控制冰箱冷藏室温度的装置和方法 本发明涉及一种控制冰箱冷藏室温度的装置和方法,它能根据冷藏室内每一格的温度状况,供给每一格适当的冷气。
下面参照附图,说明一种传统的控制冷藏室温度的装置。
参照图1,这种传统的控制冷藏室温度的装置包括:冷冻室温度传感部件1、冷藏室温度传感部件2、用户输入部件3、模/数转换部件4、输入接口部件5、中央处理部件6、计算部件7、存储部件8、输出接口9、显示部件10、压缩机驱动部件11、冷风扇驱动部件12和冷藏室气流阀驱动部件13,其中,冷冻室的温度传感部件1用来检测冷藏室的温度;冷冻室温度传感部件2用来检测冷藏室的温度;用户输入部件3使用户能够选择/设定冰箱的功能;模/数转换部件4将冷冻室和冷藏室的温度传感部件1和2的模拟温度信号进行转换;输入接口部件5用来接收由用户输入部件3输出的外部信号;中央处理部件6用来控制各种不同的部件,这些部件都是控制冷冻室和冷藏室地温度所需要的;计算部件7在中央处理部件6的控制下完成计算功能;存储部件8用来存储输入和输出数据以及其它各种数据;输出接口部件9用于将内部信号传输到外部设备上;显示部件10用来将冰箱的运行状况显示给用户;压缩机驱动部件11用来压缩致冷剂;冷风扇驱动部件12用来驱动冷风扇,使其吹出冷风;冷藏室气流阀驱动部件13用来控制冷藏室气流阀,使其根据冷藏室的温度阻止冷气从冷冻室流向冷藏室,或者使冷气从冷冻室流向冷藏室。
输入接口部件5、中央处理部件6、计算部件7、存储部件8和输出接口部件9都包含在微机6a内,微机6a控制整个系统。
下面将详细说明这种传统的、具有上述系统控制冷藏室温度的控制装置的工作过程。
参照图2和图3,冷冻室20和冷冻室30内都有分隔件,例如搁板16,这些搁板16将所说室分隔成若干个预定的空间,冷藏室气流阀13A阻止或者使冷气从冷冻室20流向冷藏室30,冷气出口15A-15D将冷气排放到冷藏室30的每一个空间内,以便使所述空间致冷。
当用户通过用户输入部件3设定冷冻室20或冷藏室30的温度时,输入接口部件5将它传送给中央处理部件6,而中央处理部件6通过输出接口部件9驱动压缩机驱动部件11,以便压缩致冷剂,使冷冻室20内的空气致冷。
为了使这样致冷的空气流到冷藏室30中,中央处理部件6控制冷藏室气流阀驱动部件13,打开冷藏室气流阀13A,并且控制冷风扇驱动部件12,驱动冷风扇12A,将冷冻室20内的冷气吹入冷藏室30内。然后冷气流进冷气通道14,并且通过由搁板16分隔的冷藏室30一侧壁上的冷气排放出口15A、15B、15C和15D排放,使冷藏室30的每个空间30A、30B、30C和30D致冷。
冷冻室20和冷藏室30内的温度由冷冻室温度传感部件1和冷藏室温度传感部件2分别检测,由模/数转换部件4进行数字化转换,并且传送给中央处理部件6。
然后,中央处理部件6将温度传感部件1和2分别检测的冷冻室20和冷藏室30内的温度与用户预置的温度进行比较。如果比较的结果为冷藏室30内的温度高于用户预置的温度,则中央处理部件6通过冷风扇驱动部件12驱动冷风扇12A,将冷冻室20内的冷气吹入冷藏内30内,并且通过冷藏室气流阀驱动部件13打开冷藏室气流阀13A,使冷冻室20吹出的冷气流入冷藏室30。
这样吹入冷藏室30内的冷气按照冷气排放出口15A、15B、15C和15D的大小分配到冷藏室30中,使冷藏室30变冷。从而可以达到用户预置的温度。
当冷藏室30内的温度低于用户预置的温度时,中央处理部件6就控制冷风扇12A,使其停止工作,并控制冷藏室气流阀13A,使其关闭,阻止冷气从冷冻室20流向冷藏室30。
然而,在上述传统的装置中,当冷藏室内的温度低于预置温度时,气流阀关闭,阻止冷气流入,当冷藏室内的温度高于预置温度时,气流阀打开,使冷气流过,由于各个搁板之间空间内的冷气分配比例取决于各冷气排放出口的大小,因此,传统的温度控制装置存在这样一个问题,即,不能够根据各搁板之间空间内的温度和致冷负载对各空间进行单独地和有效地致冷。
