书签 分享 收藏 举报 版权申诉 / 13

收容容器、收容容器的制造方法、半导体的制造方法以及半导体制造装置.pdf

  • 上传人:b***
  • 文档编号:24284
  • 上传时间:2018-01-12
  • 格式:PDF
  • 页数:13
  • 大小:849.52KB
  • 摘要
    申请专利号:

    CN201380059730.2

    申请日:

    2013.11.15

    公开号:

    CN104854678A

    公开日:

    2015.08.19

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效IPC(主分类):H01L 21/265申请日:20131115|||公开

    IPC分类号:

    H01L21/265; C30B29/36; C30B33/12; H01L21/02; H01L21/20; H01L21/302

    主分类号:

    H01L21/265

    申请人:

    东洋炭素株式会社

    发明人:

    鸟见聪; 矢吹纪人; 野上晓

    地址:

    日本大阪府

    优先权:

    2012-252754 2012.11.16 JP

    专利代理机构:

    北京尚诚知识产权代理有限公司11322

    代理人:

    龙淳; 谢弘

    PDF完整版下载: PDF下载
    内容摘要

    本发明提供一种Si不会落到单晶SiC基板上,且能使其内部空间内的Si的压力分布均匀的收容容器。该收容容器收容藉由Si的蒸汽压力下的加热处理而被蚀刻的单晶SiC基板。该收容容器由钽金属构成,且在其内部空间側设置有碳化钽层,该碳化钽层的更靠内部空间側设置有硅化钽层。硅化钽层向内部空间提供Si。此外,硅化钽层不同于固着的Si,不会熔化落下。

    权利要求书

    1.  一种收容容器,用于收容藉由Si的蒸汽压力下的加热处理而被蚀刻的单晶SiC基板,其特征在于:
    上述收容容器由钽金属构成,且在其内部空间側设置有碳化钽层,该碳化钽层的更靠内部空间側设置有硅化钽层。

    2.
      如权利要求1所述的收容容器,其特征在于:
    在被收容的上述单晶SiC基板的至少上方的壁面上,设置有上述硅化钽层。

    3.
      如权利要求1所述的收容容器,其特征在于:
    形成其内部空间的壁面的整体上,均设置有上述硅化钽层。

    4.
      如权利要求1所述的收容容器,其特征在于:
    该收容容器被用于,在将注入离子后的上述单晶SiC基板的表面的离子注入不足部分去除的蚀刻工序中收容上述单晶SiC基板。

    5.
      如权利要求1所述的收容容器,其特征在于:
    该收容容器被用于,在对形成外延层之前的上述单晶SiC基板进行的蚀刻工序中收容上述单晶SiC基板。

    6.
      如权利要求1所述的收容容器,其特征在于:
    上述硅化钽层的厚度被设定为,1μm到300μm。

    7.
      如权利要求1所述的收容容器,其特征在于:
    上述硅化钽层由TaSi2构成。

    8.
      一种收容容器的制造方法,该收容容器用于收容藉由Si的蒸汽压 力下的加热处理而被蚀刻的单晶SiC基板,其特征在于,包括:
    在使构成收容容器的一部分的碳化钽层接触熔化后的Si的状态下进行加热而形成硅化钽层的工序。

