书签 分享 收藏 举报 版权申诉 / 36

介电陶瓷,制造该介电陶瓷的方法,以及单片陶瓷电容器.pdf

  • 上传人:b***
  • 文档编号:367230
  • 上传时间:2018-02-12
  • 格式:PDF
  • 页数:36
  • 大小:1.28MB
  • 摘要
    申请专利号:

    CN200410002931.1

    申请日:

    2004.01.20

    公开号:

    CN1518019A

    公开日:

    2004.08.04

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效|||公开

    IPC分类号:

    H01G4/12; H01G4/30; H01B3/12; C04B35/00

    主分类号:

    H01G4/12; H01G4/30; H01B3/12; C04B35/00

    申请人:

    株式会社村田制作所;

    发明人:

    中村友幸; 小中宏泰; 加藤成; 武藤和夫; 佐野晴信

    地址:

    日本京都府

    优先权:

    2003.01.24 JP 2003-015646

    专利代理机构:

    中科专利商标代理有限责任公司

    代理人:

    陈瑞丰

    PDF完整版下载: PDF下载
    内容摘要

    一种介电陶瓷,该介电陶瓷在组成上包括含Ba、Ca和Ti的通式为ABO3的钙钛矿型化合物,和含Si、R(La等)和M(Mn等)的添加剂组分,添加剂组分没有被固体溶解,而且主要组分存在于每个晶粒的至少90%的横截面中,这样的晶粒数目占介电陶瓷所含的所有晶粒数目的至少85%,在介电陶瓷晶粒界面至少85%的分析点上至少包含Ba、Ca、Ti、Si、R和M。

    权利要求书

    1: 1、一种具有晶粒和在晶粒间的晶粒界面的介电陶瓷,该介电陶瓷包括: 作为主要组分的通式ABO 3 的钙钛矿化合物,其中A代表Ba和Ca或者 Ba、Ca和Sr,B代表Ti或者Ti及Zr和Hf中至少之一,以及 含Si、R和M的添加剂组分,其中R代表La、Ce、Pr、Nd、Sm、Eu、 Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y中的至少一种,M代表Mn、Ni、 Co、Fe、Cr、Cu、Mg、Al、V、Mo和W中的至少一种, 其中添加剂组分没有被固体溶解,其中所有晶粒数目中至少约85%的 晶粒的横截面上至少约90%存在主要组分,而且 其中在约85%或更多晶粒界面分析点上至少发现Ba、Ca、Ti、Si、R 和M。 2、权利要求1的介电陶瓷,其中Ca g /Ti g <Ca b /Ti b ,其中Ca g 是晶粒中所 含Ca的数量,Ti g 是晶粒中所含Ti的数量,而Ca b 是晶粒界面中所含Ca的数量, Ti b 是晶粒界面中所含Ti的数量。 3、权利要求2的介电陶瓷,其中晶粒中的Ca浓度为约1~20%摩尔,基 于主要组分ABO 3 中元素A的量。 4、权利要求3的介电陶瓷,其中添加剂组分中R和M的以元素基础计的 浓度分别为约0.05~
    2: 5摩尔和约0.1~2摩尔,基于100摩尔主要组分。 5、权利要求4的介电陶瓷,其中钙钛矿的晶轴比c/a至少约1.009。 6、权利要求1的介电陶瓷,其中晶粒中的Ca浓度为约1~20%摩尔,基 于主要组分ABO 3 中元素A的量。 7、权利要求1的介电陶瓷,其中添加剂组分中R和M的以元素基础计的 浓度分别为约0.05~1.5摩尔和约0.1~2摩尔,基于100摩尔主要组分。 8、权利要求1的介电陶瓷,其中钙钛矿的晶轴比c/a至少约1.009。 9、一种制造介电陶瓷的方法,该方法包括如下步骤:提供(a)和(b)的混 合物,其中(a)是通式ABO 3 的钙钛矿化合物,其中A代表Ba和Ca或者Ba、Ca 和Sr,B代表Ti或者Ti及Zr和Hf中至少之一,钙钛矿化合物的晶轴比c/a至少 约1.009,而(b)是至少含Ba、Ca、Ti、Si、R和M的煅烧材料,其中R是La、 Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y中的至少 一种,M是Mn、Ni、Co、Fe、Cr、Cu、Mg、Al、V、Mo和W中的至少一种; 以及 烧制钙钛矿化合物和煅烧材料的混合物。 10、权利要求9的制造介电陶瓷的方法,其中钙钛矿化合物的Ca/Ti摩尔 比小于煅烧材料中的Ca/Ti摩尔比。 11、权利要求10的制造介电陶瓷的方法,其中煅烧材料中R和M的以元 素基础计的浓度分别为约0.05~1.5摩尔和约0.1~2摩尔,基于100摩尔钙钛 矿。 12、一种单片陶瓷电容器,包含一个层压体,该层压体包含至少三个层 压的介电陶瓷层和沿着介电陶瓷层间不同的界面延伸并在层压方向上相互 重叠的至少两个内电极;和 在层压体的外表面上、与不同的内电极电连接的一对外电极; 其中介电陶瓷层包含权利要求5的介电陶瓷。 13、权利要求12的单片陶瓷电容器,其中内电极包含贱金属。 14、权利要求13的单片陶瓷电容器,其中贱金属包含镍或铜。 15、权利要求14的单片陶瓷电容器,其中外电极包含贱金属。 16、权利要求13的单片陶瓷电容器,其中外电极包含贱金属。 17、一种单片陶瓷电容器,包含一个层压体,该层压体包含至少三个层 压的介电陶瓷层和沿着介电陶瓷层间不同的界面延伸并在层压方向上相互 重叠的至少两个内电极;和 在层压体的外表面上、与不同的内电极电连接的一对外电极; 其中介电陶瓷层包含权利要求1的介电陶瓷。 18、权利要求17的单片陶瓷电容器,其中内电极包含贱金属。 19、权利要求18的单片陶瓷电容器,其中贱金属包含镍或铜。 20、一种单片陶瓷电容器,包含一个层压体,该层压体包含至少三个层 压的介电陶瓷层和沿着介电陶瓷层间不同的界面延伸并在层压方向上相互 重叠的至少两个内电极;和 在层压体的外表面上、与不同的内电极电连接的一对外电极; 其中介电陶瓷层包含权利要求4的介电陶瓷。

