热界面材料和受热器构型 【发明背景】
热界面材料(TIM)对于保护微处理器等半导体器件不超过操作温度极限是至关重要的。它们使得发热器件(例如硅半导体)能粘结到受热器或散热器(例如铜和/或铝部件)上而不产生过热障。该TIM也可以用于装配该受热器或散热器堆中包含总热阻途径的其它部件。
小热障的形成是TIM的一种重要性质。热障可以用通过该TIM的有效热导率来描述,而且较好尽可能高。TIM的有效热导率主要是由于该TIM的界面传热系数以及(固有的)体积热导率所致。因特定应用而异,各种各样的其它性质对于TIM也是重要的,例如,当连接两种材料时使热膨胀应力松弛的能力(也称为“柔量”),形成一种在热循环期间稳定的机械上合理的连接的能力,对湿度和温度变化的敏感度低,制造可行性,和成本。
目前使用若干类材料作为TIM,例如热脂、热凝胶、粘合剂、弹性体、热垫板、和相变材料。尽管上述TIM对于很多当前半导体器件是足够的,但不久的将来增加的半导体器件性能将使当前已知地TIM变得不充分。具体地说,当前TIM的热导率一般不超过约5W/mK,且典型地低于约1W/mK。然而,很快就会需要能形成有效热导率为约15W/mK或更大的热界面的TIM。
上述TIM的一种替代是一种用铟或其它能起到热界面层作用的低熔点合金制成的固体金属片材或压片。该金属TIM确保高热导率值(例如,铟片材有约80W/mK)。金属TIM也可能在反流(reflow)时显示出有利的焊接或润湿行为,这便利了低热界面阻抗。在反流期间,焊剂和基材受到加热,该焊剂会熔融并因表面张力和/或局部表面合金化而润湿。该界面由热性能往往不如体积TIM金属的那样理想但比现有(聚合物系)TIM好得多的金属互化物或互扩散金属组成。在多数情况下,金属TIM必须遭遇反流以期形成可靠热界面。然而,金属TIM在某些应用中由于该TIM与半导体和/或受热器部件之间相对大的热膨胀系数(CTE)差异和柔量不足而失败。
发明概要
本发明涉及旨在改善半导体对受热器界面的性能从而提高来自电子(发热)器件的热流动的材料、工艺和设计。因此,本发明的目的和特征包括提供一种热导率高(例如大于15W/mK)的TIM;提供一种界面传热系数高(即大于约50W/cm2·℃)的TIM;提供一种热膨胀系数(CTE)介于半导体器件与受热器部件之间的TIM,使得该TIM能抵御与该半导体基材或该受热器部件的分离或者抵御对该半导体基材的损害;提供一种有改善的耐热循环诱发应力破坏性能的TIM;提供一种有改善的耐湿度变化性能的TIM;提供一种有改善的耐温度变化性能的TIM;提供一种在活性(电子)器件的破坏温度以下的温度与受热器部件和半导体器件粘结的TIM;提供一种无需使用熔剂就能与半导体基材和受热器部件粘结的TIM(即,该TIM较好包含一种无熔剂的或活性的焊剂);和提供一种容易与活性半导体器件制造工艺兼容的TIM。简而言之,提供一种其本体性能和界面性能对于传热和可靠性均最佳的TIM。
因此,扼要地说,本发明涉及一种包含一种焊剂和一种CTE改性成分的热界面材料。
本发明也涉及一种在约300℃以下的温度无需非本征熔融就能润湿的活性焊剂,该活性焊剂包含铟和一种选自下列组成的一组的固有氧捕集剂:碱金属、碱土金属、高熔点金属、稀土金属和锌及其混合物和合金。
进而,本发明涉及一种在约300℃以下的温度无需非本征熔融就能润湿的活性焊剂,该焊剂包含约80wt%金、和约20wt%锡以及一种选自下列组成的一组的固有氧捕集剂:碱金属、碱土金属、高熔点金属、稀土金属和锌及其混合物和合金。
此外,本发明涉及一种电子器件封装,包含:一种有一个前表面和一个后表面的半导体基材;一种在该半导体基材前表面上的电子器件;一种有一个前表面和一个后表面的受热器部件;和一种使该半导体基材后表面与该受热器部件前表面粘结的热界面材料,该热界面材料包含一种焊剂和一种热膨胀系数低于约10μm/m℃的CTE改性成分。