    9.
      一种半导体的制造方法,其特征在于:
    使用权利要求1所述的收容容器,藉由在Si蒸汽压力下的加热处理而进行蚀刻。

    10.
      一种半导体制造装置,其特征在于:
    具有权利要求1所述的收容容器。

    说明书

    收容容器、收容容器的制造方法、半导体的制造方法以及半导体制造装置
    技术领域
    本发明主要涉及对单晶SiC基板的表面进行蚀刻时收容该单晶SiC基板的收容容器。
    背景技术
    与Si(硅)等相比,SiC(碳化硅)具有优异的耐热性和机械强度,故而作为新的半导体材料而受到瞩目。然而,单晶SiC基板的表面最初可能存在结晶缺陷等。
    专利文献1公开了对该单晶SiC基板的表面进行平坦加工(修复)的表面平坦加工方法。该表面平坦加工方法是,藉由在被收容容器所收容的单晶SiC基板上形成碳化层以及牺牲生长层,并对该牺牲生长层进行蚀刻而使表面平坦。由此,能够生产外延生长用的高质量晶种基板。
    此外,在形成牺牲生长层时等,有必要进行Si蒸汽压力下的加热处理。专利文献1中,为了形成Si蒸汽压力而采用了图6所示的收容容器。如图6所示,收容单晶SiC基板94的收容容器90具有能够相互嵌合的上容器91和下容器92。上容器91和下容器92中,构成其内部空间部分的壁面上,固着有Si93。基于该结构,加热处理时Si93蒸发,能够在收容容器90的内部空间内形成Si蒸汽压力。
    一般情况下,对如上所述生产的晶种进行外延生长、离子注入以及离子激活等处理。
    专利文献2公开了一种藉由在单晶SiC基板的表面形成碳层(石墨盖)之后进行上述离子激活,而抑制离子激活时的Si和SiC的升华的方法。其后,该方法为了去除碳层,并去除离子注入不足部分,而在Si蒸汽压力下对单晶SiC基板的表面进行蚀刻。此外,专利文献2公开了为了形成Si蒸汽压力,而在收容容器中配置Si颗粒的方法。
    现有技术文献
    【专利文献1】:日本特开2008-230944号公报
    【专利文献2】:日本特开2011-233780号公报
    发明内容
    发明所要解决的课题
    然而,如用专利文献1的方式,将Si固着在内部空间的壁面上,则加热处理时该Si有时会熔化。尤其是,如内部空间的上方的壁面上固着的Si熔化,则Si会落到单晶SiC基板上。而如不将Si固着在内部空间的上方的壁面上,则Si的压力分布会不均匀,从而无法恰当地进行加热处理。
    此外,专利文献2是在收容容器的内部配置Si颗粒,但该方法也会使Si的压力分布不均匀,不能恰当进行加热处理。因而,专利文献1以及专利文献2中,不能均匀地进行蚀刻。
    此外,专利文献2中,需要形成碳层的工序以及去除碳层的工序,因而工序繁琐。
    本发明是鉴于上述情况而做出的发明,其主要目的在于,提供一种Si不会落到单晶SiC基板上,且能使其内部空间内的Si的压力分布均匀的收容容器。
    用于解决课题的技术手段和效果
    本发明所要解决的课题如上所述,以下对用于解决该课题的技术手段和其效果进行说明。
    根据本发明的第1观点,对用于收容藉由Si的蒸汽压力下的加热处理而被蚀刻的单晶SiC基板的收容容器,提供以下结构。即,该收容容器由钽金属构成,且在内部空间側设置有碳化钽层,该碳化钽层的更靠内部空间側设置有硅化钽层。
    如以往一样将Si固着在收容容器内面上来进行Si的供给的结构会因Si熔化而对单晶SiC基板产生不良影响,但是,以本申请的方式,利用硅化钽层来在内部空间进行Si的供给,便能防止不良影响。
    上述收容容器中,优选的是,被收容的上述单晶SiC基板的至少上方 的壁面上,设置有上述硅化钽层。
    由此,能够防止熔化后的Si落到单晶SiC基板上,同时能够形成Si蒸汽压力。
    上述收容容器中,优选的是,形成内部空间的壁面的整体上,均设置有上述硅化钽层。