    说明书


    介电陶瓷,制造该介电陶瓷的方法,以及单片陶瓷电容器

        【技术领域】

        本发明涉及一种介电陶瓷,制造该介电陶瓷的方法,以及含这种介电陶瓷的单片陶瓷电容器,具体而言,本发明涉及可以便利地进行的改进减小单片陶瓷电容器中所含介电陶瓷层厚度的方法。

        背景技术

        一般而言,单片陶瓷电容器是用如下方法制造的。

        首先,制备陶瓷生片。生片包含介电陶瓷原料,并有用于内电极的导电材料,该材料在生片表面上形成所需的图案。例如,使用的介电陶瓷含BaTiO3作为主要组分。

        随后,将每块上都有导电材料的多个陶瓷生片层压在一起并热-压-结合。从而制备出集成的生层压体。

        接着,烧制集成的生层压体,制造出煅烧的层压体。层压体地内部形成有内电极,这些内电极是由上述导电材料制成的。

        然后,在层压体的外表面上形成外电极,使外电极和特定的内电极之间电连接。具体而言,外电极是通过,例如将含导电金属粉和玻璃粉的导电膏涂在层压体外表面上并烧制形成的。

        这样制造出单片陶瓷电容器。

        至于形成内电极的导电材料,近年来在许多情况下使用的是贱金属,例如镍、铜等比较便宜的金属。但是,为了制造含贱金属制成的内电极的单片陶瓷电容器,要求在中性或还原性环境中烧制,以防止贱金属在烧制过程中被氧化。因此,单片陶瓷电容器中所含的介电陶瓷必须具有防还原性。

        至于具有上述抗还原性,且能够形成电容-温度特性满足JIS标准的特性B要求的单片陶瓷电容器的介电陶瓷,使用含BaTiO3作为主要组分,稀土元素氧化物,Mn、Fe、Ni、Cu等的氧化物,煅烧助剂等作为添加剂。

        关于上述介电陶瓷,例如日本未审查的专利申请公开5-9066(专利文件1),日本未审查的专利申请公开9-270366(专利文件2),日本未审查的专利申请公开11-302071(专利文件3)和日本未审查的专利申请公开2000-58377(专利文件4)分别建议使用具有高介电常数、介电常数随温度的改变较低和高温负荷使用寿命长的介电陶瓷组合物。

        至于介电陶瓷的结构,日本未审查的专利申请公开6-5460(专利文件5),日本未审查的专利申请公开2001-220224(专利文件6)和日本未审查的专利申请公开2001-230149(专利文件7)提出介电陶瓷具有所谓的核-壳结构。

        此外,日本未审查的专利申请公开2001-313225(专利文件8)提出一种具有所谓的核-壳结构的介电陶瓷,其中该核部分暴露于壳外。

        最近,电子技术发展显著,同时电子零件的尺寸迅速变小。而且单片陶瓷电容器也出现了减小尺寸并增加电容的趋势。至于实现单片陶瓷电容器小尺寸和大电容的有效方法,有例如减小介电陶瓷层厚度的方法。一般,这种可商购产品中所含介电陶瓷层的厚度高达约2μm。实验室研究的介电陶瓷厚度最小约1μm。增加介电陶瓷的介电常数对实现介电陶瓷小尺寸和大电容很重要。

        此外,无论温度如何变化,工作时电路必须高度稳定。为此电路中使用的电容器必须不随温度变化而改变。

        如上述所见,热切希望能有这样的单片陶瓷电容器,即使减小该电容器介电陶瓷层的厚度,电容器的电容随温度的改变较小,电绝缘性高,且具有优良的可靠性。

        专利文件1中所述的介电陶瓷满足了EIA标准中规定的X7R特性,而且表现出高电绝缘性。但是,当减小介电陶瓷层厚度时,具体到当厚度小于5μm,特别是小于3μm时,电容-温度特性和介电陶瓷的可靠性都不足以满足市场要求。

        类似地,专利文件2、3和4中所述的介电陶瓷也是这样的:当介电陶瓷层厚度小于,例如2μm时,厚度越小,电容-温度特性和可靠性越差。

        此外,专利文件5、6和7中所述的所谓核-壳型介电陶瓷每个都包括一个具有铁电性的核部分和具有顺电性的壳部分。这种介电陶瓷具有优良的电容-温度特性。但是,壳部分的介电常数低。因而由于壳部分的存在降低了整个介电陶瓷的介电常数。原因是当陶瓷中存在多个电介质时,整个介电陶瓷的介电常数基本上等于按照所谓的对数混合定则将介电常数的对数加起来得到的数值。此外,问题还在于随着介电陶瓷层厚度的减小,电容-温度特性也变差,而且可靠性下降。

        对于具有专利文件8所述结构的介电陶瓷,结构控制是用烧制温度实现的。所以,介电陶瓷的电特性趋于消散。因此问题在于介电陶瓷层,当其厚度减小时,电容-温度特性和可靠性不能得到保证。

        如上述所见,如果减小介电陶瓷层厚度以使单片陶瓷电容器的尺寸可以变小,其电容被增加了,而且AC信号被维持在和厚度减小前一样的数值,施加在每个介电陶瓷层上的电场强度被加大,从而使电容-温度特性显著变差。此外,如果减小介电陶瓷层厚度,且DC额定电压和厚度减小前一样,则施加在每个介电陶瓷层的电场强度被加大了,因而使可靠性显著下降。

        因此,需要有一种具有高介电常数的介电陶瓷,该介电陶瓷可用于形成这样的介电陶瓷层:即使减小介电陶瓷层的厚度,其随温度而定的介电常数也不变差,并且该介电陶瓷可以提供高可靠性的单片陶瓷电容器。

        【发明内容】

        发明概述

        本发明的一个目的是提供一种介电陶瓷,一种能够满足上述要求的介电陶瓷的制造方法,以及用这种介电陶瓷制成的单片陶瓷电容器。

        根据本发明,提供了一种介电陶瓷,该介电陶瓷在组成上包括通式ABO3的钙钛矿型化合物,其中A代表Ba和Ca或者Ba、Ca和Sr,B代表Ti或者Ti和取代部分Ti的Zr和Hf中的至少一个,还包括含Si、R和M的添加剂组分,其中R代表La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y中的至少一种,M代表Mn、Ni、Co、Fe、Cr、Cu、Mg、Al、V、Mo和W,该介电陶瓷具有晶粒和在晶粒间的晶粒界面,添加剂组分没有被固体-溶解,此外,所有晶粒中至少约85%晶粒的每个晶粒至少约90%横截面上存在主要组分,而至少约85%的晶粒界面分析点上至少有Ba、Ca、Ti、Si、R和M。即使介电陶瓷形成的介电陶瓷层厚度被减小了,介电陶瓷层也具有高可靠性。同样,该介电陶瓷电容-温度特性优良且介电常数高。因此,使用这种介电陶瓷形成单片陶瓷电容器的介电陶瓷层可以使单层陶瓷电容器具有高可靠性和优良的电容-温度特性。另外,由于减小了介电陶瓷层的厚度,可以减小单片陶瓷电容器的大小,并增加其电容。

