)的层的概念。
    在此本发明尤其基于一种在形成接触之前在单独衬底上制造位于电池结构中的单个层(尤其是设定用于接合的连接层),且随后仅堆叠/接合的方法。因此,可在已针对此目的最优选化的生长衬底上制得该单个层。此制造尤其可通过利用MOCVD生长来实现。
    本发明的尤其独立的方面在于该层可如何利用同时低成本的过程来以导电及光学透明形式堆叠。此外还描述一种为达此目的所需衬底的制法。
    所述方法优选适于堆叠多层太阳能电池。然而,该方法也可替代性地用于制造其中在任何(尤其是光学)材料(尤其是半导体材料、玻璃及陶瓷)之间需要光学透明及导电连接的任何其它结构及组件。在此产业中,由于在诸如照明、通讯、及材料加工的应用主体中诸如LED及激光的固态光源的大大增加的重要性而产生愈来愈多的应用。在显示器制造产业中,由于要将诸如接触侦测(在触控屏幕等的区域中的反馈)的额外功能整合于显示器中,因而新颖创新的产品技术也变得日益重要。
    本发明的优点主要为以下各项:
    -  导电性、光学透明的接合界面(连接层),
    -  一或多个在长时间内稳定的极薄耐用层,
    -  一或多个耐热层及
    -  高效率(制造快速且低成本)。
    本发明的中心、尤其独立的方面在于使用透明导电氧化物来制造介于衬底间的导电及光学透明连接层。该连接尤其是通过晶圆接合制得,优选利用直接接合法,及甚至更优选是利用等离子体活化的直接接合法。
    尤其使用氧化铟锡(ITO)作为透明导电氧化物(TCO)。在下文将使用缩写ITO来表示氧化铟锡。ITO被广泛地用于制造LCD显示器,其中它是用作光学透明电导体。或者,使用以下材料:
    -  掺杂氧化锌,尤其是掺铝氧化锌(英语“Aluminum Doped Zinc Oxide”,简称AZO)、掺镓氧化锌(英语“Gallium Doped Zinc Oxide”,简称GZO),
    -  掺氟氧化锡(英语“Fluorine Tin Oxide”,简称FTO),及
    -  氧化锑锡(英语“Antimony Tin Oxide”,ATO)。
    可使用基本上任何可经氧化及尤其经适当掺杂时具有期望特性(尤其是导电性及光学透明度)的材料。
    在此方面,如本发明所主张,当材料具有>10e1 S/cm2、优选10e2 S/cm2、更优选10e3 S/cm2的电导率(利用半导体技术中已知的四点法,相对于300 K的温度测量)时,满足电导率。经定义为根据应用所设计层可通过的特定波长范围光的百分比的光透射率(透射率)应为至少>80%、有利地>87%、优选>93%及甚至更优选>96%地通过具有根据该应用的厚度的膜。
    如本发明所主张,就光电应用而言,自300 nm延伸至1800 nm的波长范围为优选。也就是说在任一情况中相关波长范围是大于人眼可见波长范围。这会确保光中的UV部分及光中的IR部分也可转换成电能。由于多层太阳能电池中的最上层已处理一部分光谱且因此将其转换成电能,因此可接受接合连接具有稍微较小的其容许透射的波长范围的情况。因此,特别来说特别来说,前述透射率值将至少适用于波长>600 nm、有利地>500 nm、更有利地> 400 nm、及最有利地>350 nm。此外,透射率值尤其也应适用于自最小波长范围直至最大1300 nm、有利地高达最大1500 nm、更有利地高达最大1700 nm、及最有利地高达最大1800 nm的整个波长范围。
    尤其通过以下方法将氧化物施加至如本发明所主张而要连接的衬底:
    -  MO CVD、金属有机分子束沉积,
    -  喷雾热解、脉冲激光沉积(PLD)或
    -  溅镀。
    为确保该层的期望特性,如本发明所主张的关键在于确保正确的混合比。特别来说特别地,氧成分可改良一些该氧化物中的光学透明度,但须确保氧部份不过高,因为否则将会降低电导率。
