通信装置中制抑回音之桥式电路 【技术领域】
本发明系有关于根据申请专利范围第一项前言之通信装置中制抑回音之桥式电路。
背景技术
在伴随一双线线路的双工模式中,信号系于两个方向中同时传输自及传输至一通信装置,举例而言,一xDSL调制解调器。然而为了可以更进一步的加工处理,输入及输出之信号必须在两线路终点分开成为其个别的传输方向,因此,会从双线传输变成四线传输之转换,反之亦然,举例而言,由一混成电路(hybrid circuit)所执行者。
图3系概略式地显示如此之一排列。传输及接收信号c系一起于一双线线路4上传输自及传输至该线路4之一远程终点5,而在接近该线路终点之位置,一混合电路6执行从双线传输变成四线传输之转换。而传输信号a则在一传输器装置之一连接点1处供给至该混合电路,该接收信号b则在一接收器装置之一连接点2处分接或拾取。
在此所产生的问题是,该传输信号a会被反射成为该接收信号b中之一回音d,而根据该线路之形式,此回音之信号功率可远超过该接收信号之信号功率。混成电路及/或滤波器则被设计成尽可能地制抑此回音。
一已知回音制抑之可能性系为使用被动或主动之滤波器。此类之回音制抑具有滤波器可有独立于传输线之尺寸的优点。然而根据所使用之传输系统,这些滤波器可能非常复杂而因此在价钱上很昂贵,再者,一个更进一步的缺点是,该滤波器必须因此适应因系统而不同之传输及接收频带,而其,举例而言,可能只是对整合式解决方式的一受限范围。
另一个解决方法则是仿真回音路径并消除该回音及藉由仿真所获得之一信号的意图,这个方法通常即为回音消除(EchoCancellation)。此等之例子即为所谓的平衡滤波器(balancingfilter)或二级DAC(数字模拟转换器,digital-analog converter)。此方法之优点是,所使用之频带有较佳之独立性。
两个解决方法以其线性及噪音贡献度的观点来看,都可以被设计成相对而言简单地程序化,但在整个系统中相当关键之组件,其原因是,回音制抑一开始发生在相对应之接收器或半导体模块,而在此制抑之后,则需要大量的放大以利用出现在如此之电路之接收信号路径中之模拟数字转换器(ADC)的最大信号位准。
回音消除的另一个可能性则为有抵抗性或复杂的终端组或桥式电路,这些电路系经尺寸设计,因此其尽可能的仿真线路型态之一特定区域,因为有各式各样可能的线路特质,其必须在尺寸上妥协,因此并无法对每一种线路型态都获得良好的回音制抑。
图4系显示以一桥式电路形式呈现之简单混成电路的基本结构。一结合传输及接收信号c系经由传输器7而被传输至该桥式电路,传输信号a则经由一连接点1而供给至一传输装置,接收信号b系经由一接收器装置之一连接点2而分接。一阻抗Z1可代表,举例而言,包含该桥式电路之一通讯装置的负载,一阻抗Z2可相符合于在该传输器7中之线圈,并作为对该相对应传输距离或线路之线阻抗的考虑。阻抗Z1及Z2系为该桥式电路之一第一桥式分支之构件,而形成自阻抗Z3及Z4之一第二桥式分支则用以仿真Z1及Z2所形成之路径,因此而平衡该桥式电路。若如下之方程式1可被满足时,则该回音可被最小化:
Z1Z2=Z3Z4---(1)]]>
于该线路上之该传输信号之传输功能并不受调整所影响,在此不被进一步考虑。
在这些电路中,所产生之问题是,虽然通常当该第二桥式分支被设计成具有高阻抗时,信号功率仅总计为部分之传输功率,但一般在该第二桥式分支的信号位准非常高时,如此之电路无法于一集成电路中实行。
【发明内容】
本发明之目的因此为做出一混成电路,其呈现桥式电路形式,能在一特定范围内程序化,并至少部分以一集成电路之形式可以实行。
根据本发明,此一目的可根据申请专利范围第一项所述之桥式电路之特征而加以实现,而附属项则定义本发明较佳或较具优势之实施例。
根据本发明,为了平衡该桥式电路,一可变之仿真装置系提供以仿真至少一桥式分支或电路区段之至少一桥式分支,该桥式电路因此不被平衡,或是不仅藉该桥式电路之该桥式分支其中之一中阻抗之改变而不被平衡,更藉由适应该仿真装置或该已仿真之桥式分支或由其所实行之该桥式电路之电路区段而不被平衡。
特别的是,此仿真装置可被设计并连接至至少一桥式分支,因此于其中系呈现较至少一桥式分支中为低之信号位准,所以,该仿真装置可以设计成可程序化并以一集成电路之形式。