        值得注意的是:添加剂组分是否被固体溶解在特定晶粒的至少90%横截面中是基于检测下限为0.5%的TEM分析而确定的。

        本专利说明书中,表述“晶粒界面”是指由两个晶粒限定的区域,还有由至少三个晶粒限定的区域(所谓的三重点)。更具体而言,如果在陶瓷横截面晶粒之间观察到结晶学上明显的层,则该层被定义为晶粒界面。另一方面,如果在陶瓷横截面晶粒之间观察不到结晶学上的层,且晶粒相互之间结合,则以结合线为中心线两侧宽2nm的区域,包括结合点,被定义为晶粒界面。

        优选在本发明的介电陶瓷中公式Cag/Tig<Cab/Tib成立,其中Cag是晶粒中所含Ca的数量,Tig是晶粒中所含Ti的数量,而Cab是晶粒界面中所含Ca的数量,Tib是晶粒界面中所含的Ti数量。因此,可以更加提高可靠性。

        以主要组分ABO3所含元素A的数量计,还优选晶粒中的Ca浓度为约1~20%摩尔。由此所述介电陶瓷具有高介电常数。

        以主要组分为100摩尔计,优选添加剂组分中R和M以元素基础计的浓度分别为约0.05~1.5摩尔和约0.1~2摩尔。由此可以进一步提高介电常数,电容-温度特性和可靠性。

        此外,本发明提供了介电陶瓷的制造方法,该方法包括如下步骤:合成通式ABO3的钙钛矿型化合物,其中A代表Ba和Ca或者Ba、Ca和Sr,B代表Ti或者Ti和取代部分Ti的Zr和Hf中的至少之一,钙钛矿型化合物的晶轴比c/a至少约1.009;煅烧至少含Ba、Ca、Ti、Si、R和M的化合物,其中R是La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y中的至少一种,而M代表Mn、Ni、Co、Fe、Cr、Cu、Mg、Al、V、Mo和W中的至少一种,以制造出煅烧的材料;和烧制作为介电陶瓷原料的、含有所述钙钛矿型化合物和所述煅烧材料的混合物的复合材料。这样,可以简单可靠地制造上述介电陶瓷。

        由于晶轴比c/a至少约1.009,合成度十分高。因此可以抑制钙钛矿型化合物主要组分和添加剂组分相互之间的反应。从而可以制造出本发明的介电陶瓷。

        优选在合成钙钛矿型化合物步骤中获得的钙钛矿型化合物的Ca/Ti摩尔比小于在煅烧材料制造步骤中获得的煅烧材料中的Ca/Ti摩尔比。由此可以建立上述公式Cag/Tig<Cab/Tib,其中Cag是晶粒中所含Ca的数量,Tig是晶粒中所含Ti的数量,而Cab是晶粒界面中所含Ca的数量,Tib是晶粒界面中所含的Ti数量。

        此外,本发明还提供一种单片陶瓷电容器,该单片陶瓷电容器包括包含多个层压的介电陶瓷层和沿着多个介电陶瓷层之间的特定界面延伸并相互之间在层压方向上重叠的多个内电极的层压体,和形成在层压体的外表面上以与预定的内电极电连接的多个外电极;所述介电陶瓷层由上述介电陶瓷制成。

        可以在还原性气氛中烧制本发明的介电陶瓷。当使用所述介电陶瓷来制造单片陶瓷电容器时,贱金属可以有利地用作内电极材料。而且,当同时烧制介电陶瓷层和外电极时,贱金属可以有利地用作外电极材料。

        【附图说明】

        图1是说明本发明一个实施方案的单片陶瓷电容器1的横截面图。

        图2是显示用TEM-EDX测定的、作为本发明一个实施例的样品1所含晶粒的内部组成分析结果的图表。

        图3是显示用TEM-EDX测定的、图2所示样品1的晶粒界面组成分析结果的图表。

        【具体实施方式】

        图1是说明本发明一个实施方案的单片陶瓷电容器1的横截面图。

        单片陶瓷电容器1包含一个层压体2。层压体2包括相互层压的多个介电陶瓷层3,以及分别在多个介电陶瓷层3间界面处形成的多个内电极4和5。所形成的内电极4和5延伸到层压体2的外表面。延伸到层压体2的一个端面6的内电极4和延伸到另一个端面7的内电极5在层压体2内部交替排列。

        外电极8和9是通过将导电膏涂在层压体2表面的端面6和7上,并烘焙该膏而形成的。在外电极8和9上形成第一电镀层10和11,然后,如果需要,在第一电镀层上再形成第二电镀层12和13。

        在单片陶瓷电容器1中,所形成的多个内电极4和5在层压体2的层压方向上相互重叠。由此在相邻的内电极4和5之间产生静电容。而且,内电极4电连接到外电极8上,而内电极5电连接到外电极9上。由此,上述静电容通过外电极8和9被引出。

        介电陶瓷层3是由本发明的如下介电陶瓷形成的,该介电陶瓷是组合物形式的,以通式ABO3的钙钛矿型化合物为主要组分,其中A代表Ba和Ca或者Ba、Ca和Sr,B代表Ti或者Ti和取代部分Ti的Zr和Hf中至少之一,还有含Si、R和M的添加剂组分,其中R代表La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y中的至少一种,M代表Mn、Ni、Co、Fe、Cr、Cu、Mg、Al、V、Mo和W,该介电陶瓷具有晶粒和在晶粒间的晶粒界面,添加剂组分没有被固体溶解,而且,在占所有晶粒数目至少约85%的晶粒中,主要组分存在于每个晶粒至少约90%的横截面上,使得在至少约85%的晶粒界面分析点上至少含有Ba、Ca、Ti、Si、R和M。