因此,本发明提出一种控制冰箱冷藏室温度的装置和方法,它基本上解决了由于相关现有技术的局限性和缺点而引起的问题。
本发明的其它特征和优点将在下面的说明中预以说明,并且有些可以从下面的说明中体现出来,或者在实现本发明时发现。通过说明书、权利要求书和附图中详细描述的结构,可以实现和达到本发明的目的和其它优点。
为了获得这些优点和其它优点,根据本发明的目的,作为概括和一般性说明,这种控制冰箱冷藏室温度的装置和方法根据冷藏室内每一格的温度而供给每一格适当的冷气,其中设置一个冷气控制板,该板根据每一格的温度来控制各空间所对应的冷气排放出口的大小,它根据冷藏室内的温度而上、下多级移动,控制冷藏室内每一格的冷气排放量(rate),使冷藏室内的温度均匀,而对于各个格中温度高的格,则加大冷气排放量,以便加速致冷,使冷藏室内的温度很快均匀,并且还设置了一个冷气分配导管(guide),对新放置食品而会引起温度上升的部分,加大冷气供给量(rate),从而使冷藏室内的温度总是保持均匀。
可以理解,不管是上述一般说明,还是下面的详细说明,都是示范性的和解释性的,并且还将用来进一步解释本发明的权利要求。
附图用来进一步理解本发明,并且与本说明书结合而作为本说明书的一部分;附图用来说明本发明的实施例,并且与说明书一起用来解释本发明。
附图中:
图1表示一种控制冰箱冷藏室温度的传统装置的系统;
图2表示冷冻室和冷藏室都用分隔件分隔的传统结构;
图3表示传统的冷气排放出口的具体结构;
图4表示本发明第一实施例的冰箱冷藏室温度控制装置的系统;
图5表示图4所示系统的冷藏室中,为搁板之间的空间所设的冷气排放出口的结构和冷气排放出口控制口的结构;
图6表示图4所示系统的冷气控制板的结构;
图7表示一种检测图6所示冷气控制板位置的电路;
图8是电路图,表示图4所示系统中的冷气控制板电机驱动部件的电路;
图9表示在图4所示系统的冷藏室中相应于各搁板间空间温度的多级冷气排放量控制的实例;
图10是流程图,表示对冷藏室中各搁板之间空间内的温度进行控制的运算规则;
图11表示本发明第二实施例的用于控制冷藏室温度的冷气分配装置;
图12是图11所示的用于控制冷藏室温度的冷气分配装置的纵向截面图;
图13是图12中A-A方向的截面图;
图14表示图11的用于控制冷藏室温度的冷气分配装置的电路;
图15表示为控制温度,在图11的冷藏室的冷气分配装置中冷气分配导管的状态;
图16是曲线图,表示传统冰箱冷藏室的温度分布;
图17是曲线图,表示本发明的冰箱冷藏室的温度分布;以及
图18是流程图,表示根据本发明控制冰箱冷藏室温度的方法的步骤。
下面参照附图详细说明本发明的最佳实施例,具体实例如附图所示。
第一实施例
图4表示本发明第一实施例的冰箱冷藏室温度控制装置的系统;图5表示图4所示系统的冷藏室中,为搁板之间的空间所设的冷气排放出口和冷气排放出口控制口的结构;图6表示图4所示系统的冷气控制板的结构;图7表示一种检测图6所示冷气控制板位置的电路;图8是电路图,表示图4所示系统中的冷气控制板电机驱动部件和电机保护加热器操作部件的电路;图9表示在图4所示系统的冷藏室中多级冷气排放量控制的实例,所述冷气排放量控制与各搁板之间的空间内的温度相对应;以及图10是流程图,表示对冷藏室中各搁板之间空间内的温度进行控制的运算规则。
参照图4,第一实施例的冰箱冷藏室温度控制的装置包括:
冷冻室温度传感部件21,用来检测冷冻室的温度;
冷藏室各空间的温度传感部件22,用来检测冷藏室中各搁板之间的空间内的温度;
用户输入部件23,使用户能够选择和设置冰箱的功能;
冷气控制板位置传感部件24,用来检测冷气控制板36的位置,冷气控制板36可多级控制冷风排放出口的大小,以控制冷藏室内各空间的冷气排放量;