    一般而言,接合连接(连接层,也称为接合界面)是通过在要接合衬底上沉积前驱体层状结构所制得。接着使该层等离子体活化及尤其于室温下结合,由此形成预接合(暂时接合)。在后续的热处理过程(退火)期间,该前驱体层状结构转化成由透明导电氧化物组成的层,同时增强接合连接。
    使用两半导体晶圆(第一及第二衬底)来描述本发明所主张方法的尤其独立实施例。然而,该方法也可类似地应用于材料的任何其它光学特定组合。
    在第一模块(涂装设备)中,使第一半导体层生长于尤其由衬底自身(稍后经背部薄化)形成的第一载体上,这是由于其晶体结构及其表面适于生长第一半导体层(第一衬底)。由此,在原位(也就是,没有用于生长半导体层的涂装设备移除衬底)沉积所选择的TCO的层(第一氧化物层)。该原位过程确保该TCO可直接附着至半导体,而不会形成将影响电导率的氧化物。当原位衬底是在设备(由其它模块组成)中在环境中尽可能不含氧化元素的保护性环境中输送时,尤其可确保此点。在大致上不含氧及水的环境中尤其可确保此点。优选地,这是通过具有高真空环境的设备的布置来确保,其中压力小于                                               毫巴、优选小于毫巴、及最优选小于毫巴。
    使第二半导体层生长于其晶体结构及表面就第二半导体层(第二衬底)的生长而言最优化的第二载体上。视情况使在原位的由所选择TCO材料组成的TCO层(第二氧化物层)沉积于该层上。
    接着在该TCO层2"上沉积具有层厚度D3的前驱体层(第三氧化物层)。该前驱体层是经选择,以致此处材料仍未完全氧化,但相较于已沉积的TCO层(第二氧化物层)缺乏氧。特别来说特别来说,缺乏将为完全氧化时所需的氧体积S最大的至少>30%、优选至少>45%、更优选至少>60%、及最优选>75%。
    接着视情况在该前驱体层上沉积由所选择TCO材料组成具有厚度D4的TCO层(第四氧化物层)。
    在此D3是经选择为相当大,以致体积足以在后来确保反应期间的相对大体积生长,从而确保接合界面中缺陷的完全闭合。同时,将层厚度选为相当小,以致优选所有包含于该层中的材料在过程期间完全氧化。自1至10 nm厚度的层厚度尤其可确保此点。优选地,层厚度是介于1至7 nm之间。甚至更优选地,层厚度是介于1及5 nm之间。
    在此D4是经选择以致层厚度大到足以保护下层D3不在环境大气中发生反应。特别来说,将大致防止前驱体层与来自环境大气的氧或水分发生反应(尤其是氧化)。关于此点,大致意指当在室温下使衬底暴露于环境大气持续最长2小时期间时,有利地,前驱体层的小于20%将起反应。甚至更优选地,该前驱体层的小于10%起反应。最优选地,该前驱体层的小于5%起反应。前驱体层至少0.5至1 nm的层厚度尤其可确保此点。然而,同时地,该层将薄到足以在后来容许一或多种离析物自储存器(进一步参见下文)扩散。因此,该层的最大厚度有利地为最大2至3 nm。甚至更有利地,最大层厚度为至多1.5至2 nm。最有利地,最大层厚度为最大1至1.5 nm。
    接着使第一衬底经历等离子体活化过程以产生储存器(进一步参见下文的储存器形成)。
    接着于室温下接合衬底。在如此做时,凡得瓦力(Van-der-Waals Kr?fte)确保衬底于室温下彼此黏着。在后续的退火过程期间,在储存器中嵌入的第一离析物(尤其是H2O)扩散通过可选的第四氧化物层(尤其也事先暴露于等离子体)并氧化第三氧化物层。此增加经氧化材料的体积;此导致闭合表面(生长层)中的缺陷。
    如存在,则可可选地移除一个或两个载体。备选地,该载体中的一者也可为在后来成为最终结构的一部分的半导体层。