        如果介电陶瓷不满足上述要求,则不利地,介电陶瓷的介电常数低,电容-温度特性变差,并且高温负荷使用期限变短。

        优选在介电陶瓷中公式Cag/Tig<Cab/Tib成立,其中Cag是晶粒中所含Ca的数量,Tig是晶粒中所含Ti的数量,而Cab是晶粒界面中所含Ca的数量,Tib是晶粒界面中所含的Ti数量。

        通过满足上述要求,高温负荷使用寿命被进一步延长,并且可以进一步提高可靠性。

        以主要组分ABO3所含元素A的量计,优选介电陶瓷的晶粒中的Ca浓度为约1~20%摩尔。由此可以进一步提高介电常数。

        以主要组分为100摩尔计,优选介电陶瓷中添加剂组分中R和M以元素基础计的浓度分别为约0.05~1.5摩尔和约0.1~2摩尔。由此可以进一步提高介电常数,进一步提高电容-温度特性并延长高温负荷使用寿命。

        下面将描述图1所示介电陶瓷或单片陶瓷电容器的制造方法。

        首先,制备用来形成介电陶瓷层的介电陶瓷粉状原料。优选粉状原料的制备方法如下。

        选择Ba和Ca或者Ba、Ca和Sr作为通式ABO3中的A,选择Ti或者Ti和取代部分Ti的Zr和Hf中至少之一作为B,并选择A和B的含量,从而合成出钙钛矿型化合物ABO3。在这种情况下,重要的是钙钛矿型化合物的晶轴比c/a至少为1.0090。即,提高合成度或结晶度是重要的。

        另一方面,煅烧至少含Ba、Ca、Ti、Si、R和M的化合物以制造出煅烧的材料,其中R代表La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y中的至少一种,M代表Mn、Ni、Co、Fe、Cr、Cu、Mg、Al、V、Mo和W中的至少一种。

        随后,将钙钛矿型化合物和煅烧材料相互混合。使用所得复合材料作为粉状原料。

        因为粉状原料是按照如上方法制造的,可以容易地制造满足上述要求的介电陶瓷。而且,除了使用制造粉状原料的上述方法外,还可以同调节烧制条件来制造满足上述要求的介电陶瓷。

        将钙钛矿型化合物的Ca/Ti摩尔比设定为小于煅烧材料中的Ca/Ti摩尔比。由此可以制造出上述的满足公式Cag/Tig<Cab/Tib的介电陶瓷,其中Cag是晶粒中所含Ca的数量,Tig是晶粒中所含Ti的数量,而Cab是晶粒界面中所含Ca的数量,Tib是晶粒界面中所含的Ti数量。

        此外,可以通过控制钙钛矿型化合物的合成条件来调整钙钛矿型化合物中Ca的量和平均颗粒大小。

        然后,向如上制造的介电陶瓷粉状原料中加入有机粘结剂和溶剂并混合,以形成淤浆。用这种淤浆制成将形成介电陶瓷层3的陶瓷生片。

        此后,用丝网印刷法在特定的陶瓷生片上形成用于形成内电极4和5的导电膏薄膜。导电膏膜包含诸如镍、镍合金、铜或铜合金之类的贱金属作为导电组分。内电极4和5还可以用例如蒸发、电镀等方法来形成,而不仅仅是用丝网印刷法。

        其后,将如上所述的表面上各自涂有导电膏膜的多个陶瓷生片相互层压在一起。然后,将在其上面不形成导电膏膜的陶瓷生片以将上述陶瓷生片夹在中间的方式层压起来。这些陶瓷生片是压合的,如果需要的话可以进行切割。这样制造出生层压体,该生层压体用于形成层压体2。导电膏膜的末端暴露于生层压体的端面。

        随后,在还原性气氛中烧制生层压体,从而获得图1所示的烧结后的层压体2。层压体2中,陶瓷生片形成介电陶瓷层3,导电膏膜形成内电极4和5。

        在层压体2的端面6和7上形成外电极8和9,使它们分别和内电极4和5的暴露端电连接。

        外电极8和9的材料可以和内电极4和5的材料相同。可以使用银、钯、银-钯合金等。可以向上述金属粉末中加入B2O3-SiO2-BaO型玻璃、B2O3-Li2O-SiO2-BaO型玻璃等的玻璃料。根据单片陶瓷电容器的用途以及使用的地点而选择适当的材料。

        为了形成外电极8和9,通常在烧制的层压体2外表面上涂上含上述金属粉的膏并烘焙。该膏可以在烧制之前涂在生层压体的外表面上,并与生层压体同时烧制和烘焙,以制造出层压体2。

        此后,用镍、铜等电镀外电极8和9。这样形成第一电镀层10和11。然后,用焊料、锡等电镀第一电镀层10和11,从而形成第二电镀层12和13。可以省略在外电极8和9上形成电镀层10~13的步骤,这取决于单片陶瓷电容器1的预期用途。

        如上所述,制造出单片陶瓷电容器1。

        在制备介电陶瓷粉状原料的过程以及其他制造过程中,可能存在Al、Sr、Zr、Fe、Hf、Na、Co、W、Mo、Mn等杂质。这些杂质可能存在于晶粒内部和在晶粒界面上。但是,这些杂质的存在在单片陶瓷电容器的电特性方面不会成为问题。

        优选使用镍或铜作为内电极4和5的材料。在这种情况下,内电极4和5所含组分有可能在制造单片陶瓷电容器1的烧制过程中扩散到介电陶瓷的晶粒中或晶粒界面中。这在单片陶瓷电容器1的电特性方面不是问题。

        下面将描述实验实施例,用于确定本发明的优点。

        实验实施例

        实验实施例1

        在实验实施例1中,使用(Ba0.95Ca0.05)TiO3作为含Ba、Ca和Ti的通式ABO3的主组分。如表1所示,使用BaCO3、CaCO3、TiO2、SiO2、Dy2O3和NiO作为添加剂组分。以样品1为本发明的一个实施例,样品2-1和2-2为比较例,对他们进行评价。

        1、粉状介电陶瓷原料的制备

        (1)样品1

        首先,制备BaCO3、CaCO3和TiO2作为主组分ABO3的原材料,并称出相应重量以便能够制造(Ba0.95Ca0.05)TiO3组合物。随后,用球磨机混合原料72小时,并在1150℃下加热处理。从而制造出(Ba0.95Ca0.05)TiO3。该ABO3主组分的合成度是基于四方晶系晶轴比c/a而算出的。如表1所示,其轴比c/a非常高,即1.0101。平均颗粒大小为0.3μm。