    由此,能使内部空间内的Si的压力均匀,所以能够均匀地进行蚀刻。
    优选的是,上述收容容器被用于,在将注入离子后的上述单晶SiC基板的表面的离子注入不足部分去除的蚀刻工序中收容上述单晶SiC基板。
    由此,在去除离子注入不足部分的蚀刻工程中,上述功效能够得到发挥。另外,藉由使内部空间的Si的压力均匀,能够抑制单晶SiC基板的碳化,所以,不用形成碳化层(石墨盖)便能进行离子激活处理。
    优选的是,上述收容容器被用于,在对形成外延层之前的上述单晶SiC基板进行的蚀刻工序中收容上述单晶SiC基板。
    由此,在外延层形成前的蚀刻中,能够使上述功效得到发挥。
    上述收容容器中,优选的是,上述硅化钽层的厚度被设定为,1μm到300μm。
    藉由设置上述厚度的硅化钽层,既能充分确保在内部空间供给的Si,又能够恰当地防止收容容器的破裂。
    上述收容容器中,优选的是,上述硅化钽层由TaSi2构成。
    由此,只要使其接触熔化后的Si并进行加热,便能够形成硅化钽层。
    根据本发明的第2观点,提供一种用于收容藉由Si的蒸汽压力下的加热处理而被蚀刻的单晶SiC基板的收容容器的制造方法。即,该制造方法包括,在使构成收容容器的一部分的碳化钽层接触熔化后的Si的状态下进行加热而形成硅化钽层的工序。
    由此,能够简单且低价地制成加热处理时Si不会熔化的收容容器。
    根据本发明的第3观点,提供一种使用上述收容容器,藉由在Si的蒸汽压力下的加热处理而进行蚀刻的半导体的制造方法。
    由此,能使上述功效得到发挥,并进行蚀刻来制造半导体。
    根据本发明的第4观点,提供一种具有上述收容容器的半导体制造装 置。
    由此,能够提供能发挥上述功效的半导体制造装置。
    附图说明
    图1是说明使用本发明的表面处理方法的高温真空炉的概要图。
    图2是表示坩埚的结构的图。
    图3是在1000℃下1atm中的Ta、Si、C的相图。
    图4是表示加热温度、与从硅化钽升华的Si的蒸汽压力的分压的曲线。
    图5是表示各工序中的基板的状况的示意图。
    图6是表示以往例中的收容容器的结构的示意图。
    附图标记说明
    10  高温真空炉(半导体制造装置)
    21  主加热室
    22  预加热室
    30  坩埚(收容容器)
    40  单晶SiC基板
    41  外延层
    42  离子注入部分
    具体实施方式
    下面,参照附图对本发明的实施方式进行说明。
    首先,参照图1,对本实施方式的加热处理中使用的高温真空炉(半导体制造装置)10以及坩埚30进行说明。图1是说明本发明的表面处理方法所使用的高温真空炉的概要图。图2是表示坩埚30的结构的图。
    如图1所示,高温真空炉10具备主加热室21和预加热室22。主加热室21能够将单晶SiC基板加热到1000℃以上2300℃以下的温度。预加热室22是将单晶SiC基板在主加热室21进行加热之前对其进行预备加热用的空间。
    主加热室21与真空形成用阀23、惰性气体注入用阀24、真空计25连接。藉由真空形成用阀23可以对主加热室21的真空度进行调节。藉由惰性气体注入用阀24可以对主加热室21内的惰性气体(例如Ar气)的压力进行调节。藉由真空计25可以检测主加热室21内的真空度。
    主加热室21内部具有加热器26。此外,主加热室21的侧壁或天花板上固定有无图示的热反射金属板,利用该热反射金属板,加热器26的热被反射到主加热室21的中央部。由此,能够对单晶SiC基板进行较强且均匀的加热,并能将温度升到1000℃以上2300℃以下。在此,作为加热器26,例如,可使用电阻加热式的加热器或高频感应加热式的加热器。