模/数转换部件25,用来对冷冻室的温度传感部件21和冷藏室各空间的温度传感部件22所检测的模拟温度信号进行转换;
输入接口部件26,用来从用户输入部件23中接受用户指令,并且把用户指令转换成特定信号;
中央处理部件27,用来接收来自各种部件的信号,并且控制这些不同的部件,这些部件是控制冷藏室的温度所需要的;
计算部件28,用来执行中央处理部件27所需要的计算功能;
存储部件29,用来存储中央处理部件27所接收的信号和与计算有关的数据;
输出接口部件40,用来在中央处理部件27的控制下,给冰箱的各驱动部件提供驱动信号,并且提供显示信号;
显示部件31,用来从输出接口部件40接受显示信号,将冰箱的运行状态显示给用户,提供动态信号;
压缩机驱动部件32,用来从输出接口部件40接受驱动信号,驱动压缩机,以便压缩致冷剂;
冷风扇驱动部件33,用来从输出接口部件40接受驱动信号,驱动冷风扇吹出冷气;
冷气控制板电机驱动部件34,用来从输出接口部件40接受驱动信号,多级控制冷气排放出口的大小,以便根据冷藏室各空间内的温度,控制各空间的冷气排放量;
以及冷气控制板驱动电机保护加热器操作部件35,用来从输出接口部件40接受驱动信号,防止冷气控制板驱动电机过冷。
尤其是,微机100包含接口部件26、中央处理部件27、计算部件28、存储部件29和输出接口部件40,它接收与冷藏室各空间温度传感部件22所检测的各温度相对应的信号,并且驱动压缩机驱动部件32、冷风扇驱动部件33和冷气控制板电机驱动部件34,控制冷气控制板36,以便以相互不同的供给量(rate)对各空间供给冷气。
参照图5和图6,冷气控制板具有传统的气流阀功能和本发明的控制功能,它包括冷气排放出口控制口36A和冷气控制板齿条36B,冷气排放出口控制口36A用来部分/全部关闭/打开与冷藏室中各搁板之间的空间相对应的各冷气排放出口,多级控制排放到各空间内的冷气排放量,冷气控制板齿条36B位于冷气控制板36的一侧,用来使板36上、下移动,控制冷气排放出口控制口36A。冷气排放出口控制口36A具有一组以预定间隔相间的、大小不同的控制口。
冷气控制板电机驱动部件34包括冷气控制板驱动电机小齿轮34A、冷气控制板驱动电机34B和冷气控制板驱动电机保护加热器34C,小齿轮34A,用来使冷气控制板36上、下移动,电机34B驱动小齿轮34A,保护加热器34C用来防止冷气控制板驱动电机过冷。冷气控制板驱动电机保护加热操作部件35具有一个继电器RY,用来在微机100的控制下,操纵冷气控制板驱动电机保护加热器34C,其电路为图8所示。
参照图7,冷气控制板位置传感部件24包括磁性传感器36D和传感开关部件36C,磁性传感器36D位于冷气控制板36的一侧,用来产生一个表示冷气控制板36移动的信号,传感开关部件36C用来检测磁性传感器36D的信号,以便接通或关断。
下面说明本发明的上述冰箱冷藏室温度控制装置的工作过程和优点。
冷冻室50和冷藏室60都用分隔件,例如搁板,分隔成若干了空间,当用户设定冷冻室50和冷藏室60温度时,接口部件26将所设定的温度传送给中央处理部件27,中央处理部件27在接收所设定的温度的同时,将该温度存储到存储部件29中,并通过输出接口部件40驱动压缩机驱动部件31,压缩致冷剂,从而使冷冻室50内的空气致冷。
通过模/数转换部件25从冷冻室温度传感部件21上收到冷冻室50的温度后,中央处理部件27将所收到的温度与存储部件29中所存储的用户所设定的冷冻室温度相比较,驱动压缩机驱动部件31,直到用户所设定的冷冻室温度达到为止。中央处理部件27控制冷风扇驱动部件33和冷气控制板电机驱动部件34,使这样致冷的空气流入冷藏室60。
在这种情况下,参照图5和图6,冷藏室包括:
冷气通道70,用来将冷冻室50中的冷气引入冷藏室;
若干个大小相同的冷气排放出口80,用来将冷气排放到冷藏室中各搁板之间的空间内;