        另一方面,称出用于制造添加剂组分的BaCO3、CaCO3、TiO2、SiO2、Dy2O3和NiO,使各自的摩尔比为1.05∶0.1∶1∶1∶0.05∶0.2。随后,用球磨机混合这些材料,并在1150℃下加热处理。从而获得煅烧的材料。煅烧材料中发生的反应是用XRD(X-射线衍射法)确定的。煅烧材料的平均颗粒大小为0.1μm。

        接着,如表1所示,称出(Ba0.95Ca0.05)TiO3和Ba-Ca-Ti-Si-Dy-Ni-O煅烧材料,使每100摩尔(Ba0.95Ca0.05)TiO3中Ba、Ca、Ti、Si、Dy和Ni的量分别为1.05摩尔、0.1摩尔、1摩尔、1摩尔、0.1摩尔和0.2摩尔。然后,将这些材料在球磨机中混合。从而制造出样品1介电陶瓷的粉状原料。

        (2)样品2-1

        采用和样品1相同的方法制造(Ba0.95Ca0.05)TiO3作为主组分ABO3。

        为了制造添加剂组分,称出BaCO3、CaCO3、TiO2、SiO2、Dy2O3和NiO,以获得和样品1相同的组合物。随后,将这些未煅烧的材料和上述的(Ba0.95Ca0.05)TiO3在球磨机中混合。从而制造出样品2-1介电陶瓷的粉状原料。

        (3)样品2-2

        采用和样品1相同的方法制造(Ba0.95Ca0.05)TiO3作为主组分ABO3,只是BaCO3、CaCO3和TiO2在球磨机中的混合时间为5小时,即混合时间短于样品1。主组分ABO3的合成度是根据晶轴比c/a而算出的。如表1所示,其轴比低,为1.0084。

        随后,采用和样品1相同的方法制造煅烧材料作为添加剂组分。用球磨机将(Ba0.95Ca0.05)TiO3和Ba-Ca-Ti-Si-Dy-Ni-O煅烧材料相互混合。由此制造出样品2-2介电陶瓷的粉状原料。

                                                                 表1  样品号    主组分ABO3    主组分ABO3的    轴比c/a                         添加剂组分    组分R    组分M               其他     1    100(Ba0.95Ca0.05)TiO3    1.0101    煅烧材料1.05Ba-0.1Ca-1.0Ti-1.0Si-0.1Dy-0.2Ni-O    *2-1    100(Ba0.95Ca0.05)TiO3    1.0101    0.05Dy2O3    0.2NiO    1.05BaCO3 0.1CaCO3    1.0TiO2 1.0SiO2    *2-2    100(Ba0.95Ca0.05)TiO3    1.0084    煅烧材料1.05Ba-0.1Ca-1.0Ti-1.0Si-0.1Dy-0.2Ni-O

        2、单片陶瓷电容器的制备

        随后,向样品1、2-1、2-2每个介电陶瓷的粉状原料中加入聚乙烯醇缩丁醛型粘结剂和诸如乙醇的有机溶剂,在球磨机中湿混。从而制造出每个粉状原料的陶瓷淤浆。

        接着,用刮涂法将陶瓷淤浆制成片。片的厚度是这样的:烧制后的介电陶瓷层厚度为1.5μm。这样制造出长方形的陶瓷生片。

        接着,将含有镍为主要组分的导电膏丝网印刷在陶瓷生片上。从而形成导电膏膜,该导电膏膜将成为内电极。

        然后,将包括其上形成了导电膏膜的陶瓷生片在内的多块陶瓷生片层压在一起,使陶瓷生片导电膏膜暴露的那一侧在对边上交替排列。从而制造出生层压体。

        随后,在氮气环境中,在300℃下加热生层压体,以燃烧除去粘结剂。其后,在含H2-N2-H2O气、氧气分压为10-10MPa的还原环境中,在1200℃烧制层压体2小时。从而制造出煅烧的层压体。

        接着,在层压体的两个端面上都涂上含B2O3-Li2O-SiO2-BaO型玻璃粉和作为导电组分的铜的导电膏,并在氮气气氛下于800℃烘焙。这样,形成和内电极电连接的外电极。

        所得单片陶瓷的外部尺寸为:宽1.2mm,长2.0mm,厚1.0mm。插在内电极之间的介电陶瓷层厚度为1.5μm。有效介电陶瓷层数为100。每层的电极相对面积为1.4mm2。

        3、介电陶瓷组成分析

        用TEM-EDX法(透射电子显微镜-能量分散X-射线分析)对样品1及样品2-1和2-2的单片陶瓷电容器中组成介电陶瓷层的介电陶瓷组成进行分析。

        更具体而言,对晶粒内部进行平面-组成-分析。晶粒界面以外的区域是作为晶粒内部进行图象分析的。分析20个晶粒,用于确定其组成。

        分析晶粒界面(包括三重点)。当存在作为确定相的晶粒界面时,在探针直径2nm处对晶粒界面相进行分析。对于不存在作为确定相的晶粒界面,晶粒之间在探针直径2nm处进行分析的分析点是晶粒界面的分析点。

        在晶粒界面分析点处进行组成分析。在这种情况下,两个晶粒之间晶粒界面和三个晶粒间晶粒界面(三重点)的组成分析是分别在20个随机选择的分析点和10个随机挑选的分析点上进行的。

                                                      表2  样品号  ABO3占有率大于等于90%的    晶粒数的比例    其他晶粒的状态晶粒界面中存在的Ba、Ca、Ti、Si、    Dy和Ni的比例     1    90%    剩余10%    晶粒中ABO3占有率为80%    93%    *2-1    15%    剩余85%    晶粒中ABO3占有率小于等于65%    33%    *2-2    20%    剩余80%    晶粒中ABO3占有率小于等于75%    47%

        表2显示了组分分析的结果。

        表2中,表述“ABO3占有率大于等于90%的晶粒的数量比例”指的是每个晶粒中添加剂组分都没有被固体-溶解,且主组分ABO3存在于晶粒横截面90%或90%以上的区域中的晶粒的数量百分比。例如,表2中样品1的比例数值为90%。具体而言,20个被分析的晶粒中有18%的晶粒的添加剂组分没有固体-溶解,而且主组分ABO3存在于其横截面90%或90%以上的区域中。

