光元件,生产该元件的方法,和光拾取器 【技术领域】
本发明涉及一种光元件,生产该元件的方法,和包括该光元件的光拾取器。
背景技术
近来,需要制造高密度光盘存储介质。因此,在光盘设备中,对缩短光源的波长和增大再现光盘系统的数值孔径(NA)的研究和开发已经进行。另外,希望增加在这种再现光盘系统中的数据传输率。
当缩短光源的波长和增大再现光盘系统的NA时,除了光点的尺寸变小的事实之外,焦深变浅,所以希望减少聚焦伺服误差。另外,光盘存储介质的数据记录宽度(轨道宽度)变窄,所以希望减少跟踪伺服误差。
为了增加数据传输率,希望使用于聚焦伺服和跟踪伺服的激励器的带宽更高。结果,伺服特征要求两种改善:减少误差的残余量和提高带宽。激励器能够通过减少激励器的重量提高它的伺服特征。
图1A是说明相关技术光元件的剖面图,图1B是图1A中光元件的平面图。
这个光元件10具有由光材料形成的基底14A。基底14A具有一个形成凸透镜的凸起部分11和位于该凸起部分11地周围的平面部分12。
光元件10能够通过热处理由形成在平面光材料的前表面上的圆屏蔽层形成,来通过表面张力形成透镜形状,然后蚀刻平面光材料使得透镜形被转到光材料上。
当通过蚀刻传递该形状的时候,在凸起部分11的外圆周形成一个被称为“沟”的凹槽19。凹槽19清楚地把凸起部分11和平面部分12分开。
在图1A和1B的光元件10中,除了凸起部分11的其它部分被蚀刻掉从而形成薄的平面形状。
当与其它光元件结合使用这个光元件10的时候,必须注意在其它结合的光元件中的光路被保持。
图2A和2B是在图1A和1B中的光元件10的剖面图和它的透镜保持器。图2A显示了当通过透镜保持器10A夹住光元件10的平面部分12的圆周边缘的情况。图2B显示了当通过透镜保持器10B夹住光元件10的平面部分12的上表面的情况。
如图2A和2B所示,为了把图1A和1B中的光元件10装配在透镜保持器10A和10B上,必须增大平面部分12。
另外,考虑到在连接和挤压出多余粘合剂时位置的偏差,不仅在当使用与其它光元件相结合的光元件10时的情况下,必须增大平面部分12。例如,当凸起部分11具有大约200μm的凸透镜的有效直径(直径)和具有大约150μm的凸透镜的曲率半径的时候,平面部分12的厚度变为大约50μm或者更小。假如在连接过程的定位精度的公差和被积压出的粘合剂量之和是大约500μm,凸透镜最终被定位在大约50μm厚度和大约500μm长度的薄板上。
因此,提高其机械强度是如图1A和1B所示的光元件希望的。另外,因为平板部分12是薄的,由于在厚度方向的振动导致的共振容易发生。因此,希望形成不容易共振的结构。
【发明内容】
本发明的一个目的是提供一种具有由光材料形成的,具有提高的机械强度和没有临界共振的基底的光元件。
本发明的另一个目的是提供一种具有该光元件的光拾取器。
本发明的另外一个目的是提供一种用于有效和高准确地生产该光元件的方法。
根据本发明的第一方面,提供一种具有由光材料形成的基底的光元件,其中该基底具有一个起凸透镜作用的凸起部分,一个位于凸起部分周围的平面部分,和位于平面部分周围的外圆周部分,外圆周部分的厚度比平面部分的厚度厚。
更好地,外圆周部分的厚度比凸起部分的厚度厚。
更好地,基底具有形成在凸起部分和平面部分之间的界限上的第一凹槽,用来定义凸起部分的范围。
更好地,基底具有形成在所述平面部分和所述外圆周部分之间的界限上的第二凹槽,用来定义所述平面部分的范围。
更好地,光材料由熔凝石英组成。
更好地,外圆周部分的表面是平的或者是近似平的。
更好地,在外圆周部分上形成多个台阶,并且基底在外侧台阶处的厚度比基底在内侧台阶处的厚度要厚。