    本发明的另一尤其独立的方面是利用电容耦合等离子体或感应耦合等离子体或来自远程等离子体设备的等离子体,以产生可使用其形成用于保存衬底中第一离析物的储存器的等离子体,该离析物在使衬底之间形成接触或产生暂时接合之后与存于另一衬底中的第二离析物反应,且因而形成衬底间的不可逆或永久接合。在在第一接触面上的氧化物层中形成储存器之前或之后,一般尤其通过冲洗步骤进行一或多个衬底的清洁。一般而言,此清洁应确保表面上不存在将会导致未接合部位的颗粒。储存器及容纳于储存器中的离析物导致技术上可在以特定方式产生暂时或可逆接合之后直接在接触面上引起反应,其尤其通过以该反应使接触面中的至少一者变形而增加接合速度及增强永久性接合(第一离析物或具有第二离析物的第一组或第二组),优选地,该接触面是与该储存器相对。在本发明所主张的相对的第二接触面上,存在其中发生如本发明所主张的变形且第一离析物(或第一组)与存于第二衬底的反应层中的第二离析物(或第二组)反应的生长层。为加速第一离析物(或第一组)与第二离析物(或第二组)间的反应,在一有利实施例中提供如本发明所主张的位于第二衬底的反应层与在衬底形成接触前变薄的储存器之间的生长层,因为以此方式反应搭配物之间的距离以可调方式减小且同时促进本发明所主张生长层的变形/形成。通过减薄至少部分地(尤其是大部分地,优选是完全地)移除该生长层。即使已完全移除该生长层,生长层也会再次于第一离析物与第二离析物的反应中生长。可如本发明所主张尤其通过蚀刻(尤其是干式蚀刻)、抛光、溅镀或氧化物的还原进行该生长层的减薄。优选地,也可设想该方法的组合(尤其是溅镀及氧化物还原)。
    如本发明所主张,可有方法来抑制生长层在接触面形成接触之前的生长,尤其是通过钝化第二衬底的反应层,优选通过暴露于N2、形成气体或惰性环境或处于真空下或通过非晶化。关于此点,已证实用包含形成气体(尤其主要由形成气体组成)的等离子体处理是特别有利。在此,形成气体是定义为含有至少2%、更优选4%、理想上10%或15%氢气的气体。混合物的其余部分是由惰性气体(诸如(例如)氮气或氩气)组成。
    在使用形成气体时,尤其可通过基于溅镀及氧化物还原的过程使氧化物层变薄。
    作为这个措施的备选或附加,如本发明所主张可缩短减薄与形成接触之间的时间,尤其是<2小时,优选<30分钟,甚至更优选<15分钟,理想地<5分钟。因此,可使减薄后发生的氧化物生长最小化。
    通过已变薄且因而至少在开始形成永久性接合或反应开始时极薄的生长层来增加离析物通过生长层的扩散速率。此导致相同温度下离析物的输送时间更短。
    关于预接合步骤,就在衬底间产生暂时或可逆接合而言,关于在衬底的接触面之间产生弱相互作用的目标存在各种可能性。预接合强度是低于永久性接合强度至少2至3倍,尤其5倍,优选15倍,甚至更优选25倍。关于指导值,提及纯的未活化亲水化硅具有约100 mJ/m2及纯的经等离子体活化亲水化硅具有约200-300 mJ/m2的预接合强度。分子润湿衬底间的预接合主要是由于不同晶圆侧的分子间的凡得瓦相互作用所产生。因此,主要地,具有永久偶极矩的分子适于达成晶圆间的预接合。提及以下化合物作为连接剂,例如(但不限于):
    -  水,
    -  硫醇,
    -  AP3000,
    -  硅烷及/或
    -  硅醇。
    有利的如本发明所主张的衬底为其材料可呈离析物形式与另一供给离析物反应形成具有较高摩尔体积的产物,因此导致于衬底上形成生长层的该衬底。以下组合尤其有利(箭头左侧为指定离析物及箭头右侧为一或多种产物,不存在供给离析物或与特别指定离析物反应的副产物):


    此外,可设想以下述半导体的混合形式作为衬底:

    -  非线性光学器件:LiNbO3、LiTaO3、KDP(KH2PO4)
    -  太阳能电池:CdS、CdSe、CdTe、CuInSe2、CuInGaSe2、CuInS2、CuInGaS2
    -  导电氧化物:In2-xSnxO3-y
    如本发明所主张,在该晶圆中的至少一者上及直接于各别接触面上存在一或多个其中可贮集特定量的用于体积膨胀反应的供给离析物中的至少一者的储存器。因此,离析物可为(例如)O2、O3、H2O、N2、NH3、H2O2等。因膨胀所致,尤其由氧化物生长所决定,基于反应搭配物减小系统能量的倾向,接触面之间的可能间隙、孔隙、及腔经最小化及接合力因窄化该区域中衬底间的距离而相应地增加。在最佳的可能情况中,存在的间隙、孔隙及腔被完全闭合,以致整个接合区域增加且因而如本发明所主张的接合力相应地增加。