冷气排放出口控制口36A,用来部分/全部关闭/打开冷气排放出口80A-80D,多级控制各空间的冷气排放量。
冷气控制板36,具有冷气控制板齿条36B,用来使控制板36上、下移动,以便控制冷气排放出口控制口36A的大小;
冷气控制板驱动电机34B,它具有冷气控制板驱动电机小齿轮34A,用来带动冷气控制板36上、下移动以控制每个冷气排放出口的开口大小;
以及冷气控制板位置传感开关36C和永久磁铁36D,用来检测冷气控制板36的位置。
然后,使冷风扇驱动部件33开始工作,冷风扇转动,通过冷气通道70中的冷气排放出口80A-80D将冷气供给冷藏室60的每一个空间,从而使冷藏室致冷。
从冷藏室各空间温度传感部件22上收到冷藏室各空间的温度后,中央处理部件27在发现任意一个上述温度不同于用户设定的温度时,通过输出接口部件40给冷气控制板电机驱动部件34和冷气控制板驱动电机保护加热器驱动部件35提供驱动信号。
据此,冷气控制板电机驱动部件34使冷气控制板36上、下移动,多级控制向冷藏室的各空间排放冷气的排放量。
多级控制的方式如下:
当驱动该冷气控制板驱动电机34B时,与冷气控制板驱动电机小齿轮34A啮合的冷气控制板齿条36B带动冷气控制板36上、下移动,而当冷气控制板上、下移动时,冷气排放出口控制口36A和开向冷藏室各空间的冷气排放出口80A-80D就会重叠,以调节开向该空间的开口的有效面积,结果以多级的方式控制了向冷藏室的各空间内排放的冷气量,从而,分别控制了各空间内的温度。
通过使控制板上、下移动,在冷藏室各空间控制的各温度中,用冷气控制板传感开关36C来检测冷气控制板36的位置,其检测过程如下:
参照图6,永久磁铁36D附着在冷气控制板36的底部,冷气控制板位置传感开关36C附加在冷气通道70的一侧,并且与永久磁铁36D相对。这时,用图7所示的电路进行位置检测,其过程将在下面说明。冷气控制板位置传感开关是磁性的。
例如,当由冷气控制板电机驱动部件34驱动的冷气控制板36不处于最低位置时,由于永久磁铁36D的磁力不能感应开关36C,因而磁性开关36C是打开的。因此,电源Vcc的高电压通过电阻R1和电容C1供给输入接口部件26的输入端P1。中央处理部件27通过输入接口部件26接收高电压,这样便知道冷空气控制板36不在最低位置。
当冷气控制板处于最低位置时,磁性开关36C由于永久磁铁36D的磁力作用而闭合,电源Vcc的高电压旁路接地,低电压供给输入接口部件26的输入端P1。从而,中央处理部件27通过输入接口部件26收到低电压信号,这样使知道冷气控制板36在最低位置。
通过上述位置检测过程测出冷气控制板36的位置,中央处理部件27控制冷气控制板36上、下移动,因而控制了冷气排放出口36A的大小,从而,控制了冷藏室内各空间的温度。
下面参照图8说明冷气控制板电机驱动部件34和冷气控制板驱动电机保护加热器操作部件35的工作过程。
当输出接口部件40在中央处理部件27的控制下,通过其输出端P3输出一个使冷气控制板驱动电机正向旋转的高信号,同时,通过其输出端P2输出一个使冷气控制板驱动电机反向旋转的高信号时,冷气控制板电机驱动部件34中的“与非”(NAND)门ND1完成对这两个信号的“与非”过程,产生一个低信号。根据这个信号,当“与门”(AND)AD1和AD2产生低信号,驱动冷气控制板驱动电机时,阻止对冷气控制板驱动电机的驱动。
当输出接口部件40通过其输出端P3输出一个使冷气控制板驱动电机正向旋转的高信号,并且通过其输出端P2输出一个使冷气控制板驱动电机反向旋转的低信号时,“与非”门ND1的输出信号变成“高”信号,“与门”AD1的输出信号变成“低”信号,使反向旋转晶体管Q2和Q3截止,而“与门”AD2的输出信号变成“高”信号,使正向旋转晶体管Q1和Q4导通,因而,使冷气控制板驱动电机34B正向旋转。
