本发明涉及陆上和船用燃气轮机,特别是涉及具有抗剥落和耐腐蚀陶瓷涂层的涡轮叶片。 船用和陆上燃气轮机经受同航空透平叶片不同类型的腐蚀,因为至少它们的一部分叶片在不同(低于航空透平叶片的工作温度)温度范围(从而也经受硫化物腐蚀和中间温度-1100到1500°F-的腐蚀)内工作,并且经常在含有例如钒酸盐的廉价燃料中使用,该钒酸盐会在叶片上形成腐蚀性很强的熔融盐沉积物。
从前为使涡轮叶片腐蚀减至最小,批量地使用过各种涂层。这种涂层包括扩散涂层(也就是铝化铂)和表面涂层(也就是MCr Al Y,此处的M是钴和镍一类的金属)。
此外,还试验过在涡轮叶片表面涂上热阻挡层。虽然这种涂层也需要耐腐蚀,但这种涂层需要相当的厚,因为这些涂层的首要作用是作为隔热层,以便在气流与被冷却的金属叶片之间形成温降。这种在镍基超耐热合金叶片上的热阻挡层,一般由致密的陶瓷外层、多孔陶瓷(因而是隔热的)中间层和MCr Al Y结合层构成。美国专利说明书No4,255,495(hevine等)给出一些热阻挡层的实例。这种涂层的典型厚度为20-30密耳,以便足够形成具有相当大的(一般为100-200°F)温降的多孔陶瓷层。虽然这种技术大有前途,但这种涂层引起了相当的困难,涂层中的裂纹导致陶瓷涂层的剥落,并且还吸附了对叶片金属表面有害的熔融盐一类的腐蚀性化合物。
因此,本发明属于一种为制造用于陆上或船用燃气轮机的涡轮叶片的工艺,上述叶片有一部分设计成能够在1100-1500°F温度范围内工作,并设计成能够使用含杂质的燃料,其特征在于,将上述叶片温度加热到至少约1200°F,并且将1-4密耳厚的陶瓷涂层,涂覆到设计成能够在1250-1500°F温度范围内工作的上述叶片的至少一部分上,借此,上述涂料抗剥落并极大地减少叶片的腐蚀。
本发明也包括为用于陆地或船用燃气轮机的涡轮叶片,该叶片翼面的至少一部分设计成能够在1100-1500°F温度范围内工作,并且设计成能够使用含杂质的燃料,其特征在于,上述叶片在设计成能够在1100-1500°F温度范围内工作的翼面的至少那一部分上,有1-4密耳厚的陶瓷涂层,涂覆了上述陶瓷涂层,为的是在高达至少1200°F温度仍然使其保持在压缩状态中。
业已发现,如果加热(在至少约1200°F温度)进行涂覆,极薄(1-4密耳)的陶瓷涂层是相当抗剥落和耐腐蚀的。本发明涂层不作为热阻挡层,因为它的厚度不够,将不会造成相当大的温降。象热阻挡层一样,在叶片表面上可以首先涂覆结合层(最好是MCr Al Y)。在MCr Al Y外面涂覆多孔陶瓷,然后在最外层涂覆致密陶瓷。最好多孔陶瓷和致密陶瓷都是经氧化钇稳定化处理的氧化锆。应该注意,多孔部分是一个过渡区,造成热膨胀差,它很薄,几乎没有热绝缘性。已经发现,使涂层保持很薄和将陶瓷涂层涂覆到叶片的那部分的温度,控制在至少1200°F,对于生产长寿命的涂层都是至关重要的。
为了能更清楚地理解本发明,通过实例并参照附图,将叙述本发明简便的实施例,在附图中:
图1示出厚度放大了的涂层的叶片翼面部分的横截面;而
图2是表示涂层涂覆步骤的方框图。
参照图1截面中表示的涡轮叶片10,在叶片的翼面部分上有结合层12、多孔膨胀层14和致密外层16。根部不涂覆。因为翼面的下半部是关键区域,其大部分在1250-1500°F温度范围内工作,并且因为存在着在1500°F温度以上(也可能有末涂层的叶片在1500°F温度以上运行)是有效的涂层,可能要求只在最靠近翼面部分根部的下半部涂覆本发明的涂层。当在此处使用涂层时,叶片这个词系指无论是运动的还是静止的(从而包括有时称为“浆翼”的静止部分,经常是钴基超耐热合金做的,而运动部分经常是镍基超耐热合金)翼面部分。