    已知接触面展示二次粗糙度(Rq)为0.2 nm的粗糙度。此对应于在1 nm范围内的表面的峰-至-峰值。该经验值是利用原子力显微镜(AFM)测定。
    如本发明所主张的反应适于容许直径200至300 mm具有1单层(ML)水的圆形晶圆的已知晶圆表面的生长层生长0.1至0.3 nm。
    因此,如本发明所主张,其限制条件特别来说为至少2 ML、优选至少5 ML、甚至更优选至少10 ML流体(尤其是水)存储于储存器中。
    尤其优选地通过暴露于等离子体来形成储存器,因为等离子体暴露会进一步导致接触面平滑化及亲水化作为协同效应。表面主要是通过氧化物层及视情况反应层的材料的黏性流进行等离子体活化而平滑化。尤其通过增加硅羟基化合物来发生亲水性的增加,优选通过裂解存于表面上的Si-O化合物(诸如Si-O-Si),尤其是根据以下反应:

    就其它表面而言,一般完全可陈述发生单离OH化合物的密度增加;此导致改良的亲水性。
    尤其因前述效应所致的另一副作用在于预接合强度尤其经提升2至3倍。
    例如,在第一衬底的第一接触面上的氧化物层(及视情况,在第二衬底的第二接触面上的氧化物层)中的储存器是通过已涂覆有热氧化物的第一衬底的等离子体活化形成。为了可设定等离子体所需的条件,在真空室中进行该离子体活化。如本发明所主张,就等离子体放电而言,使用离子能量在自0至2000 eV(振幅)范围内的N2气、O2气或氩气,结果制得具有经处理的表面(于此情况中为第一接触面)深度高达20 nm、优选高达15 nm、更优选高达10 nm、最优选高达5 nm的储存器。
    通过在真空室中设定特定压力,可设想影响或如本发明所主张设定等离子体离子的平均自由径长度。
    依照本发明在相对电极上使用两不同频率来产生等离子体可在于接触面/表面上制造储存器中产生可再现的结果,该电极尤其通过施加交流电流或交流电压、及/或通过使用感应耦合等离子体源及/或远程等离子体来加速等离子体离子。
    就电容耦合而言,若电极位于等离子体室中将有利。
    在此,可通过设定参数电极的(不同)频率(尤其是振幅,优选(排他地)是施加于第二电极上的偏压及室压)来达成接触面的最优选暴露且因而制得尤其就体积及/或深度而言经准确界定的储存器。
    作为电容耦合双频等离子体设备的等离子体活化设备可有利地分开设定离子密度及离子到达晶圆表面上的加速度来执行。因此,可在宽广窗中设定可获得的过程结果且与应用需求最优选地匹配。
    尤其呈第二(尤其是下部)电极的基准电压形式的偏压是用于影响电极对固定在该第二电极上的衬底的接触面的冲击(速度),尤其是减慢或加速该冲击。
    特别来说,储存器中的孔隙密度分布变得可通过前述参数(尤其是下文所述的有利实施例)来调整。
    在感应耦合等离子体源中,可对用于产生磁场的交流电流采用关于电容耦合的交流电压的对应类似考虑。如本发明所主张可设想通过不同强度及/或频率的交流电流或交流磁场来控制感应耦合等离子体源的等离子体,以致等离子体具有本发明所主张的对应特性。
    在远程等离子体中,实际使用的等离子体是于外部源中产生且经引入至样本空间中。特别来说,将该离子体的组分(尤其是离子)输送至样本空间中。可通过不同组件(诸如锁扣、加速器、磁及/或电透镜、光栏等)确保等离子体自源空间进入至衬底空间中。在电及/或磁场的频率及/或强度方面适用于电容及/或感应耦合等离子体的所有考虑将适用于确保等离子体自源空间产生及/或进入至衬底空间中的所有组件。例如,将可设想依照本发明所主张参数通过电容或感应耦合在源空间中产生等离子体且随后通过前述组件穿入至衬底空间中。