    此外,单晶SiC基板以被收容在坩埚(收容容器)30中的状态被加热。坩埚30被放置在适宜的支撑座等上,藉由移动该支撑座,至少能够从预加热室移动到主加热室。
    坩埚30具有能够相互嵌合的上容器31和下容器32。此外,坩埚30中如图2所示,按坩埚30的外部側到内部空间側的顺序,设有钽层(Ta)、碳化钽层(TaC以及Ta2C)、以及硅化钽层(TaSi2)。
    以往已知有由钽层以及碳化钽层构成的坩埚,但本实施方式的坩埚30进一步形成有硅化钽层。该硅化钽层用于在坩埚30的内部空间形成Si蒸汽压力,相当于专利文献1中在内壁上固着的Si,专利文献2中的Si颗粒。
    以下,对硅化钽层的形成方法进行说明。硅化钽层是使熔化后的Si与坩埚的内壁面接触,并在1800℃以上2000℃以下左右进行加热而形成的。由此,能够获得由TaSi2构成的硅化钽层。在本实施方式中,形成厚度为30μm到50μm左右的硅化钽层,但与其内部空间的体积等相对应,例如也可为1μm到300μm的厚度。
    藉由进行如上所述的处理,能够形成硅化钽层。
    此外,在本实施方式中,作为硅化钽而形成TaSi2,但也可以形成由其它化学式表达的硅化钽(例如图3的相图所示的硅化钽)。此外,也可以重叠形成多个硅化钽。
    图4中示出表示加热温度、与从硅化钽升华出的Si的蒸汽压力的分压的曲线。如图4所示,从硅化钽升华出的Si的蒸汽压力比较高。进一步, 在构成内部空间的壁面(当然也包括单晶SiC基板40的上方的壁面)的整体都形成有硅化钽层。由此,能够使内部空间的Si的压力分布均匀。
    在对单晶SiC基板进行加热处理时,首先,如图1的虚线所示,将坩埚30放置到高温真空炉10的预加热室22中,并在适宜的温度(例如800℃左右)下进行预加热。其次,将坩埚30移动到温度被升高到预设温度(例如、1800℃)的主加热室21中,对单晶SiC基板进行加热。
    以下,参照图5,对利用上述高温真空炉10从单晶SiC基板40制成半导体元件的处理进行说明。图5是表示各工序中的基板的概要状况的图。
    首先,如图5(a)所示,在单晶SiC基板40上形成外延层41。形成外延层的方法为任意,可以使用公知的气相外延法或亚稳溶剂外延法(Metastable solvent epitaxy)等。并且,在单晶SiC基板40为OFF基板的情况下,可以采用利用步骤流量控制形成外延层的CVD法。
    其次,如图5(b)所示,在形成了外延层41的单晶SiC基板40上进行离子注入。该离子注入是利用具有向对象物体照射离子功能的离子掺杂装置进行的。利用离子掺杂装置,外延层41的表面的整体或一部分被选择性地注入离子。然后,基于被注入离子后的离子注入部分42而形成半导体元件所需的区域。
    此外,由于被注入离子,如图5(c)所示,包含离子注入部分42的外延层41的表面变成粗糙状态(单晶SiC基板40的表面受到损伤,平坦度变差)。
    其次,对注入的离子进行激活,并对离子注入部分42等进行蚀刻。本实施方式中,在一道工序中进行两项处理。具体而言,在Si蒸汽压力下,且在1500℃以上2200℃以下、优选的是在1600℃以上、2000℃以下的环境中进行加热处理(退火处理)。由此,能够将注入的离子激活。并且,由于单晶SiC基板40的表面被蚀刻,所以离子注入部分42的粗糙部分变平坦(参照图5(d))。
    在上述变平坦的过程中,发生以下所示的反应。
    (1)SiC(s)  →Si(v)Ⅰ+C(s)
    (2)2SiC(s)  →Si(v)Ⅱ+SiC2(v)
    (3)SiC(s)+Si(v)Ⅰ+Ⅱ→Si2C(v)
    (4)C(s)Ⅰ+2Si(v)  →Si2C(v)