本发明也涉及一种电子器件封装,包含:一种有一个前表面和一个后表面的半导体基材;一种在该半导体基材前表面上的电子器件;一种有一个前表面和一个后表面以及一个用于接受一种插入物的凹穴的盖;该插入物有适合于放在该盖上凹穴内的尺寸和形状,该插入物有一个前表面、一个后表面、一个与该盖接触的表面而且其热膨胀系数介于该盖的热膨胀系数与该半导体基材的热膨胀系数之间;和一种使该半导体基材后表面与该插入物前表面的至少一部分粘结的第一热界面材料。
附图简要说明
图1是一种惯常半导体器件/受热器构型的横截面视图。
图2是本发明半导体器件/受热器构型的一种实施方案的横截面视图。
图3是本发明半导体器件/受热器构型的一种实施方案的横截面视图。
发明详细说明
电子器件性能的改善往往伴随着增大功率消耗和减小器件尺寸,这两者可能独立地或协同地导致增大功率密度。因此,必须增大来自工作电子器件的热流动,以使该器件保持在其工作温度极限以下。本发明涉及能增大来自电子器件的热流动的高性能TIM材料和工艺以及能改善半导体/受热器界面的设计。
I.高性能热界面材料
A.高效体积热导率
高性能TIM包含一种使该TIM能粘结到一种基材上的焊剂。本文中使用的“基材”这一术语系指一种半导体和/或一种受热器部件和/或任何其它物品、器件、装置等,这些是用该TIM连接到另一种这样的“基材”上的。当进行热处理时,该TIM应当在一种活性(电子)器件的破坏温度以下的温度(例如低于约350℃、较好低于约250℃、更好低于约200℃)粘结到该基材上。该焊剂在该活性器件破坏温度以下熔融、润湿到该基材上并且能在凝固时在该TIM与该基材之间形成一种化学的和/或机械的粘结。一般来说,该焊剂在约300℃以下、较好在约225℃以下、更好在约170℃以下、还要更好在约160℃~约115℃之间的温度熔融。
该焊剂可以包含一种需要CTE调整的惯常焊接材料(见下文)。例如,该焊剂可以包含铅、铋、锡、金、银、金-锡、金-硅、金-锗等。较好,该焊剂包含一种熔点低而且与惯常TIM材料(低于约5W/mK)相比热导率相对高的粘结成分。例如,铟(熔点是约155℃,热导率是约80W/mK)、锡(熔点是约230℃,热导率是约70W/mK)及其混合物和合金。在一种特别好的实施方案中,该粘结成分基本上由铟组成,因为它的熔点低而且它能容易地润湿很多氧化物、陶瓷、和金属陶瓷而无需使用有机融合剂(见下文)。
为了进一步提高经由该TIM的热流动,该TIM也可以包含一种热导率增强成分。该热导率增强成分较好有约100W/mK以上的热导率。热导率增强成分材料实例包括银、铜和金,其热导率分别为约425W/mK、约400W/mK和约315W/mK。这样的金属典型地有相对高的熔融温度(例如,银的熔点是约960℃,铜的熔点是约1085℃,金的熔点是约1065℃)。
B.界面传热系数
除通过选择高热导率材料来提高经由该TIM的热流动(即降低该TIM的固有热阻抗)外,从热源向基材的热流动的显著改善是通过增大该界面上的传热系数实现的。事实上,在这样一种界面上热流动的阻抗会比该TIM的阻抗大可高达约2个数量级。界面传热系数低的主要原因通常是在该界面上形成该基材与该TIM不紧密接触的区域。因此,这些区域起到隔热的作用并减少了离开该热源的热流动。经由该界面的传热减少的第二个原因是各种显示出较高热阻抗的金属互化物相的存在。较好,该TIM的界面传热系数大于约50W/cm2℃、更好大于约500W/cm2℃。