根据本发明的第一方面,提供一种具有由光材料形成的基底的光元件,其中该基底具有一个起凸透镜作用的凸起部分,一个位于凸起部分周围的平面部分,位于平面部分周围的外圆周部分,形成在凸起部分和平面部分之间的界限处的第一凹槽,用来定义凸起部分的范围,和形成在平面部分和外圆周部分之间的界限处的第二凹槽,用来定义平面部分的范围,其中外圆周部分的厚度比平面部分的厚度厚,平面部分和外圆周部分二者在厚度方向具有平面形状,并且凸起部分,平面部分,和外圆周部分通过基底被集成成一个单元。
根据本发明的第一方面,提供一种具有由光材料形成的基底的光元件,其中该基底具有一个起凸透镜作用的凸起部分,一个位于凸起部分周围的平面部分,位于平面部分周围的外圆周部分,形成在凸起部分和平面部分之间的界限处的一凹槽,用来定义凸起部分的范围,其中外圆周部分的厚度比凸起部分的厚度厚,平面部分和外圆周部分二者在厚度方向具有平面形状,并且凸起部分,平面部分,和外圆周部分通过基底被集成成一个单元。
根据本发明的第一方面,提供一种具有由光材料形成的基底的光元件,其中该基底具有一个起凸透镜作用的凸起部分,一个位于凸起部分周围的平面部分,位于平面部分周围的第一外圆周部分,位于第一外圆周部分周围的第二外圆周部分,形成在凸起部分和平面部分之间的界限处的第三凹槽,用来定义凸起部分的范围,和形成在平面部分和第一外圆周部分之间的界限处的第四凹槽,用来定义平面部分的范围,其中第一和第二外圆周部分的厚度比平面部分的厚度厚,并且第二外圆周部分的厚度比第一外圆周部分的厚度厚,所有的平面部分与第一和第二外圆周部分在厚度方向具有平面形状,并且凸起部分,平面部分,和第一和第二外圆周部分通过基底被集成成一个单元。
根据本发明的第二方面,提供一种用于制造光元件的方法,包括步骤:在由光材料形成的基底上形成第一屏蔽层和围绕第一屏蔽层的第二屏蔽层,热处理第一屏蔽层来把它形成凸透镜形状,和蚀刻基底来把第一屏蔽层的凸透镜形状转换到基底上。
更好地,在形成第一和第二屏蔽层的步骤中,通过在基底上由感光材料形成的屏蔽层上形成图案形成第一和第二屏蔽层。
更好地,在热处理第一屏蔽层来形成凸透镜形状的步骤中,热处理温度高于第一屏蔽层的玻变温度。
更好地,在热处理第一屏蔽层来形成凸透镜形状的步骤中,热处理温度低于第一屏蔽层的碳化温度。
更好地,在热处理第一屏蔽层来形成凸透镜形状的步骤中,热处理温度高于室温或常温。
更好地,在形成第一和第二屏蔽层的步骤中,具有敞开部分的第二屏蔽层被形成,然后第一屏蔽层被形成在敞开部分。在这种情况下,第二屏蔽层由抗蚀材料形成。
更好地,第二屏蔽层包括由抗蚀材料形成的第三屏蔽层和重叠在第三屏蔽层上使得覆盖基底上的第三屏蔽层的第四屏蔽层。在这种情况下,第四屏蔽层由与第一屏蔽层相同的材料形成。
更好地,基底由熔凝石英形成,第一和第四屏蔽层由具有用于形成厚膜的良好特性的光学透明材料形成,和第二和第三屏蔽层由铂形成。
根据本发明的第三方面,提供一种具有光元件和光电探测器的光拾取器,当安装在光存储介质的记录和/或再现设备上时光元件起到物镜的作用,光电探测器用来接收用于记录和/或再现到和从光存储介质的反射光束,光元件包括由光材料形成的基底,该基底包括一个起凸透镜作用的凸起部分,一个位于凸起部分周围的平面部分,和位于平面部分周围的外圆周部分,外圆周部分的厚度比平面部分的厚度厚从而提高了机械强度和增加了共振频率。
更好地,外圆周部分的厚度比凸起部分的厚度厚。
更好地,外圆周部分的表面是平的或者是近似平的。光元件的控制通过这种结构是容易的。
更好地,在外圆周部分上形成多个台阶,并且基底在外侧台阶处的厚度比基底在内侧台阶处的厚度要厚。从而能够防止掩蔽。