当输出接口部件40通过其输出端P2输出一个使冷气控制板驱动电机反向旋转的高信号,并且通过其输出端P3输出一个使冷气控制板驱动电机停止正向旋转的低信号时,“与非”门ND1的输出信号变成“高”信号,“与门”门AD2的输出信号变成“低”信号,使正向旋转晶体管Q1和Q4截止,而“与门”AD1的输出信号变成“高”信号,使反向旋转晶体管Q2和Q3导通,因而,使冷气控制板驱动电机34B反向转动。“与门”AD1和AD2和“与非”门ND1的组合电路为冷气控制板电机保护电路。这样,通过驱动电机34正向或反向转动,就可以使冷气控制板36上、下移动。
当输出接口部件40通过其输出端P4输出一个使冷气控制板驱动电机保护加热器工作的低信号时,冷气控制板驱动电机保护加热器操作部件35内的继电器RY闭合,给加热器H提供电能,加热器H的加热防止冷气控制板驱动电机34B被冷冻。从而,可以控制冷藏室内各空间的温度。
下面参照图10的流程图说明上述工作过程。
给冷气控制板驱动电机保护加热器H提供电源,使加热器H工作,防止冷气控制板驱动电机34B被冷冻(S1),冷气控制板驱动电机34B被驱动(S3),直到磁性开关36C闭合(S2),使冷气控制板36处于最低位置,最低位置是板36的初始位置,因此,冷气控制板36位于最低位置,将其设定为1(S4)。
这时,用户可以根据需要设置冷藏室内各空间的温度。
然后,第一格空间60A的冷气供给率设为“强”,这种情况下的位置信息设为1(S5)。
检测第一格空间60A内即时温度是否高于预设温度(S6)。如果即时温度高于预设温度,则看看第二格空间60B内的即时温度是否高于预设温度(S7)。如果通过比较发现,第二格空间60B内的即时温度低于预设温度,则其冷气供给率设为“弱”,这时的位置信息在上述位置信息的基础上加1(S9)。然后,将第三格空间60C内的即时温度与预设温度相比较,看看该即时温度是否高于预设温度(S10),如果经过比较发现,即时温度低于预设温度,则第三格空间60C的冷气供给率设为“弱”,这时的位置信息是在比较第二格空间60B的温度时的位置信息基础上加2(S11)。而且,如果经过比较发现,第三格空间60C内的即时温度高于预设温度,则其冷气供给速度设为“强”(S12)。然后,将第四格空间60D内的即时温度与预设温度相比较,看看该即时温度是否高于预设温度(S13)。如果经过比较发现,该即时温度低于预设温度,则第四格空间60D的冷气供给率设为“弱”,这时的位置信息是在比较第三格空间60C的温度时的位置信息基础上加4(S14)。而如果经过比较发现,第四格空间60D的即时温度高于预设温度时,则其冷气供给率设为“强”(S15)。
另一方面,如果第一格空间60A内的即时温度低于预设温度,则检测第二格空间60B内的即时温度是否低于预设温度(S16)。如果第二格空间60B内的即时温度高于预设温度,则继续对第二格空间60B内的温度进行比较的步骤,而如果第二格空间60B内的即时温度低于预设温度,则开始对第三格空间60C内的温度进行比较的步骤(S17)。如果第三格空间60C内的即时温度高于预设温度,则继续对第三格空间60C内的温度进行比较的步骤,而如果第三格空间60C内的即时温度低于预设温度,则开始对第四格空间60D内的温度进行比较的步骤(S18)。如果第四格空间60D内的即时温度高于预设温度,则继续对第四格空间60D内的温度进行比较的步骤,而如果第四格空间60D内的温度低于预设温度,则这时的位置信息设为9,对任何一格空间都不供给冷气。
参照图9,位置信息1到9是以多级方式移动冷气控制板36时,冷气控制板36的多级位置信息,便以“强”、“弱”和“关闭”的方式控制冷藏室各搁板之间空间内的冷气供给率。
然后,检测现在的位置信息是否为9(S20)。如果发现位置信息为9,则使冷风扇停止工作(S21),如果不是9,则继续驱动冷风扇(S22)。