    如上所述,本实施方式中,坩埚30的内部空间能够使Si的压力分布均匀。此外,由于在形成该内部空间的壁面上形成有硅化钽层,例如即便是在反应式(3)以及(4)使Si减少的情形下,也可以立即供给Si,因而内部空间一直在Si蒸汽压力下。因此,反应式(1)以及(2)不容易发生,能够一边抑制单晶SiC基板40表面的碳化,一边进行蚀刻。
    因此,通过使用本实施方式的坩埚30,不需要形成专利文献2中的碳层(石墨盖)。即,由于能够省略形成以及去除碳层的工序,所以处理得到简化。
    此外,已知从被注入离子后的单晶SiC基板40的表面起约数十nm处会出现离子浓度不足的部分(离子注入不足部分)。因而,直到该离子注入不足部分被去除为止,上述蚀刻一直持续(参照图5(e))。
    藉由以上处理,能够形成具有平坦度和充分的电活性的半导体元件表面。利用该半导体元件表面,能够制造半导体。
    如上所述,本实施方式的坩埚30收容藉由在Si的蒸汽压力下的加热处理而被蚀刻的单晶SiC基板40。该坩埚30由钽金属构成,且在内部空间側设置有碳化钽层,该碳化钽层的更靠内部空间側设置有硅化钽层。
    由此,不同于使Si固着的结构,由于Si不会熔化,所以能够防止Si对单晶SiC基板40造成不良影响。
    此外,本实施方式的坩埚30中,被收容的单晶SiC基板40的至少其上方的壁面上设置有硅化钽层。
    由此,既能防止熔化后的Si落到单晶SiC基板40上的情况,又能形成Si蒸汽压力。
    此外,本实施方式的坩埚30中,在形成内部空间的壁面的整体上都设置有硅化钽层。
    由此,能够使内部空间内的Si的压力均匀,所以能均匀地进行蚀刻。
    此外,本实施方式的坩埚30被用于,在对被注入离子后的单晶SiC基板40的表面去除离子注入不足部分的蚀刻工序中,收容单晶SiC基板40。
    由此,能够去除离子注入不足部分的蚀刻工程中,使上述功效得以发挥。此外,本实施方式中,由于内部空间的Si的压力均匀,所以能够抑制单晶SiC基板40的碳化,不需要形成碳层(石墨盖),便能进行离子激活处理。
    以上,对本发明的较佳的实施方式进行了说明,但上述结构例如可以进行以下变更。
    在本实施方式中,将坩埚30用于离子注入后的蚀刻,但只要是要求均匀地进行蚀刻等的工序,便可在各种各样的工序中应用上述控制。
    例如,作为对进行外延层之前的基板(有结晶缺陷等的基板)进行平坦化处理的方法,如专利文献1所示,已知有形成碳化层和牺牲生长层后将牺牲生长层蚀刻的方法。进行该牺牲生长层的蚀刻的时候,可以使用本实施方式的坩埚30。在这种情况下,能够将牺牲生长层均匀地去除掉。
    上述实施方式中,未进行形成碳层(石墨盖)的处理,但也可以进行该处理。此外,进行了形成碳层的工序后,藉由上述反应式(4)能够去除碳层。因此,可以在一道工序中,进行去除碳层的处理、激活离子的处理、以及蚀刻单晶SiC基板的处理。
    形成硅化钽层的方法不局限于上述实施方式中所示的方法,只要能够形成上述说明过的结构(组成)的坩埚30,可以采用任何方法。
    进行处理的环境以及所使用的单晶SiC基板等只是一例而已,可以是各种各样的环境以及单晶SiC基板。例如,加热温度不局限于上述所列举的温度,可以采用更低的温度使蚀刻速度更慢。此外,也可以使用上述高温真空炉以外的加热装置。
    收容容器形成有内部空间,只要是如上所述的结构(组成),可以是任何形状。例如,外形可以为圆柱形,也可以为立方体形或长方体形。

    关 键  词:
    收容 容器 制造 方法 半导体 以及 装置
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:收容容器、收容容器的制造方法、半导体的制造方法以及半导体制造装置.pdf
    链接地址:https://www.zhuanlichaxun.net/p-24284.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1