    如本发明所主张,可使用适于产生储存器的任何颗粒类型(原子及/或分子)。优选地,使用产生具有所需特性的储存器的该原子及/或分子。相关特性主要为孔径、孔隙分布及孔隙密度。或者,如本发明所主张,可使用气体混合物,诸如(例如)空气或由95% Ar及5% H2组成的形成气体。取决于所使用的气体,于等离子体处理期间,于储存器中尤其存在以下离子:N+、N2+、O+、O2+、Ar+。第一离析物可容纳在一或多个储存器的未占用自由空间中。氧化物层及因此储存器可延伸至反应层中。
    有利地,存在可与反应层反应且至少部分(优选主要)由第一离析物组成的不同类型的等离子体物质。在第二离析物为Si/Si的情况下,Ox等离子体种类将有利。
    基于以下考虑来形成储存器:孔径小于10 nm、优选小于5 nm、更优选小于1 nm、甚至更优选小于0.5 nm、最优选小于0.2 nm。
    孔隙密度优选与通过撞击作用产生孔隙的颗粒的密度成正比,最优选甚至可随撞击物质的分压改变,且取决于处理时间及参数,尤其是所使用等离子体系统的处理时间及参数。
    孔隙分布优选具有通过改变经迭加形成优选高原状区域(参见图8)的若干该区域的参数的至少一个在表面下方具最大孔隙浓度的区域。孔隙分布随厚度的增加朝零减小。在轰击期间,接近表面的区域具有几乎等于接近该表面的孔隙密度的孔隙密度。在等离子体处理结束之后,由于应力松弛机制的结果,在表面上的孔隙密度可能会减小。在相对于表面的厚度方向上的孔隙分布具有陡侧翼及相对于整体而言相当平坦但连续减小的侧翼(参见图8)。
    就孔径大小、孔隙分布及孔隙密度而言,类似的考虑适用于不利用等离子体来产生的所有方法。
    可通过过程参数的受控使用及组合来设计储存器。图8显示由等离子体注射的氮原子的浓度成穿透至氧化硅层中的深度的函数关系的图标。可通过改变物理参数产生两曲线。第一曲线11是因氧化硅中较深处的更大程度加速原子所产生,反的,曲线12是在改变过程参数之后以较低密度产生。两曲线的迭加获得表征储存器的总和曲线13。明显可见注射原子及/或分子物质的浓度之间的关系。较高浓度指示具有较高缺陷结构的区域,因此更多空间可容纳随后的离析物。尤其在等离子体活化期间以特定方式控制的连续改变的过程参数使得可获得具有添加离子随深度分布的储存器,该分布是尽可能地均匀。类似地,该考虑同样适用于除氧化硅外的层,其中储存器可在其它材料组合的情况下形成。特别来说,该考虑也可适用于TCO层。
    作为已通过等离子体制得的储存器的另一选择,可设想在衬底中的至少一者(至少第一衬底)上使用TEOS(正硅酸四乙酯)氧化物层作为储存器。一般而言,该氧化物不如热氧化物致密,因此,如本发明所主张,有利地进行压缩。基于设定储存器的一定孔隙度的目标通过热处理进行压缩。
    根据本发明的一实施例,尤其有利地,可在通过将储存器以涂层形式施加至第一衬底来形成储存器的同时发生储存器的填充,该涂层已包含第一离析物。
    可将储存器设想为具有在纳米范围内的孔隙度的多孔层或具有通道厚度小于10 nm、更优选小于5 nm、甚至更优选小于2 nm、最优选小于1 nm,其等中最优选小于0.5 nm的通道的层。
    关于将储存器填充第一离析物或第一组离析物的步骤,如本发明所主张,可设想以下实施例及其组合:
    -  将储存器暴露于环境大气,
    -  尤其以去离子水冲洗,
    -  以含有离析物或由离析物组成的流体(尤其是H2O、H2O2、NH4OH)冲洗,
    -  将该储存器暴露于任一气体环境,尤其是原子气体、分子气体、气体混合物,
    -  将该储存器暴露于含水蒸气或含过氧化氢蒸气的环境,及
    -  使作为氧化物层的已填充离析物的储存器沉积于第一衬底上。
    以下化合物可作为离析物:Ox+、O2、O3、N2、NH3、H2O、H2O2、及/或NH4OH。
    除了使用水的外,使用上述过氧化氢蒸气被认为是优选方式。此外,过氧化氢的优点是具有较大的氧对氢比。另外,过氧化氢于高于特定温度下及/或透过使用MHz范围内的高频场解离为氢及氧。