由光材料形成的基底包括一个起凸透镜作用的凸起部分,一个位于凸起部分周围的平面部分,和位于平面部分周围的外圆周部分。由于该外圆周部分的厚度比平面部分的厚度厚,与相同厚度比较,基底的机械强度能够被提高,并且能够提高光元件的机械强度和可靠性。
在根据本发明的光元件中,由于外圆周部分形成是厚的,能够使平面部分比外圆周部分薄,从而增加了机械强度。另外,因为薄平面部分的减少,抗弯强度也被增加,在厚度方向的共振频率被增加,从而能够使光元件有抵抗共振的结构。
另外,在根据本发明的光元件中,由于薄平面部分的减少,能够增大光元件的尺寸。由于这,允许被挤压出的多余粘合剂量能够变大,所以能够简化透镜保持器上的安装和增加形成在透镜保持器中的附件部分的直径。对精度的要求也能放松,所以能放松把透镜保持器安装在该光元件上的精度的要求。
根据用于生产根据本发明的光元件的方法,当形成凸起部分的时候,在不增加或几乎不增加处理步骤的情况下,厚的外圆周部分能够被形成。另外,由于屏蔽层的图案的定位精度能够保持,凸起部分和外圆周部分能够被高定位精度地制造。结果,位于凸起部分周围的平面部分能够被形成更小和例如相对屏蔽层材料的分辨率平面部分能够被形成更狭窄。
另外,根据用于制造根据本发明的光元件的方法,通过使用适于外圆周部分的屏蔽层的材料的抗蚀材料,外圆周部分能够形成比凸起部分厚,并且能够进一步提高机械强度和进一步提高共振频率。
另外,通过使用作为外圆周部分的屏蔽层的层叠结构屏蔽层,能够在厚外圆周部分处形成具有多台阶结构的光元件,和能够构成其中外圆周部分不容易阻挡光路的结构,所以该厚外圆周部分能够被形成一直到接近凸起部分,并且能够进一步提高机械强度和进一步提高共振频率。
另外,根据本发明的光拾取器,能够提供一种具有根据上述本发明的光元件的光拾取器。
附图简述
从下面参考附图给出的最佳实施例的描述中,本发明的这些和其它目的和特点将变得更清楚,其中:
图1A是说明作为本发明的相关技术的光元件的剖面图,和图1B是图1A中光元件的平面图;
图2A和2B是在图1A和1B中的光元件的剖面图和透镜保持器;
图3A是根据本发明的光元件的第一个实施例的剖面图和图3B是在图3A中的光元件的平面图;
图4A到4D用于制造图3A和3B中的光元件的方法的说明图;
图5A到5E用于制造根据本发明的光元件的方法的第二个实施例的说明图;
图6A到6E用于制造根据本发明的光元件的方法的第三个实施例的说明图;
图7是具有根据本发明的光元件的光拾取器的第一个实施例的结构图;
图8是具有根据本发明的光元件的光拾取器的第二个实施例的结构图;
图9是具有根据本发明的光元件的光拾取器的第三个实施例的结构图;
发明的具体实施方式
下面,将参考附图描述最佳实施例。
光元件的第一个实施例
图3A是根据本发明的光元件的第一个实施例的剖面图和图3B是在图3A中的光元件的平面图;
这个光元件20具有由光材料形成的基底24A。基底24A具有一个起凸透镜作用的凸起部分21,一个位于凸起部分21周围的平面部分22,和位于平面部分22周围的外圆周部分23。光元件20也具有清楚地分隔平面部分22和外圆周部分23的第一凹槽(或沟)28,和清楚地分隔凸起部分21和平面部分22的第二凹槽(或沟)29。
注意到,凸起部分21,平面部分22,和外圆周部分23通过基底24A被结合成一个单元。
在这个实施例中,平面部分22和外圆周部分23二者在厚度方向具有平面形状。因此,平面部分22能被称作内平面部分,而外圆周部分23能被称作外平面部分。
外圆周部分23的厚度比平面部分22的厚度厚,并且外圆周部分23的表面(上表面)是平面。