图2主要概括了操作过程。第一步,20-将MCr Al Y涂覆到叶片上。30-接着将叶片加热到约1200°F,然后40-涂覆多孔陶瓷,50-紧接着涂覆致密陶瓷(叶片温度再次被控制在至少约1200°F)。
如上所述,在1100-1500°F温度范围内的叶片翼面,对陆上和船用燃气轮机造成特殊问题。在此中间范围内,特别是在旋转叶片中,发生了通常称为Ⅱ-型的“低温热腐蚀过程”,因为这个范围与高应力区域一致,腐蚀和应力的叠加作用会导致对于表面敏感的机械性能的降低。
该技术的目前状况是,通过用高铬或包含贵金属的保护涂层,涂覆整个翼面达到耐腐蚀。特别是通过密封扩散、等离子体喷镀、电子束直接蒸气喷镀或表面处理技术,涂覆上述金属涂层。在这些金属涂层的表面上,硫酸钴-镍与硫酸钠形成如同液态的薄膜,这会严重腐蚀涂层,最后腐蚀基底合金。此外,某些涂层例如Co Cr Al Y和铝化铂,在1300°F左右的温度下延展性差,会发生破裂使熔融硫酸盐与高应力作用下的基底合金接触。
当金属温度达到可以存在低熔点的硫酸盐、钒酸盐和氯化物时,为了防止金属耐热腐蚀性的降低,专门制备了本发明所采用的陶瓷涂层。意想不到的是,已经发现薄的(1-4密耳厚)陶瓷阻挡层不太容易破裂,即使多孔热膨胀过渡区还要薄得多。该陶瓷涂层必须要抗渗透,应足够将碱-碱土氯化物-钒酸盐沉积物同可以在涂层/衬底接触面处形成的氧化钴和氧化镍隔离开来,从而防止形成硫酸钴和硫酸镍。此外,如果由于铅、锌、镉、锰和钒(也可能铜和磷)的存在,而形成较低熔点的硫酸盐基液体,陶瓷阻挡层必须将上述液体同衬底隔离,而陶瓷阻挡层自身对这种腐蚀性液体也是耐化学浸蚀的。
最好是通过低压或氩气保护等离子体喷镀一类的技术来涂覆涂层的内结合层,以便金属结合层具有结合良好孔隙最少的显微结构。该结合层名义上应该约为5密耳(125微米)厚。通过溅镀或离子喷镀以及电子束直接蒸气喷镀等方式,可以形成上述结合层。这种结合层应该具有适当的低温(低于1100°F)延展性,应该耐熔融硫酸盐沉积物的化学浸蚀,并应该是在高于1100°F温度时的氧化铝形成物。这些组合物包括:例如,20%(按重量)钴、40%(按重量)铬、5.5%(按重量)铝、0.5%(按重量)钇(在有或没有硅添加物条件下)的镍基Ni Cr Al Y结合层。也可以使用Fe Cr Al Y结合层。
涂层的陶瓷部分也可以是经氧化钇稳定化处理的氧化锆。最好是已经显示相当抗循环热应力的等离子体喷镀的陶瓷Zr O2-8Y2O3。含有20%孔隙率(体积)的热涂层,具有最好的抗热冲击性。已表明,更低的孔隙率会缩短热应力下的寿期。当综合考虑阻挡层效果时,如果陶瓷涂层的孔隙分布在与金属表面连接处,并且涂层内部必须具有抗热应力的孔隙,则陶瓷部分需要同时具有多孔和致密层。可以通过控制细颗粒陶瓷的等离子体喷镀,或通过涂覆单层多孔涂层,然后激光熔化表面提供致密外层,从而实现上述要求。
陶瓷组合物并不限于所推荐的经氧化钇稳定化处理的氧化锆,也可以是氧化铝、氧化钙-二氧化锆、氧化镁-二氧化锆或其它络合陶瓷氧化物,该络合陶瓷氧化物在温度高达至少1450°F时具有相稳定性,并且在硫酸钠-氧化铅-氯化钠熔融盐中也显示出化学稳定性。
已经发现,陶瓷涂层最小厚度必须为1密耳,最大厚度必须为4密耳。多孔部分应在0.5密耳和3.5密耳之间,而致密部分应该在0.5密耳和1.5密耳之间。