    另一方面,H2O的优点是具有小分子尺寸。H2O分子的尺寸甚至比O2分子的尺寸更小,因此,H2O提供可更容易地嵌入孔隙中及可更容易地扩散通过生长层的优势。
    大体上,当使用具有不同热膨胀是数的材料时,有利地采用不会导致任何显着温度增加、或至多局部/特定温度增加的用于解离前述物质的方法。特别来说,微波照射可至少促进、优选导致解离。
    根据本发明的一有利实施例,提供通过使第一离析物扩散至反应层中来发生生长层的形成及不可逆接合的强化。
    根据本发明的另一有利实施例,提供不可逆接合的形成是在通常小于300℃、有利小于200℃、更优选小于150℃、甚至更优选小于100℃的温度,最优选在室温下,尤其于最长12天、更优选最长1天、甚至更优选最长1小时、最优选最长15分钟的期间内发生。另一有利的热处理法是通过微波的介质加热。
    此处尤其有利的是不可逆接合具有大于1.5 J/m2、尤其大于2 J/m2、优选大于2.5 J/m2的接合强度。
    可尤其有利地增加接合强度,其中,在反应期间,如本发明所主张,在反应层中形成具有比第二离析物的摩尔体积更大摩尔体积的产物。依此方式实现于第二衬底上的生长,结果,接触面之间的间隙可如本发明所主张通过化学反应闭合。结果,接触面之间的距离(因此,平均距离)减小,及无效空间最小化。
    在通过等离子体活化进行储存器形成的情况,尤其是利用介于10 kHz及20000 kHz之间、优选介于10 kHz及5000 kHz之间、甚至更优选介于10 kHz及1000 kHz之间、最优选介于10 kHz及600 kHz之间的活化频率及/或介于0.075及0.2瓦/cm2之间的功率密度及/或利用介于0.1及0.6毫巴之间的压力加压,导致此种接触面平滑化以及接触面的亲水性显着增加的额外效应。
    备选地,如本发明所主张,可通过使用已尤其以受控方式压缩成作为氧化物层的特定孔隙度的四乙氧基硅烷氧化物层来进行储存器的形成。
    根据本发明的另一有利实施例,提供氧化物层尤其主要(尤其是基本上完全)由非晶型二氧化硅(尤其是已通过热氧化制得的二氧化硅)组成,及反应层是由可氧化材料,尤其主要(优选基本上完全)由Si、Ge、InP、GaP或GaN(或选择性地于上文提及的另一材料)组成。尤其有效地闭合所存在间隙的尤其稳定的反应可通过氧化实现。
    如本发明所主张,在此提供在第二接触面与反应层之间存在生长层,尤其主要为原生二氧化硅(或选择性地于上文提及的另一材料)。该生长层经受由本发明所主张的反应导致的生长。该生长是自Si-SiO2转变区(7)开始经由非晶型SiO2的再形成及由此引起的生长层的变形(尤其是隆起),尤其于界面上至反应层(及尤其于第一及第二接触面间之间隙区中)进行。此导致两接触面之间的距离缩短或无效空间减小,结果,两衬底之间的接合强度增加。介于200及400℃之间的温度尤其有利,优选为约200℃及150℃,更优选是介于150℃及100℃之间的温度,最优选是介于100℃及室温之间的温度。该生长层可分为若干生长区。该生长层可同时为其中形成另一加速反应的储存器的第二衬底的氧化物层。
    此处尤其有利的是在形成不可逆接合之前,生长层具有介于0.1 nm及5 nm之间的平均厚度A。生长层越薄,则通过该生长层(尤其是通过使第一离析物扩散通过生长层至该反应层)在第一及第二离析物间的反应可更快速及容易地发生。通过已变薄且因而至少在开始形成永久性接合或反应开始时极薄的生长层来增加离析物通过生长层的扩散速率。此导致离析物在相同温度下的更短的输送时间。
    在此,本发明所主张的减薄发挥决定性作用,因为由此可进一步加速反应及/或进一步减低温度。减薄可尤其通过蚀刻(优选在潮湿环境中,又更优选在原位)来完成。或者,该减薄尤其是通过干式蚀刻(优选在原位)进行。此处,在原位意指在进行至少一先前及/或后续步骤的同一室中进行。属于此处所用在原位概念的另一设备配置为其中衬底在单个过程室之间的输送是发生在可以受控方式(例如,使用惰性气体)调整的环境中(但尤其是在真空环境中)的设备。湿式蚀刻是利用呈气相的化学品发生,而干式蚀刻是利用呈液态的化学品发生。在生长层由二氧化硅组成的情况,可利用氢氟酸或稀氢氟酸进行蚀刻。在生长层是由纯Si组成的情况,可利用KOH进行蚀刻。