典型地说,用来连接半导体(或金属化半导体)和受热器的TIM需要机械的和/或化学的融合,以除去该TIM、该半导体基材和该受热器部件的表面上的氧,从而活化该连接过程并使该TIM能润湿这些表面。当试图在约300℃以下的温度用惯常焊剂连接各物件时,典型地使用化学融合。一种典型的化学融合包含能在受热时变得活泼并除去表面氧化物的化合物。然而,该熔剂材料中有一些没有逸散,并在该界面区域形成隔热袋或空洞和/或形成可能对该器件的运行有害的残渣。
1.活性焊剂
按照本发明,该TIM(包括焊剂)较好不需要非本征融合(即不需要机械融合以及有机和无机融合化合物)。确切地说,本发明TIM中的焊剂较好是用一种与该粘结成分混合或合金化的固有氧捕集剂活化的。该固有氧捕集剂与氧的反应性大于该粘结成分,从而防止或最大限度减少粘结成分-氧化合物的生成。固有氧捕集剂实例包括碱金属(例如Li、Na、和K)、碱土金属(例如Mg和Ca)、锌、高熔点金属(例如Ti、Zr、Hf、Ta、V、和Nb)、稀土金属(例如La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy和Yb)、及其混合物和合金(例如,稀土金属混合物,可购自例如Alfa Aesar公司,美国马萨诸塞州沃德希尔,其组成包含约50wt%Ce、约22wt%La、约18wt%Nd、约6wt%Pr、和约0~4wt%Yb、Sm、Gd、Eu、Tb和Dy)。较好,该焊剂中高熔点金属的总浓度低于约10wt%,稀土金属的总浓度低于约5wt%,且碱金属、碱土金属和锌的总浓度低于约20wt%。
各材料及其在该焊剂中的相对掺入量以及热导率增强成分的选择将取决于所连接的材料的性质、必要的有效热导率和特定应用的最高粘结温度。此外,材料的选择可能还取决于其它因素,包括材料成本,再循环难易,以及对重要焊剂性能例如硬度、弹性模量、延性、金属互化物相形成、耐腐蚀性、热膨胀系数的总体影响,对耐蠕变性能的影响和氧化物形成。
在一种较好实施方案中,该活性焊剂包含铟、钛和稀土金属混合物,以提供一种实质上在约157℃以上熔融的柔性而高CTE合金。较好,它包含约0.5~约2wt%Ti和约0.1~约2wt%稀土金属混合物,其余是In。更好,它包含约1wt%Ti和约0.2wt%稀土金属混合物,其余是In。这样一种以非常低水平界面缺陷焊接的柔性TIM不大可能由于热循环的结果而在该界面上破坏(见下文)。
在又另一种较好实施方案中,该活性焊剂是一种CTE相对低(约13~14μm/m℃)的刚性金系焊剂(例如金-锡、金-硅和金-锗焊剂),典型地用来附着sub-mounts或保障纤维光学。典型地说,对于金-锡合金来说,金和锡的浓度范围分别为约75~约85wt%和约15~约25wt%。对于金-硅合金来说,金的浓度是至少约90wt%,硅的浓度范围为约1~约5wt%。对于金-锗合金来说,金的浓度是至少约80wt%,锗的浓度范围是约5~约15wt%。为了提供相对低的熔融温度或反流温度,该焊剂组成较好接近于低共熔组成(例如,各成分在该低共熔组成的约±3wt%之内)。该低共熔组成是约80Au-20Sn、约97Au-3Si和约88Au-12Ge。该近低共熔金-锡合金对于很多应用来说是特别好的,因为它在约280℃以上熔融。由于这些金系焊剂含有显著较少可氧化材料、因而需要较少固有氧捕集剂材料。具体地说,固有氧捕集剂材料的浓度较好是铟系焊剂浓度的约一半。较好,该焊剂中高熔点金属的总浓度低于约5wt%,稀土金属的总浓度低于约3wt%,碱金属、碱土金属和锌的总浓度低于约10wt%。更好,高熔点金属的总浓度是约0.5~约1.5wt%、稀土金属的总浓度是约0.01~约0.5wt%,碱金属的总浓度是约0.1~约0.5wt%,碱土金属的总浓度是约0.1~约0.5wt%,锌的总浓度是约0.1~约0.5wt%。这些较低CTE合金,与非柔性高CTE合金相比,也不太可能由于热循环的结果而在半导体/焊剂界面上破坏(见下文)。