        表2中,表述“其他晶粒的状态”指的是除上述每个晶粒中ABO3占有率大于等于90%的晶粒以外的其他晶粒的状态。例如,样品1中的表述“剩余10%”指的是除占有率大于等于90%的晶粒以外的其他晶粒的数量百分比大于等于10%。表述“晶粒中ABO3占有率为80%”是指晶粒内部被ABO3占据的横截面的百分比大于等于80%。

        此外,表2中表述“晶粒界面中存在的Ba、Ca、Ti、Si、Dy和Ni的比例”是指可以检测到Ba、Ca、Ti、Si、Dy和Ni的晶粒界面点的数量百分比。例如样品1中,在所有晶粒界面分析点中,检测到Ba、Ca、Ti、Si、Dy和Ni的分析点占93%。

        图2显示了本发明实施方案之一的样品1的晶粒组成分析结果,其是用TEM-EDX方法测量的。如图2所见,样品1中90%的晶粒中至少90%的横截面中Si、Dy和Ni的浓度小于检测下限(TEM分析的检测限是0.5摩尔百分比)。基本上只能检测到Ba、Ca和Ti。

        图3显示了TEM-EDX法测得的样品1晶粒界面组成分析结果。如图3可见,在晶粒界面中检测到Ba、Ca、Ti、Si、Dy和Ni。

        另一方面,在作为比较例的样品2-1和2-2中,介电陶瓷所含的每个晶粒都具有所谓的包含壳相和核相的核-壳结构,其中壳相中Dy和Ni被部分固体-溶解于(Ba0.95Ca0.05)TiO3中,而核相中没有添加剂组分被固体-溶解在(Ba0.95Ca0.05)TiO3中。

        4、电特性的测量

        此外,对于用如上所述制造出的样品1及样品2-1和2-2制成的单片陶瓷电容器,测定其电特性。

        在温度25℃、1kHz和0.5Vrms的条件下测量每个单片陶瓷电容器在室温下的介电常数ξ和介质损耗角正切(tanδ)。

        首先,测定静电容随温度变化的比例。静电容随温度的变化率是通过在-25℃和85℃下相对于20℃时静电容的变化率(ΔC/C20)而算出的。这些变化率是JIS(日本工业标准)所规定的特性B。此外,对-55℃和125℃下相对于25℃时静电容的变化率(ΔC/C25)进行评估。这些变化率是EIA(电子工业协会)标准规定的特性X7R。

        而且还进行高温负荷使用寿命测试。在高温负荷使用寿命测试中,在125℃下施加15V电压使电场强度为10kV/mm。在施加15V电压期间测量绝缘电阻随时间的变化情况。在1000小时以前绝缘电阻达到200kΩ的样品被认为是不合格样品。测定每100个样品中不合格样品的比例(不合格率)。

                                                              表3  样品号  介电常数  tan δ(%)   温度特性(ΔC/C20)(%)  温度特性(ΔC/C25)(%)高温负荷使用寿命(不合格率)    1000小时    -25℃    85℃    -55℃    125℃    1    3380    7.2    -4.6    -8.5    -7.6    -11.7    0/100    *2-1    2461    6.3    -8.1    -12.1    -11.1    -17.3    47/100    *2-2    2352    5.4    -6.9    -10.7    -9.8    -16.2    42/100

        表3显示了上述介电常数ξ、tanδ、温度特性(ΔC/C20和ΔC/C25)和不合格率的测量结果。

        如表2所示,样品1中每个晶粒中占有率约90%或更高的晶粒比例大于约85%,晶粒界面中存在的Ba、Ca、Ti、Si、Dy和Ni的比例大于等于85%。如表3所见,尽管样品1所含介电陶瓷层只有非常小的1.5μm厚度,但是可靠性和电容-温度特性优良,而且介电陶瓷具有高介电常数。

        另一方面,不满足上述要求的样品2-1和2-2与样品1相比,其介电常数小,且电容-温度特性变化率大,可靠性低。

        实验实施例2

        在实验实施例2中确定本发明介电陶瓷中Ca和Ti含量的优选范围。通过改变主组分原料中的Ca和Ti的数量比例,即Ca/Ti比,和改变添加剂组分原料中Ca和Ti的数量比例,即Ca/Ti比,可以很容易地控制Cag/Tig和Cab/Tib的比例,其中Cag和Tig代表晶粒中Ca和Ti的数量,而Cab和Tib代表晶粒界面(包括三重点)中Ca和Ti的数量。

        实验实施例2的表4与实验实施例1的表1相对应。表4显示了实验实施例2制备的样品中主组分ABO3的组成和晶轴比c/a,以及所形成的作为添加剂组分的煅烧材料的组成。

                                                                   表4样品号    主组分ABO3主组分ABO3的晶轴比c/a                               添加剂组分                               (煅烧材料)    3    100(Ba0.95Ca0.05)TiO3    1.0102    1.1Ba-0.2Ca-1.0Ti-1.4Si-1.0Dy-1.0Mn-0.5Ni-0.5Mg-O    4    100(Ba0.90Ca0.10)TiO3    1.0101    1.05Ba-0.1Ca-0.8Ti-0.8Si-1.2Er-1.0Mn-O    5    100(Ba0.90Ca0.10)(Ti0.995Zr0.005)O3    1.0097    0.95Ba-0.15Ca-1.0Ti-1.2Si-1.2Er-1.0Co-0.5Cr-O    6    100(Ba0.97Ca0.03)(Ti0.985Zr0.005H0.01)O3    1.0098    1.1Ba-0.25Ca-0.8Ti-1.0Si-0.5Y-0.5Ho-0.8Mg-O    7    100(Ba0.97Ca0.03)(Ti0.99Zr0.01)O3    1.0092    1.0Ba-0.05Ca-1.0Ti-1.4Si-0.8Y-0.3Tm-1.0Mg-0.2Fe-O    8    100(Ba0.95Ca0.05)(Ti0.995H0.005)O3    1.0097    1.05Ba-0.05Ca-1.5Ti-1.0Si-0.5Sm-0.5Ho-0.8Mn-0.4Fe-O    9    100(Ba0.90Ca0.08Sr0.02)O3    1.0098    0.95Ba-0.1Ca-2.0Ti-0.8Si-1.2Yb-0.5Cu-0.3Mn-0.2Ni-O    10    100(Ba0.90Ca0.08Sr0.02)(Ti0.99Zr0.01)O3    1.0090    1.1Ba-0.1Ca-1.5Ti-0.5Si-1.0Y-0.4Yb-0.5Mn-0.5Al-O