在该光元件20中,凸起部分21是小的,亮的,和高精度的。另外,外圆周部分23比平面部分22厚。因此,薄平面部分22变得更小和机械强度被提高。另外,由于薄平面部分22是小的,抗弯曲强度也被提高,在基底24A厚度方向的振动共振频率被提高,并且因此获得抗共振的结构。
另外,由于光元件20形成有厚的外圆周部分23,光元件20的尺寸能够被增大而保持了机械强度。
由于这个原因,可允许被挤压出的粘合剂的量被增加,所以在透镜保持器上的安装过程变得更容易。另外,能够增加用于安装图2A和2B所示的透镜保持器的部分的直径,并且容易满足它的精度要求。因此,光元件20被安装到其上的透镜保持器的精度要求能够变得容易。
用于制造光元件的方法的第一个实施例
下面,将描述制造光元件的方法。
图4A到4I是用于制造图3A和3B中的光元件的方法的说明图;
在图4A中,在由诸如熔凝石英(熔融石英玻璃)的光材料形成的基底24上涂覆一屏蔽层25。屏蔽层25由具有用于形成厚膜良好的特性的感光材料(光阻材料),诸如由Tokyo Ohka Kogyo公司制造的PMER P-LA900PM或者由Clariant制造的AZ PLP-30或者AZ PLP-40形成,并且通过旋涂等涂覆成预定的厚度。屏蔽层25的厚度大约是例如25μm。
在图4B中,图4A中的基底24上的屏蔽层25被形成图案从而形成第一屏蔽层26和第二屏蔽层27。屏蔽层25通过例如曝光和显影形成图案。在第一屏蔽层26和第二屏蔽层27之间的间隔例如是大约50μm,并且第一屏蔽层26的直径例如是大约100μm到大约250μm。
在图4C中,在图4B中的基底24(或者在基底24上的屏蔽层26和27)被热处理来促使屏蔽层26和27变形从而它们的表面积由于表面张力等变得更小,并且来促使它们变形到具有平缓曲线表面的凸起形状。
通过热处理,图4B中的屏蔽层26和27变为图4C中的屏蔽层26A和27A的形状。屏蔽层26A具有圆形凸起形状(凸透镜形状)。
在图4D中,图4C中的屏蔽层26A和27A的形状被转换到基底24从而形成基底24A和于是形成光元件20。例如,使用反应离子蚀刻(RIE)或其它蚀刻技术来把屏蔽层26A和27A的形状转换到基底24上从而形成光元件20。
凸起部分21通过转换屏蔽层26A的形状形成,平面部分22通过转换在屏蔽层26A和27A之间的形状形成,并且外圆周部分23通过转换屏蔽层27A的形状形成。外圆周部分表面是平面或者近似平面。凹槽29形成在凸起部分21的外圆周,而凹槽28形成在平面部分22的外圆周。凹槽28和29清楚地定义了凸起部分21,平面部分22,和外圆周部分23。
用于形成凸起部分21的刻蚀例如是通过使用被称作磁中性环路放电等离子体(NLD)设备的高密度等离子源的等离子蚀刻设备实现的。对于NLD设备,可以参考H.Tsuboi,M.Itoh,M.Tanabe,T.Hayashi,和T.Uchida:Jan.J.Appl.Phys.34(1995),2476。
可选择地,刻蚀通过使用被称作感应耦合等离子体(ICP)设备的高密度等离子源的等离子蚀刻设备执行的。注意到对于ICP设备,可以参考J.Hopwood,离子源,Sci.&Technol.1(1992)109.和TFukusawa,A.Nakamura,H.Shindo,和Y.Horiike:Jpn.J.Appl.Phys.33(1994),2139。
根据显示在图4A到4D的制造方法,能够形成起到凸透镜作用的凸起部分21和形成厚外圆周部分23。另外,由于屏蔽层的图案的精度能够被高水平保持,凸起部分21和外圆周部分23能够以高水平定位精度被制造。结果,位于凸起部分21周围的薄平面部分22能被制作的更小,并且例如该平面部分能够制作的更窄到感光材料的分辨率。