    根据本发明的一实施例,有利地提供于真空中进行储存器的形成。因此,可避免储存器受不期望的材料或化合物污染。
    在本发明的另一实施例中,有利地提供通过一或多个下述步骤进行储存器的填充:
    -  将第一接触面暴露于大气,以利用大气湿度及/或空气中所含的氧气填充储存器,
    -  对该第一接触面施加尤其主要(优选几乎完全)由(尤其是)去离子H2O及/或H2O2组成的流体,
    -  对该第一接触面施加尤其具有在自0至2000 eV范围内的离子能量的N2气及/或O2气及/或Ar气、及/或形成气体(尤其是由95% Ar及5% H2组成),
    -  利用任何已指定的离析物气相沉积以填充储存器。
    在储存器优选以介于0.1 nm及25 nm之间、更优选介于0.1 nm及15 nm之间、甚至更优选介于0.1 nm及10 nm之间、最优选介于0.1 nm及5 nm之间的厚度R形成的情况,过程顺序尤其有效。此外,根据本发明的一实施例,有利的是紧接于形成不可逆接合之前储存器与反应层间的平均距离B介于0.1 nm及15 nm之间、尤其介于0.5 nm及5 nm之间、优选介于0.5 nm及3 nm之间的情况。距离B会受减薄影响或是如本发明所主张通过减薄产生。
    如本发明所主张制造用于执行该方法的装置,该装置配备用于形成储存器的室、尤其与该室分开设置用于填充储存器的室、及尤其分开设置用于形成预接合的室,该室均透过真空系统彼此直接连接。
    在另一实施例中,储存器的填充也可直接透过大气进行,因此在可对大气敞开的室中,或简单地在不具有夹套但可半自动及/或完全自动处理晶圆的结构上进行。
    由于化石燃料在中期将变得稀少,且除此的外在回收及使用上会构成重大环境问题(尤其是促成温室效应),因此通过光电系统来利用太阳能的重要性日益增加。由纯粹经济观点来看,为加强光电器件的竞争性,必需提高在相同成本或至多适度成本增加下将光转化成电能的效率。但可能的效率具有限度。该限度主要起因于单一半导体材料仅可处理有限波长范围的光及将其转化成电能的限制。
    因此,尤其有利的是用于制造多层太阳能电池或英文称为“多接面太阳能电池(multi-junction solar cell)”的本发明的应用。
    在这些中,在太阳能电池中将单个层垂直堆叠于彼此之上。入射光首先撞击经最优选化以将特定第一波长范围的光转化成电能的最上层。具有大致无法在该层中处理的波长范围的光穿透该第一层且入射于经最优选化以处理第二波长范围的下方第二层上,且因而产生电能。在该多层电池中,视情况可行的是,具有大致也无法在该第二层中处理的波长范围的光入射于经最优选化以处理第三波长范围的光的下方第三层上,且因而产生电能。可设想复数个(n)该层在纯理论上来说是可行的。实际上,该电池是经结构化,以致入射光首先穿透的最上层是处理具最短波长的波长范围。第二层处理第二短波长范围等等。在此,如本发明所主张,不仅可设想双层结构,而且可实施三层或更多层。在此提供该层是以导电方式(也就是,电阻尽可能地小)及以光学透明方式垂直连接。尤其通过所谓的“金属有机化学气相沉积”(简写为“MO CVD”)过程来沉积该层,其中多个电池中两活性层的沉积尤其是“在原位”发生,也就是,在沉积过程之间未将衬底暴露于正常环境大气。优选地,也在该活性层之间放置阻隔层(第二或第四氧化物层)及/或缓冲层(第二或第四氧化物层)以改良所得电池的质量。
    自以下优选例示性实施例的说明及利用附图当可明了本发明的其它优点、特征及详细内容。
    图1显示紧接于第一衬底与第二衬底形成接触之前的本发明实施例的示意图。
    以相同参考数字指示相同或等效特征。