        采用和实验实施例1相似的方式,用表4所示的各个样品来制备单片陶瓷电容器。类似于实验实施例1,对电特性进行评估。表5显示了电特性的评估结果。至于高温负荷使用寿命测试,类似于实验实施例1进行1000小时使用寿命测试,此外,还进行2000小时测试。

        表5还显示了制造出的单片陶瓷电容器中组成介电陶瓷层的介电陶瓷所含晶粒中的Cag/Tig比例和介电陶瓷所含晶粒界面中的Cab/Tib比例。

                                                                   表5样品号  Cag/Tig  比例  Cab/Tib  比例介电常数tanδ(%)      温度特性    (ΔC/C20)(%)           温度特性         (ΔC/C25)(%)   高温负荷使用寿命      (不合格率)    -25℃    85℃    -55℃    125℃    1000小时    2000小时    3    0.052    0.179    3275    6.3    -3.0    -8.0    -5.2    -11.0    0/100    0/100    4    0.099    0.121    2886    8.4    -2.4    -7.5    -4.7    -10.2    0/100    0/100    5    0.100    0.144    2892    8.1    -2.3    -7.4    -4.8    -10.3    0/100    0/100    6    0.041    0.311    3420    5.1    -2.1    -7.8    -5.7    -12.2    0/100    0/100    7    0.029    0.052    3624    5.3    -3.8    -9.5    -6.2    -14.1    0/100    0/100    8    0.053    0.034    3423    6.4    -3.2    -8.7    -5.8    -11.8    0/100    9/100    9    0.084    0.046    3108    7.9    -2.9    -8.3    -5.5    -11.7    0/100    34/100    10    0.090    0.068    3055    7.9    -2.6    -8.0    -5.1    -11.3    0/100    16/100

        如表5所示,通过使用Ca/Ti比例高于主组分原料中Ca/Ti比例的添加剂组分原料(如表4所示),使样品3~7中Cab/Tib比例大于Cag/Tig比例。另一方面,通过使用Ca/Ti比例高于添加剂组分原料中Ca/Ti比例的主组分原料,使样品8~10中Cab/Tib比例小于Cag/Tig比例。

        如表5所示,样品3~10显示出优良的电特性。特别是在2000小时高温负荷使用寿命(不合格率)方面,样品3~7,其Cab/Tib比例分别大于Cag/Tig比例,分别表现出比Cab/Tib比例小于Cag/Tig比例的样品8~10更高的可靠性。

        实验实施例3

        实验实施例3用于评估介电陶瓷所含晶粒中Ca浓度的优选范围。

        表6对应于实验实施例1的表1。表6显示了实验实施例3制备的样品中主组分ABO3的组成和晶轴比c/a,以及所形成的作为添加剂组分的煅烧材料的组成。

                                                                      表6样品号                主组分ABO3  主组分ABO3  的晶轴比c/a                          添加剂组分                         (煅烧材料)   *11    100BaTiO3    1.0099    1.1Ba-0.2Ca-1.0Ti-1.4Si-1.0Dy-1.0Mn-0.5Ni-0.5Mg-O    12    100(Ba0.99Ca0.01)TiO3    1.0102    1.1Ba-0.2Ca-1.0Ti-1.4Si-1.0Dy-1.0Mn-0.5Ni-0.5Mg-O    13    100(Ba0.89Ca0.10Sr0.01)TiO3    1.0097    1.0Ba-0.1Ca-1.2Ti-1.2Si-1.0Dy-1.0Mn-0.5Ni-0.5Mg-O    14    100(Ba0.80Ca0.20)(Ti0.995Hf0.005)O3    1.0095    1.0Ba-0.1Ca-1.2Ti-1.2Si-1.0Dy-1.0Mn-0.5Ni-0.5Mg-O    15    100(Ba0.79Ca0.21)TiO3    1.0094    1.0Ba-0.2Ca-1.0Ti-1.4Si-1.0Dy-1.0Mn-0.5Ni-0.5Mg-O

        如表6所示,制备Ca取代量不同的粉状介电陶瓷原料,即所含主组分中取代主组分ABO3中A位置的Ca数量不同。采用和实验实施例1相同的方法制备单片陶瓷电容器。为了制造单片陶瓷电容器,类似于实验实施例2进行电特性评估。表7显示了评估结果。

                                                                 表7样品号介电常数tanδ(%)  温度特性(ΔC/C20)(%)  温度特性(ΔC/C25)(%)  高温负荷使用寿命(不合格率)    -25℃    85℃    -55℃    125℃    1000小时    2000小时   *11    2314    1    -9.8    -2.2    -16.3    -20.4    0/100    0/100    12    3290    3.5    -2.8    -9.2    -6.8    -14.3    0/100    0/100    13    3208    6.6    -2.4    -4.3    -4.2    -7.2    0/100    0/100    14    2987    8.5    -0.9    -3.1    -2.0    -2.8    0/100    0/100    15    2686    9.1    -0.8    -2.9    -1.2    -3.1    7/100    33/100

        如表6所示,样品11中没有向主组分ABO3中加入Ca,结果如表7所示,样品11与其他样品12~15相比,介电常数低且电容-温度特性次。

        如表6所示,样品12~15中其主组分ABO3中加入了Ca。结果如表7所示,样品12~15显示出优良的电特性。

        将样品12~15相互比较。样品12~14中,主组分ABO3的Ca浓度为约1~20摩尔百分比。样品15中Ca浓度为21摩尔%,即超过约20摩尔%。结果是Ca浓度约1~20摩尔%的样品12~14与Ca浓度偏离1~20摩尔%范围的样品15相比,样品12~14表现出更高的介电常数,且在高温负荷使用寿命测试中表现出更高的可靠性(不合格率低)。

        实验实施例4

        实验实施例4用于估计每100摩尔主组分ABO3的添加剂组分原料R(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y中的至少一种)添加量的优选范围,以及每100摩尔主组分ABO3的添加剂组分原料M(Mn、Ni、Cu、Fe、Cr、Cu、Mg、Al、V、Mo和W中的至少一种)添加量的优选范围。