从前,在未经预加热的衬底上进行陶瓷涂层的等离子体喷镀,尽管在涂覆期间衬底温度可能升高,但未控制衬底温度。在本工艺中,将要涂覆陶瓷的部分预加热到1200°F以上,以便在以后使用过程中的最高温度条件下,由于陶瓷和基底合金之间热膨胀不均,而使叶片下部分的陶瓷处于压缩或微小张力状态中。这使得在热循环和使用过程中陶瓷涂层剥落的倾向减至最小。这种薄涂层比较厚涂层显示出了更大的抗剥落性。按照本文所述方法涂覆陶瓷时,在操作期间陶瓷涂层的应变应该小于多孔陶瓷的极限弹性应变(名义上0.4%应变)。
在一次试验中,将空心的超耐热合金园柱体涂覆5密耳厚的镍结合层,上述镍含有20%(按重量)铬、10%(按重量)铝和约0.5%(按重量)钇。然后涂覆一层氧化锆-8%(按重量)氧化钇等离子体喷镀的陶瓷层。一个园柱体的涂层厚度为4密耳,而第二个园柱体的涂层厚度为12密耳(以模拟厚度至少总是12密耳的热阻挡层)。
将上述样品固定在专门设计的气冷式夹具内。在燃烧装置中,用掺加海盐(100ppm钠)和掺加海盐及铅的两种2号蒸馏燃料产生的燃料产物,来试验涂覆陶瓷的样品、未涂覆的超耐热合金样品、用低压等离子体喷镀涂覆的MCr Al Y组合物和各种扩散涂层(铝化铬、铝和铝化铂)的超耐热合金样品。将气体温度保持在1900°F,金属温度在1100到1500°F之间。热循环包括55分钟加热和5分钟强迫空气冷却。样品被试验300小时(循环)并进行评价。
12密耳厚的陶瓷涂层开始剥落的时间为100小时,4密耳厚的陶瓷涂层直到试验结束(300小时)始终抗住了剥落。
在12密耳厚涂层的剥落区域内的硫酸盐沉积物显示出了与结合层反应的可见痕迹。4密耳厚的涂层完全看不出剥落或与硫酸盐基沉积物的反应。未涂覆陶瓷的超耐热合金和金属一超耐热合金显示出不同程度的Ⅱ-型腐蚀。最好的结合层金属组合物是经等离子体喷镀的含20%钴、40%铬、5.5%铝和0.5%钇的镍[这也是本发明推荐的结合层,尽管也可以使用含30%(按重量)钴、23%(按重量)铬、8.5%(按重量)铝和0.5%(按重量)钇的镍以及含铬、铝与钇的铁一类的其它结合层]。
最好只在设计的工作温度低于约1500°F的叶片的那部分上涂覆陶瓷涂层。例如,将不需涂层的表面区域进行封闭,可实现以上要求。按照等离子体喷镀法涂覆的涂层具有超过100μRMS的粗糙表面。操作时很容易污染表面。如果在表面温度下存在的外来物质未能挥发或烧掉,就会增加陶瓷阻挡层过早破损的机会。这些物质是碳氢化合物、铅、锌、铜和囟基盐。粗糙表面也捕集碰撞粒子,从而增加沉积物聚集的速率。这会影响热传导和气流的气体动力学。因为致密外涂层有可能移动,应该仔细地进行最后陶瓷涂层的任何精加工(不应该滚磨抛光涂层)。如果需要进行任何相当大的最后精加工,可能必须重新填充外涂层,以防止孔隙。
尽管薄陶瓷涂层比较厚的涂层不易破裂得多,但如果在金属组合物内部存在的应变超过阻挡涂层的有效弹性极限,涂层仍然可能破裂。事实上,不应该将涂层涂覆到工作温度高到使涂层产生较大张力并且应变超过有效弹性极限的区域。涂层在约低于操作温度时,处于压缩状态中,因而能满足叶片的所有温度较低的部分。衬底温度可以大于1200°F,并且只受温度对基底合金的作用的限制。在涂覆涂层时,通常应该将涂层只涂覆在工作温度比衬底温度高不到200-300°F的区域内(因而,如果在1600°F的衬底温度条件下涂覆陶瓷,应该将涂层只涂覆在工作温度低于1900°F的区域内,最好是低于1850°F的区域内)。如果在十分接近于最高温度时进行涂覆,则可以涂覆整个翼面。
如上所述,本发明专为旋转零件而设计,因为这些零件经受附加应力,但这种涂层也可以用于静止零件的防腐。
本发明的新颖特点是使用薄的陶瓷涂层,和使用陶瓷屏蔽层作为耐腐蚀的薄涂层(而不用厚热阻挡层)。上述薄陶瓷涂层被涂覆在涂层将仍然保持在压缩或微小张力状态温度时的区域内,以便适应随后由于加热时的不同热膨胀、涂覆陶瓷期间加热衬底而产生的应变。