另外,光元件20具有形成在平面部分22周围的厚外圆周部分23。通过使用图4A到4D的生产方法,能够生产具有通过玻璃铸模方法困难形成之形状的光元件。
在图4A到4D的生产方法中,作为一个例子,屏蔽层25是由具有大约45℃到大约55℃的玻变温度(Tg点)的材料制成的,其是诸如由Tokyo OhkaKogyo公司制造的PMER P-LA900PM或者由Clariant制造的AZ PLP-30或者AZPLP-40,并且在大约110℃到大约150℃的范围内热处理。
另外,为了能使第一屏蔽层26通过热处理充分地变形成显现光学平滑表面的程度,屏蔽层25的材料是由具有比热处理温度低的Tg点的材料形成的。 此外,当通过干蚀刻或其它过程在基底24上形成第一屏蔽层26的形状的时候,对于屏蔽层26A和27A,在热处理后不改变其质量是必须的。因此,热处理温度被形成为其中屏蔽层26A和27A在质量上不改变的温度。例如,热处理温度被形成为比第一屏蔽层26的碳化温度低的温度。
假如屏蔽层26和27在其上形成屏蔽层26和27的基底24的保持状态被变形,再现的过程(再现性)变得困难。另外,假如屏蔽层26和27在干刻蚀过程变形,再现过程变得困难。
由于这个原因,屏蔽层25的材料是具有高于存放温度(室温或常温)或加工温度(接近室温或接近常温)的Tg点的材料。
通常,Tg点是指示物质变成玻璃态,即没有特定的结构并且能够流动的状态的界限的温度,所以考虑到该过程的稳定性,希望热处理温度是高于Tg点一特定余量的温度。
即是,为了促使屏蔽层26通过热处理变形使得它的表面积变得更小(使屏蔽层26通过热处理变为流动状态并且通过屏蔽层26的表面张力使屏蔽层26变形),希望热处理温度为比Tg点高十几摄氏度。
作为一个例子,通过使热处理温度比Tg点高至少大约40℃,能够使屏蔽层26在例如一个小时内完全地变形并且从而能有效地生产光元件20。
注意到,从相似的观点,在存放温度或加工温度和Tg点之间的关系中,在存放温度或加工温度和Tg点之间的差应该在几个十几摄氏度的范围内。
光元件和用于生产光元件的方法的第二个实施例
下面,将参考图5A到5E描述根据本发明的光元件和用于生产第二种光元件的方法的第二个实施例。
在图5A中,具有开口37H的第二屏蔽层37B被形成在通过光材料例如熔凝石英(熔融石英玻璃)形成的基底34上。该第二屏蔽层37B是由抗蚀材料形成的,并且具有例如大约0.1μm的厚度。第二屏蔽层37B可以由例如金属材料诸如铂形成的,或者由硬掩膜形成。
在图5B中,屏蔽层35被涂覆在图5A的基底34上。屏蔽层35由具有用于形成厚膜之良好特性的感光材料(光阻材料)诸如由Tokyo Ohka Kogyo公司制造的PMERP-LA900PM或者由Clariant制造的AZPLP-30或者AZPLP-40形成,并目通过旋涂等涂覆成预定的厚度。屏蔽层35的厚度大约是例如25μm。
在图5C中,图5B中的基底34上的屏蔽层35被形成图案从而形成第一屏蔽层36和曝光第二屏蔽层37B。屏蔽层35通过例如曝光和显影形成图案。第一屏蔽层36的直径例如是大约100μm到大约250μm。
在图5D中,在图5C中的基底34(或者在基底34上的第一屏蔽层36)被热处理来使第一屏蔽层36变形从而它的表面积由于表面张力变得更小,并且来使它变形到具有平缓曲线表面的凸起形状。
通过热处理,图5C中的屏蔽层36变为图5D中的屏蔽层36A的形状。屏蔽层36A具有圆形凸起形状(凸透镜形状)。