        表8对应于实验实施例1的表1,显示了实验实施例4制备的样品中主组分ABO3的组成和晶轴比c/a,以及所形成的作为添加剂组分的煅烧材料的组成。此外,在“添加剂组分(煅烧材料)”每一栏的下部分中显示了上述组分R和M的摩尔比例浓度,该浓度是以100摩尔主组分为基础,按上述组分R和M的基本元素计算出来的。

                                                                         表8样品号              主组分ABO3 主组分ABO3 的晶轴比c/a            添加剂组分(煅烧材料)    组分R(摩尔)    组分M(摩尔)   *19    100(Ba0.90Ca0.10)TiO3    1.0098    0.95Ba-0.1Ca-0.8Ti-1.4Si-0.6Mn-0.2Ni-0.2Mg-0.1V-O    0    1.1    20    100(Ba0.90Ca0.10)TiO3    1.0098    0.95Ba-0.1Ca-0.8Ti-1.4Si-0.04Yb-0.02La-0.02Gd-0.6Mn-0.2Ni-0.5V-0.2Al-O    0.08    1.3    21    100(Ba0.93Ca0.05Sr0.02)TiO3    1.0096    0.95Ba-0.1Ca-0.8Ti-1.4Si-0.4Dy-0.2Sm-0.2Ho-0.5Mg-0.3Cr-O    0.8    0.8    22    100(Ba0.90Ca0.04Sr0.01)TiO3    1.0093    0.95Ba-0.1Ca-0.8Ti-1.4Si-0.6Dy-0.3Eu-0.3Er-0.6Mn-0.5Ni-0.5Cr-O    1.2    1.6    23    100(Ba0.90Ca0.10)TiO3    1.0101    0.95Ba-0.1Ca-1.2Ti-1.8Si-1.0Dy-0.5Ce-0.2Tm-1.0Mn-0.5Ni-0.5Mg-O    1.7    2   *24    100(Ba0.97Ca0.03)(Ti0.995Zr0.005)    O3    1.0096    1.0Ba-0.1Ca-1.2Ti-1.8Si-0.5Sm-0.5Ho-O    1    0    25    100(Ba0.97Ca0.03)(Ti0.995Zr0.005)    O3    1.0097    1.0Ba-0.1Ca-1.2Ti-1.8Si-0.5Sm-0.5Ho-0.2Pr-0.06Mn-0.02Mo-0.02W-O    1.2    0.12    26    100(Ba0.97Ca0.02Sr0.01)TiO3    1.0094    1.0Ba-0.1Ca-1.2Ti-1.8Si-0.5Yb-0.5Ce-0.5Tb-0.4Mn-0.2Mg-0.2Cu-O    1.5    0.8    27    100(Ba0.97Ca0.03)(Ti0.99Hf0.01)O    3    1.0097    1.0Ba-0.1Ca-1.2Ti-1.8Si-0.4Y-0.3Nd-0.1Lu-1.0Mn-0.6Co-0.4Fe-O    0.8    2    28    100(Ba0.96Ca0.03Sr0.01)TiO3    1.0098    1.0Ba-0.1Ca-1.2Ti-1.8Si-0.5Y-0.4Gd-0.2Eu-1.0Mn-0.5Ni-0.5Fe-0.2Al-O    1.1    2.2

        如表8所见,样品19~23中添加剂组分所含的组分R数量是随着样品序号的增加而增加的。此外,样品24~28添加剂组分中组分M的添加量是随着样品序号的增加而增加的。

        表9显示单片陶瓷电容器的电特性,这些电容器是采用和实验实施例1相同的方法,用具有表8所示组成的介电陶瓷原料粉制造出来的。表9所示的电特性项是采用和实验实施例2相同的方法进行评估的。

                                                                 表9样品号介电常数tanδ(%)  温度特性(ΔC/C20)(%) 温度特性(ΔC/C25)(%)  高温负荷使用寿命(不合格率)    -25℃    85℃    -55℃    125℃     1000小时    2000小时   *19    3598    8.5    -2.4    -0.1    -5.3    -19.6     43/100    98/100    20    3221    8.7    -2.4    -7.7    -4.2    -10.1     0/100    0/100    21    3162    6.8    -2.5    -7.6    -4.9    -10.4     0/100    0/100    22    3145    7.1    -3.1    -9.0    -4.8    -12.2     0/100    0/100    23    2686    5.3    -2.7    -9.2    -4.8    -12.5     0/100    0/100   *24    3562    8.1    -2.9    -1.2    -5.3    -18.0     73/100    100/100    25    3485    5.7    -3.2    -8.2    -5.1    -11.7     0/100    0/100    26    3420    5.6    -3.5    -8.2    -4.9    -12.1     0/100    0/100    27    3212    5.8    -2.8    -9.4    -5.0    -13.8     0/100    0/100    28    2640    5.5    -3.3    -9.5    -5.2    -14.1     0/100    0/100

        相互比较样品19~23。首先,样品19中添加剂组分中不加入组分R。因此,如表9所见,样品19与其他样品相比,如高温负荷使用寿命测试所评估出的,表现出低可靠性,而且电容-温度特性(ΔC/C25)次。另一方面,如高温负荷使用寿命测试所评估出的,样品20~23表现出高可靠性,并且在温度特性方面有优良的评估结果。

        样品20~23间相互比较。样品20~22中,组分R的浓度满足每100摩尔主组分的组分R浓度应当在约0.05~1.5摩尔范围内的要求。与组分R浓度超过约1.5摩尔的样品23相比,样品20~22表现出更高的介电常数和更优良的温度特性。

        相互比较样品24~28。样品24中添加剂组分中不加入组分M。因此,样品24不能保证有绝缘性。此外,高温负荷使用寿命测试所评估出的可靠性低。而且与其他样品相比,温度特性(ΔC/C25)差。另一方面,样品25~28在高温负荷使用寿命测试和温度特性测试中表现出更优良的结果。

        样品25~28间相互比较。样品25~27中,添加剂组分的组分M浓度为每100摩尔主组分约0.1~2摩尔,与组分M浓度超过约2摩尔的样品28相比,样品25~27表现出更高的介电常数和更优良的温度特性。

    关 键  词:
    陶瓷 制造 方法 以及 单片 电容器
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:介电陶瓷,制造该介电陶瓷的方法,以及单片陶瓷电容器.pdf
    链接地址:https://www.zhuanlichaxun.net/p-367230.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1