通常较已仿真之桥式分支或已仿真之电路区段之阻抗为高之此仿真装置可与呈现于至少一桥式分支内之一阻抗并联连接,该桥式电路通常亦包含藉由耦接至该相关传输线之一传输器之线圈,以及该传输区段之一线阻抗或藉包含该桥式电路之一通信装置中所呈现之负载所形成之阻抗。
本发明较佳者系适合使用于一xDSL传输系统,举例而言,VDSL或ADSL传输系统,然而却不需要限制于应用之此较佳区域。
【附图说明】
本发明现在将伴随所附之图式做为参考而于之后被更详细地叙述:
图1:其系显示根据本发明之一桥式电路的实施例;
图2:其系显示根据本发明之一桥式电路的一第二实施例;
图3:其系显示一双线/四线转换器之示意图;以及
图4:其系显示根据所述之习知技术之一桥式电路。
【具体实施方式】
在如图1所示根据本发明之桥式电路中,一结合之传输及接收信号c系经由一传输区段及一传输器7之一连接点3而与一桥式电路耦接,而经由一连接点1供给此桥式电路者系为一传输装置之一传输信号a,并且,一接收信号b则在一连接点2分接一接收器装置。
该桥式电路包含由阻抗Z1及阻抗Z2所形成之一第一桥式分支及一第二桥式分支,其中该阻抗Z1,举例而言,代表包含该桥式电路之一通信装置之负载或作为功率适应,而该阻抗Z2则表示传输线之阻抗,以及于所示实施例中,则为藉由该传输器7之线圈所实行者。此第二桥式分支包括阻抗Z3、Z4及Z5。一可变或可调整之仿真装置8系与该阻抗Z5并联连接,该接收器装置之该连接点2之一极(pole)系于该仿真装置8处分接,此连接点2之另一极则分接于该阻抗Z1及Z2之间。仿真阻抗Z5之该仿真装置,系如平衡常数k所示,可被修饰,因此回音被最小化,此乃是方程式2:
Z1Z2=Z3+k·Z5Z4+(1-k)·Z5---(2)]]>
被满足时之例子,其中k位于靠近的间隔0与1之间,而该平衡常数k可经由一适当之演算式而决定,举例而言,可使用作为该回音信号位准之测量的一输入的演算式。
在与之前所解释之习知技术之状态,如图4所示,的比较中,藉由导入阻抗Z5,信号位准之减少可于该仿真装置8中达成,而由于此形式之桥式电路,则现在有可能设计成使一可程序化阻抗数组亦能以整合形式实行且具有如此高阻抗之仿真装置。因此,举例而言,在VDSL传输系统的例子中,该仿真装置之电阻可介于1kΩ至4kΩ之间,反之,所仿真之部分桥式分支的电阻仅20Ω,举例而言。
此一实施例构成了适应不同负载或线阻抗(在本实施例中,如Z1或Z2所示)、于仿真路径Z3至Z5中之低信号功率、及输入信号之具最小噪音的输入路径三者间之一良好妥协方案。
根据本发明之更进一步实施例系如图2所示,此原则上显示了双倍之图1所示之该桥式电路。
如前所示之同样方式,一传输及接收信号c系经由一传输线之一连接点3及经由一传输器7而与一双桥式电路排列耦接,如图1所示,供给至此双桥式电路者乃是经由一传输器装置之一连接点1地一传输讯号,以及一接收信号则在一接收器装置之一连接点2处分接。
该双桥式电路排列之一第一桥式电路之一第一桥式分支系由一阻抗Z11及一阻抗Z2所形成,此第一桥式电路之一第二桥式分支系由阻抗Z31、Z41及Z51所形成,相似地,该双桥式电路排列之一第二桥式电路之一第一桥式分支系由一阻抗Z12及一阻抗Z2所形成,此第二桥式电路之一第二桥式分支系由阻抗Z32、Z42及Z52所形成。
阻抗Z11或Z12,举例而言,可以以相同于图3中所示阻抗Z1之方式而代表包含一桥式电路之一通信装置上的负载,阻抗2代表该传输器之一线圈之阻抗加上根据转换率所变换之传输线之线阻抗,一可变之仿真装置8相应地分接于阻抗Z51及Z52,在此实施例中,接收器装置之连接点2的两个极皆分接于仿真装置8。仿真阻抗Z51及Z52之该仿真装置8,如平衡常数k所示,可被适应,因此该回音可最小化。在此例子中,平衡常数k系为二维k=(k1,k2),其中k1指提供以平衡该第一桥式电路之二维平衡常数之部分,以及k2系指提供以平衡第二桥式电路k之部分,并且k1、k2两者皆落在接近之间隔0至1之间。当相对应于方程式2之方程式3.1及3.2被满足时,该回音可被理想地制抑。
Z11Z2=Z31+k1·Z51Z41+(1-k1)·Z51---(3.1)]]>
Z12Z2=Z32+k2·Z52Z42+(1-k2)·Z52---(3.2)]]>
再次,藉由导入阻抗Z51及Z52,信号位准之减少可以于该仿真装置8中达成,该仿真装置因此可以以一积体及可程序化电路的方式实行,该平衡常数k可藉由雨前所述图1中实施例相似之方式而加以决定。