除了消除对非本征融合的需要外,该活性焊剂和包含该活性焊剂的热界面材料还能润湿非金属表面,例如但不限于Si、SiO2、SiN、和II-IV与III-V半导体。结果,在焊接/粘结操作之前,不需要在这样的非金属表面上沉积可润湿金属化层,例如但不限于Au、Au/Ni、Ni、Cu、Sn及其组合。这种对非金属表面的粘结能力提供了显著的材料和工艺效益。
本发明的TIM和活性焊剂特别适合于在约300℃以下、较好在约200℃以下的温度的热加工。然而,本发明的TIM和活性焊剂可以在高温下(例如约500℃以上)进行热加工,以提供更有效的润湿(例如较短的润湿时间)。
除了改善其中经由该界面的热流动至关重要的焊接工艺外,上述活性焊剂尤其可用于光-电子封装的制造。具体地说,活性光-电子封装包含激光发生器件。如果光束与来自化学熔剂的任何有机残留物相交,则该激光容易使该残留物碳化,从而会使该器件失效。无熔剂焊接工艺的使用消除了这种潜在破坏机制。
该活性焊剂可以用任何一种可得的惰性熔融方法例如惰性坩埚中的电感熔融或电弧熔融来形成。将该系统抽真空并回填一种非反应性情性气体例如氩气。这些金属较好在约1000℃以上加热,以确保各合金成分的充分溶解。将熔融合金浇铸或成形,在冷却期间典型地形成亚微米级金属互化物沉淀。通常,冷却的合金机械加工成用于TIM生产的线材、带材或压片。
2.CTE不匹配
保持经由TIM的强化热流动的另一种方法是防止在该电子器件的寿命内界面区上密切接触的降级。具体地说,电子封装中各成分的热膨胀系数之间的差异造成热循环期间的应力,这会导致该界面区的部分分离或完全分离。与典型半导体材料例如硅、锗、砷化镓、硫化镉和锑化铟以及发光二极管材料包括用于光子和纤维光学激光器应用的固态发射体(例如In/As/GaAs和InAs/Al/Sb)相比,对于包含有高热膨胀系数的TIM来说,这个问题是特别严重的。典型地说,粘结成分材料和热导率增强成分材料的CTE大于约16μm/m℃,而基材材料的CTE低于约10μm/m℃。
本发明的TIM通过较好包含一种CTE改性成分而使CTE不匹配的负面影响降至最低。该CTE改性成分的CTE更能与该基材兼容,从而降低了热循环时的热应力。该CTE改性成分的CTE较好低于约10μm/m℃、更好低于约8μm/m℃。实例性CTE改性成分材料包括氧化铍(约8.8μm/m℃)、氧化铝(约6.5~7.0μm/m℃)、氮化铝(约4.2μm/m℃)、碳化硅(约4.0μm/m℃)、二氧化硅(约0.5μm/m℃)、铜-钨合金(约5.6μm/m℃)、通常称为KOVAR或INVAR的低膨胀铁-镍合金(约5.2μm/m℃~约6.0μm/m℃)、低膨胀陶瓷或玻璃粉(约-1.0μm/m℃~约9.0μm/m℃)及其混合物。在本发明的一种较好实施方案中,该CTE改性成分包含低膨胀铁-镍合金,因为它们有低的或负的CTE、易被润湿和掺入焊剂合金中、有相对高的热导率、而且有相对高的延性,这使它们有利于后合金化加工(例如轧和挤塑)。较好,该TIM与该基材之间的CTE不匹配介于约5μm/m℃~约30μm/m℃之间。更好,该TIM与该基材之间的CTE不匹配介于约5μm/m℃~约20μm/m℃之间。还更好,该TIM与该基材之间的CTE不匹配小于约10μm/m℃。最好,该TIM是为特定用途的所希望CTE不匹配度而特制的。
尽管焊剂和CTE改性成分的数量取决于特定用途,但该TIM较好包含约30vol%~约90vol%焊剂和约10vol%~约70vol%CTE改性成分。更好,该TIM包含约50vol%~约90vol%焊剂和约10vol%~约50vol%CTE改性成分。
C.TIM制造工艺-优化CTE