此后,将上述过程中获得的位置信息与3、4、7、8相比较(S23、S24、S25和S26)。如果位置信息为3,则设置移动位置,将位置信息取为4(S27),如果位置信息为4,则设置移动位置,将位置信息取为3(S28),如果位置信息为7,则设置移动位置,将位置信息取为8(S29),以及如果位置信息为8,则设置移动位置,将位置信息取为7(S30)。如果在上述过程中所获得的位置信息不是上述位置信息3、4、7、8,则设置移动位置,取前述温度比较时的位置信息(S31)。
然后,确定移动位置是否为现在的位置(S32)。如果发现移动位置等于现在的位置,则使冷气控制板驱动电机停止工作,并且把移动位置设定为现在的位置(S33)。如果发现移动位置不等于现在的位置,则将移动位置与现在的位置进行比较,看看是否大于现在的位置(S34)。如果发现移动位置大于现在的位置,则从移动位置减去现在的位置,将冷气控制板36的该位置值存储起来(S35),并激励冷气控制板驱动电机正向转动(S36),且该电机持续工作,直到达到该值为止(S37)。如果发现移动位置不大于现在的位置,则从移动位置减去现在的位置,将冷气控制板36的该位置值存储起来(S38),激励冷气控制板驱动电机反向旋转(S39),且该电机持续工作,直到达到该值为止(S40)。这样通过供给冷气使冷藏到室内各空间分别致冷,就可控制冷藏室内的温度。
然后,冷气控制板驱动电机停止工作,将移动位置设定为现在的位置(S33),该过程返回到S5,由此,重复该过程,以便控制温度达到预定温度。
本发明的上述第一实施例可以用下述内容来概括:
根据冷藏室各空间内的温度设定冷藏室的致冷范围(extent of cooling),并根据所设定的致冷范围来换算冷气控制板应处的位置信息值和已设定的位置信息值,以便确定新的位置信息。根据该新设定的位置信息,驱动冷风扇33A,并使其停止工作。为了设定冷气控制板的移动位置,使其取新设定的位置信息,并且为了将冷气控制板36移动到该设定的位置,将目标位置和现在的位置比较,使冷气控制板驱动电机34B正向或反向转动,由此使冷气控制板36移动。在冷气控制板36移到目标位置以后,移动的位置再设定为现在的位置。
重复上述过程,就能控制冷藏室各空间内的温度。第二实施例
图11表示本发明第二实施例的用于控制冷藏室温度的冷气分配装置;图12是图11所示的用于控制冷藏室温度的冷气分配装置的纵向截面图;图13是图12中A-A方向的截面图;图14表示图11的用于控制冷藏室温度的冷气分配装置的电路;图15表示冷气分配导管的状态,该冷气分配导管位于图11所示的用于控制冷藏室温度的冷气分配装置中;图16是曲线图,表示传统冰箱冷藏室的温度分布;图17是曲线图,表示本发明的冰箱冷藏室温度分布;以及,图18是流程图,表示根据本发明控制冰箱冷藏室温度的方法的步骤。
参照图11和12,根据本发明的第二实施例,冰箱冷藏室的温度控制装置包括温度传感器120、121和122其每一个位于搁板114、115和116之间的一个室内,以相互对角相对的在冷藏室的侧壁上,以便检测在各室内各自的温度;以及冷气排放出口117、118和119,其每一个位于搁板114、115和116之间的一个室内,以便使冷冻室111来的冷气流通过冷气通道排放到冷藏室112中。
参照图13,冷气通道113作为给冷气排放出口117、118和119分配冷气的装置,具有冷气导管(guide)123,用来将冷气有选择地引向各冷气排放出口的冷气通路。冷气分配导管123上设有冷风扇,并设有一个电机,用来使冷风扇124和冷气分配导管123旋转。冷气分配导管123具有冷气引导口123a,用来引导冷气。
参照图14,设置了分配冷气流入冷藏室的控制装置,该控制装置包括:
微机130;
模/数转换器131,它与冷藏室中各室内的温度传感器120、121和122相连,用来将温度传感器检测的温度传送给微机130;