    图1中的情况仅显示第一衬底1的第一接触面3与第二衬底2的第二接触面4的横截面片段。该接触面3、4的表面以极性OH基结束且因此具亲水性。该第一衬底1及该第二衬底2是通过存于表面上的OH基与H2O分子间以及单单H2O分子间的氢桥的引力,尤其是通过凡得瓦力及/或氢桥固定。已通过在前一步骤中的等离子体处理来增加至少该第一衬底1的亲水性。
    等离子体处理是在可施加以等离子体及真空及/或定义的气体环境及可设置于其自身对应设备模块中的等离子体室中进行。施加以真空及/或定义的气体环境意指可设定并控制低于1毫巴的压力。在此处所述的例示性实施例中,气体为0.3毫巴压力下的N2。
    根据该备选实施例,尤其有利地另使该第二衬底2或该第二接触面4经历等离子体处理,尤其是与该第一衬底1的等离子体处理同时进行。
    已如本发明所主张通过等离子体处理在由所选择TCO组成的氧化物层6中形成储存器5。在该氧化物层6下方直接邻接半导体7及其尤其也可视情况使用作为包含第二离析物或第二组离析物的反应层。以具有前述离子能量的N2离子进行等离子体处理获得平均厚度R约15 nm的储存器5,该等离子体离子在该氧化物层6中形成通道或孔隙。该储存器填充有与第二离析物反应的第一离析物。
    在所说明实施例中该半导体7是暂时由载体8支撑。
    位于第二接触面4上的第二衬底2是由第四氧化物层9组成,该第四氧化物层9直接邻接第三氧化物层10(前驱体层),后者又直接邻接第二氧化物层11。
    该氧化物层10(前驱体层)尤其是由含有不完全氧化组分的TCO所组成,以致该层具有小于最大氧体积S最大的氧体积S1,若整体体积被完全氧化,则该层中将包含该最大氧体积S最大。特别来说,氧体积S1最大为S最大的70%。该百分比有利地为55%,更有利为40%,及最有利为25%。
    第二氧化物层11是紧密接合至第二衬底2的半导体12,继而暂时固定于载体13上。
    尤其使用该半导体12作为包含第二离析物或第二组离析物的反应层。
    生长层是在该氧化物层6、9、10、11及视情况该反应层(半导体7、12)之间由第一离析物与第二离析物反应形成。
    在一优选实施例中,已嵌入于氧化物层6中所形成储存器5中的第一离析物与前驱体层10反应。由于该第一离析物与该前驱体层的反应产物具有较高摩尔体积,因此该反应导致体积增加。
    通过增加摩尔体积及H2O分子的扩散,尤其在介于氧化物层9及10之间的界面上,体积以生长层形式生长,其中归因于使自由吉布斯焓(Gibb'schen Enthalpie)减至最低的目标,在接触面3、4之间存在间隙的区域中发生增强生长。通过生长层体积的增加来闭合该间隙。
    该氧化物层6、9、10、及11在接合之后共同形成连接层14。
    在一个优选实施例中,在反应后的该连接层有利地由基本上对应于包含初始时所沉积氧化物层9、11及6的相同TCO的均质材料所组成。
    附图标记列表
    1      第一衬底
    2      第二衬底
    3      第一接触面
    4      第二接触面
    5      储存器
    6      第一氧化物层
    7      第一半导体
    8      第一载体
    9      第四氧化物层
    10    第三氧化物层
    11    第二氧化物层
    12    第二半导体
    13    第二载体
    14    连接层

    关 键  词:
    接合 衬底 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:接合衬底的方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-4066421.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1