在图5E中,图5D中的屏蔽层36A的形状被转换到基底34从而形成基底34A和形成光元件30。
例如,使用RIE或其它蚀刻技术来把屏蔽层36A的形状转换到基底34上和形成光元件30。屏蔽层37B是通过没有蚀刻或者难蚀刻或者在蚀刻形成凸起部分31时有小的蚀刻速度的材料形成的。另外,在形成凸起部分31的蚀刻中,例如,使用NLD设备或者ICP设备。
凸起部分31通过转换屏蔽层36A的形状形成,平面部分32通过转换在屏蔽层36A和37A之间的形状形成,并且外圆周部分33被屏蔽层37B屏蔽和没有被蚀刻。外圆周部分33表面是平面或者近似平面。
凹槽39形成在凸起部分31的外圆周。凹槽39清楚地定义了凸起部分31和平面部分32的界限。
根据显示在图5A到5E的制造方法,能够形成起到凸透镜作用的凸起部分31和形成厚外圆周部分33。另外,由于屏蔽层35的图案的精度能够被高水平保持,凸起部分31和外圆周部分33能够以高水平定位精度被形成。结果,位于凸起部分31周围的薄平面部分32能被制作的更小,并且例如该平面部分32能够制作的更窄到感光材料的分辨率。
另外,外圆周部分33的厚度能够被制成比凸起部分31的厚度更厚,所以能够进一步提高光元件30的机械强度和进一步提高在基底34A的厚度方向的振动的共振频率,并且从而使共振困难。
另外,在光元件30中,通过具有形成在平面部分32周围的厚外圆周部分33和使用图5A到5E的生产方法,能够生产具有通过玻璃铸模方法难形成的形状的光元件。
注意到在图5A中的第二屏蔽层37B能够通过剥离(lift-off)方法形成。这个形成过程需要使用对光阻材料的剥离剂,所以假如屏蔽层35是例如感光材料的有机材料,希望把形成第二屏蔽层37B的过程安排在形成屏蔽层35和36的过程之前。
另外,第二屏蔽层37B不希望在图5E的加工基底34A的过程中被加工,只要图5E的过程,宁愿要利用化学反应的RIE而不愿要离子蚀刻。
在图5A到5E的生产方法中,作为一个例子,屏蔽层25是使用具有大约45℃到大约55℃的玻变温度(Tg点)的材料制成的,诸如由Tokyo OhkaKogyo公司制造的PMER P-LA900PM或者由Clariant制造的AZ PLP-30或者AZPLP-40,并且在大约110℃到大约150℃的范围内热处理。
另外,为了使第一屏蔽层36变形成圆形到显现光学平滑表面的程度,屏蔽层35的材料是由具有比热处理温度低的Tg点的材料形成的。
此外,当通过干蚀刻或其它过程在基底34上形成第一屏蔽层36的形状的时候,对于屏蔽层36A,在热处理后不改变其质量是必须的。因此,热处理温度被形成为其中屏蔽层36A在质量上不改变的温度。例如,热处理温度被形成为比第一屏蔽层36的碳化温度低的温度。
假如屏蔽层36在其上形成屏蔽层36和37B的基底34的保持状态被变形,再现的过程(再现性)变得困难。另外,假如屏蔽层36和37B在干刻蚀过程变形,再现过程变得困难。
由于这个原因,屏蔽层35的材料是具有高于存放温度(室温或常温)或加工温度(接近室温或接近常温)的Tg点的材料形成的。
从该过程稳定性的观点出发,希望热处理温度是高于Tg点一特定余量的温度。
即是,为了促使屏蔽层36通过热处理变形使得它的表面积变得更小(使屏蔽层36通过热处理变为流动状态并且通过屏蔽层36的表面张力使屏蔽层36变形),希望热处理温度为比Tg点高十几摄氏度。
作为一个例子,通过使热处理温度比Tg点高至少大约40℃,能够使屏蔽层36在例如一个小时内完全地变形并且从而能有效地生产光元件30。
注意到,从相似的观点,在存放温度或加工温度和Tg点之间的关系中,在存放温度或加工温度和Tg点之间的差应该在几个十几摄氏度的范围内。