本发明的高性能TIM可以用任何适用方法制造和施用到该基材上。例如,该CTE改性成分的微粒可以掺入该焊剂和/或热导率增强成分中,形成一种复合TIM。然后,典型地将该复合TIM轧成一种薄片材压片(例如小于0.25mm厚)。为了形成该热界面,将该TIM压片加热,趁熔融时与一种基材接触,使之冷却、凝固和粘接。另一种方法是使用一种有所希望厚度的、包含一种粘结成分和/或一种热导率增强成分的箔或筛网,其中(例如通过冲孔或刻蚀)形成开孔而且该开孔填充了CTE改性成分。例如,一种有六角形间隔开孔的铟系箔可以填充氧化铍。在铜箔或筛网的情况下,将该铜涂布一种粘结成分例如铟(例如,通过浸或镀)。可能需要一种适用的扩散膜成分(例如镍、钛或其它过渡金属),以防止在熔融/粘结过程期间铜向铟中的迅速溶解。又一种方法是使用一种填充了CTE改性成分、包含一种粘结成分和/或一种热导率增强成分的海绵(例如90%理论密度)。必要时,该海绵可以切割成薄片以达到所希望的厚度。
典型地说,该CTE改性成分微粒是用一种焊剂“预润湿”的,以确保在反流期间与该粘结成分粘结。具体地说,该CTE改性成分微粒是用任何一种适当方法例如镀、热喷雾、真空沉积或还原加工涂布一薄层该焊剂的。
II.耐CTE不匹配半导体基材/受热器界面
本发明也涉及一种用于连接该半导体基材和受热器部件的改进界面,该改进界面减少或消除了TIM与该基材之间CTE不匹配的负面影响。因此,该改进界面增大了该CTE不匹配的临界范围。
现在参照图1,一种电子器件封装1的典型半导体/受热器构型包含一种有一个前表面3和一个后表面4的半导体基材2,一种位于该前表面上的电子器件(未画出),一种使该半导体基材的后表面4粘结到一种有一个前表面7的受热器部件6上的第一热界面材料5,该受热器部件包含一种有一个后表面9和一个前表面10的热交换器8,和任选地一种有一个后表面12和一个前表面13的盖11。当包括该任选的盖11时,一种第二热界面材料14使该盖的后表面12粘结到该热交换器的前表面10上。按照本发明,上述高性能热界面材料可以用来补偿这样一种典型电子器件封装中该基材与该盖之间和该盖与该热交换器之间的CTE不匹配。
现在参照图2,本发明涉及一种电子器件封装1,包含一种有一个前表面和一个后表面的半导体基材2,和在该半导体基材前表面上的电子器件(未画出)。该封装也包含一种盖11,后者包含一个凹穴15,用于接受一种尺寸和形状适合于在该凹穴内的插入物16。在这种实施方案中,该凹穴从该盖的前表面向内延伸到该盖的前表面与后表面之间的一个点。该插入物包含一个前表面17、一个后表面18、和一个与该盖接触的表面19。该电子器件封装进一步包含一种使该基材2的后表面粘结到该插入物的前表面17上的第一热界面材料5。较好,该封装也包含一种使该盖的后表面12粘结到该热交换器8上的第二热界面材料14。该插入物包含一种热应力松弛材料,该材料的CTE比该盖的CTE更接近地匹配该基材的CTE(见上文)。换言之,该插入物的CTE介于该盖的CTE与该基材的CTE之间。因此,第一热界面材料只需容纳该插入物与该基材之间相对小的CTE不匹配,而不是该基材与该盖之间较大的CTE不匹配。结果,最大的CTE不匹配典型地在该插入物/盖之间,而且由于该插入物的CTE典型地小于该盖的CTE,因而该插入物可以压装在该盖内。
现在参照图3,该凹穴15可以贯穿该盖11(即该凹穴从该盖的前表面延伸到该盖的后表面),同样,该插入物也可以完全贯穿该盖11。结果,第二热界面材料14也使插入物16粘结到热交换器8上。
鉴于以上所述,将看到的是本发明的若干个目标都达到了。由于无需背离本发明的范围就能对上述组成和工艺做各种改变,因而,意图是,以上描述中含有的所有事项均解读为说明性的而非限制性的。