光元件和用于生产光元件的方法的第三个实施例
下面,将参考图6A到6E描述根据本发明的光元件的第三个实施例和用于生产作为第三个实施例的光元件的方法。
在图6A中,具有开口47H的第三屏蔽层47B被形成在通过光材料例如熔凝石英(熔融石英玻璃)形成的基底44上。该第三屏蔽层473是由抗蚀材料形成的。它的厚度为例如大约0.1μm。第二屏蔽层57B可以由例如金属材料诸如铂形成的,或者由硬掩膜形成。
在图6B中,屏蔽层45被涂覆在图6A的基底44上。屏蔽层45由具有用于形成厚膜的良好特性的感光材料(光阻材料)诸如由Tokyo Ohka Kogyo公司制造的PMER P-LA900PM或者由Clariant制造的AZ PLP-30或者AZ PLP-40形成,并且通过旋涂等涂覆成预定的厚度。屏蔽层45的厚度大约是例如25μm。注意到屏蔽层45是用与屏蔽层35相同的材料制成的。
在图6C中,图6B中的基底44上的屏蔽层45被形成图案从而形成第一屏蔽层46和第二屏蔽层47C。
第二屏蔽层47C具有第三屏蔽层47B和重叠使得覆盖该第三屏蔽层47B的第四屏蔽层47。
第四屏蔽层47布置得比第三屏蔽层47B更靠近屏蔽层46。屏蔽层45被通过例如曝光和显影形成图案。在第一屏蔽层46和第二屏蔽层47C之间的距离是例如大约50μm,而第一屏蔽层46的直径例如是大约100μm到大约250μm。
在图6D中,在图6C中的基底44(或者在基底44上的第一和第二屏蔽层46和47C)被热处理来使第一屏蔽层46变形从而它的表面积由于表面张力变得更小,并且来使它变形到具有平缓曲线表面的凸起形状。
通过热处理,图6C中的屏蔽层46和47变为图6D中的屏蔽层46A和47A的形状。屏蔽层46A具有圆形凸起形状(凸透镜形状)。
在图6E中,图6D中的屏蔽层46A和47A的形状被转换到基底44从而形成基底44A和从而形成光元件40。例如,使用RIE或其它蚀刻技术来把屏蔽层46A和47A的形状转换到基底44上和形成光元件40。屏蔽层47B是通过没有蚀刻或者难蚀刻或者在蚀刻形成凸起部分41时有小的蚀刻速度的材料形成的。另外,在形成凸起部分41的蚀刻中,例如,使用NLD设备或者ICP设备。
凸起部分41通过转换屏蔽层46A的形状形成,而平面部分42通过转换在屏蔽层46A和47A之间的形状形成。
外圆周部分43具有在内侧的第一外圆周部分43A和在外侧的第二外圆周部分43B。第一外圆周部分43A的厚度比第二外圆周部分43B的厚度小,于是形成台阶(两级台阶)。另外,第二外圆周部分43B被屏蔽层47B屏蔽并且没有被蚀刻。第一和第二外圆周部分43A和43B的表面是平面或者近似平面。
凹槽49形成在平面部分42的内圆周,而凹槽48形成在平面部分42的外圆周。凹槽48和49清楚地定义了凸起部分41,平面部分42,和外圆周部分43。
根据显示在图6A到6E的制造方法,能够形成起到凸透镜作用的凸起部分41和形成厚外圆周部分43。另外,由于屏蔽层45的图案的精度能够被高水平保持,凸起部分41和外圆周部分43能够以高水平定位精度被形成。由于这些,位于凸起部分41周围的薄平面部分42能被制作的更小,并且例如该平面部分42能够制作的更窄到感光材料的分辨率。
另外,由于外圆周部分43(第二外圆周部分43B)能够形成比凸起部分41的厚度更厚的厚度,所以能够进一步提高光元件40的机械强度和进一步提高在厚度方向的振动的共振频率,并且从而使光元件40形成为不易共振的结构。
由于在图6E中的光元件40具有形成比第二外圆周部分43B更薄的靠近凸起部分41的第一外圆周部分43A,它具有不易阻挡光路的结构,和具有能够防止所谓掩蔽的结构。
另外,由于这种结构,与图5E中的光元件30相比较,外圆周部分能够形成更靠近凸起部分和因此它能够进一步提高机械强度和进一步提高共振频率。
另外,在光元件40中,在平面部分42周围形成较厚部分43和通过使用图6A到6E的生产方法,能够生产具有通过玻璃铸模方法难形成的形状的光元件。
光拾取器
图7是具有根据本发明的光元件的光拾取器的第一个实施例的结构图。
该拾取器1具有一个激光二极管4,一个准直透镜5,一个束分离器3,一个1/4波长板(λ/4板)9,一个聚光透镜6,一个光检测器8,和光元件20。光元件20也可以被配置为连在一个臂上的滑板或者被配置为通过两轴激励器在聚焦方向和跟踪方向移动。
激光二极管4响应驱动信号SL输出由线性极化光构成的激光束并且把该输出激光束提供给准直透镜5。
准直透镜5使来自激光二极管4的激光变为平行光并且把它提供给束分离器3。
束分离器3传输来自准直透镜5的激光并且经过1/4波长板9把激光束提供给光元件20的凸起部分21。
光元件20的凸起部分21起到物镜的作用,把来自1/4波长板9和束分离器3的激光束聚光,并且把它提供给光盘80的轨道。于是,来自激光二极管4的激光束被聚焦在光盘80的记录表面上。
另外,光元件20接收在光盘80上反射的激光束,并且把它通过1/4波长板9返回到束分离器3。
束分离器3接收来自光元件20的激光束,并且送往聚光透镜6。
聚光透镜6聚光来自束分离器3的激光束并且把聚光后的激光束提供给光检测器8。
光检测器8在接收部分接收来自聚光透镜6的激光束并且产生输出信号SA。光检测器8是例如这样构成的,一个四分光检测器,其产生用于计算跟踪误差信号,聚焦误差信号,RF信号或者其它信号的信号。
在图7中的光拾取器中,通过使用光元件20,与使用图1A和1B中的光元件10的光拾取器相比较,能够提高共振频率,于是能够以高传输速率记录和/或再现数据。另外,通过使用光元件20,能够提高光拾取器的机械强度和可靠性。
图8是具有根据本发明的光元件30的光拾取器的第二个实施例的结构图;
这个光拾取器1A具有代替使用在图7中显示的光拾取器1中的光元件20的光元件30。其余的结构与拾取器1的结构相同。
图9是具有根据本发明的光元件40的光拾取器的第三个实施例的结构图;
这个光拾取器1B具有代替使用在图7中显示的光拾取器1中的光元件20的光元件40。其余的结构与拾取器1的结构相同。
在本发明的实施例中,通过使用例如熔凝石英(熔融石英玻璃)作为光基底,具有大约1.46折射率,大约0.85的NA(当形成两组透镜时)和具有提高到大约400kHz到大约700kHz的共振频率的光元件和光拾取器能够被制造。注意到光元件的现有技术的共振频率是大约100kHz到250kHz。
例如,如图1A所示的现有技术的光元件10中,当凸起部分11的曲率半径R1是150微米,φ1是200微米,L1是1200微米,并且t1是30微米的时候,通过计算机模拟获得的共振频率是227kHz。另外,例如,在显示在图3A中的本发明的一个实施例的光元件20中,当凸起部分21的曲率半径R2是150微米,φ2是200微米,φ3是400微米,L2是1200微米,t2是30微米,并且t3是80微米的时候,通过计算机模拟获得的共振频率是630kHz。
通过本发明的生产方法生产的光元件和使用该光元件作为物镜的光拾取器能够被用于光盘设备和磁-光盘设备中的记录和/或再现中,该光盘设备和磁-光盘设备中不仅使用光盘而且使用各种其它类型存储介质,例如激光唱盘(CD),数字化通用盘(DVD),小型盘(MD),或磁光(MO)盘。
注意到上述实施例仅仅是本发明的例子。本发明不限于上述实施例。