冷藏室温度控制器132,用来将模/数转换器131中的检测温度与预设的冷藏室温度相比较;
电机控制器133,它根据微机130将预设温度与一个所测温度相比较所得到的差,来控制电机125;
电机125,它在电机控制器133的控制下,驱动冷气分配导管123转动;
编码器134,用来检测电机125的旋转;以及
位置检测器135,用来将编码器134检测到的电机125的位置提供给微机130。
温度控制器132、电机控制器133和电机125都包括在冷气控制部件140中,该冷气控制部件140检测冷藏室中各部分的温度,并以相互不同的量给各部分提供冷气。
下面说明本发明第二实施例的上述装置的工作过程和控制方法。
由各室内的温度传感器120、121和122所测得的各温度值供给模/数转换器131,模/数转换器131接收该值,并将其转换成数字值,供给微机130。微机130将该值与设置在冷藏室温度控制器132中的温度进行比较,当这个值低于所设置的值时,驱动电机125。这时,编码器134检测电机的位置,并供给位置检测器135,位置检测器135检测出电机现在的位置,并供给微机130。从位置检测器135收到现在的位置后,微机130确定冷气分配导管123的冷气排放方向,以便控制冷藏室内的温度。
通过控制电机,使风扇124和冷气分配导管123转动,来完成冷气排放移向这一确定的方向,它改变位于冷气分布导管123一侧面上的冷气排放口的方向。
例如,参照图15,将来自冷藏室内各温度传感器120、121和122上的各温度与预设温度相比较,当来自温度传感器120、121和122的温度高于预设温度时,微机130将这种状态取为1,当低于时,则取为0。如果冷藏室上部的第一温度传感器120、第二温度传感器121和第三温度传感器122的取值分别为0、0、0,则由于它表示冷藏室内所有部分的温度都低,因此,微机130控制冷气分配部件140,将冷气分配导管移动到“e”位置,以便将供给量降低到某种程度。
如果冷藏室上部的第一温度传感器120、第二温度传感器121和第三温度传感器122的取值分别为0、0、1,则表示冷藏室第三部分内的温度高,微机130便控制冷气分配部件140,将冷气分配导管移到“d”位置,以加大对第三部分的冷气供给量。
这样,根据冷藏室各部分的温度来改变冷气分配导管123的位置,由此就能够与各部分温度相对应地分别供给冷气或加大冷气供给量、或关闭,不供给冷气、或降低冷气供给量。
同时,参照图16,传统的冰箱冷藏室温度控制装置的温度分布表明,位于上部的第一部分内的温度最低,越往下,温度越高,说明致冷不均匀。然而,参照图17,可以看出,本发明的冰箱冷藏室温度控制装置的温度分布表明,在冷藏室的所有空间内都均匀致冷,达到用户预先设定的温度。
下面参照图18说明上述控制冷气排放方向的方法。
在“A”部分的温度高于预设温度(S100和S110)的情况下,冷气排放导管123的冷气导管口123a的位置移到“b”处,使冷气仅仅流过冷气排放出口117,降低“A”部分的温度(S160)。
同样,在“B”或“C”部分的温度高于预设温度(S120和S130)的情况下,冷气排放导管123的冷气导管口123a的位置移到“c”或“d”处,使冷气仅仅流过冷气排放出口117,降低“B”或“C”部分内的温度(S170和S180)。
然而,如果“A”、“B”和“C”部分内的温度都高于预设温度,则冷气分配导管123转动,以便均匀地给整个冷藏室排放冷气(S150)。
与上述情况相反,如果“A”、“B”和“C”部分内的温度都低于预定温度,则冷气导管口123a的排放方向指向“e”位置,切断流向冷藏室的冷气流(S140)。
这里,“A”、“B”和“C”部分是冷藏室中按从上到下的顺序排列的各部分。
这样,整个冷藏室内的温度就可以保持恒定和均匀,达到预先设定的温度。
如上面已说明的那样,本发明的冰箱冷藏室温度控制装置,在冷藏室内的温度高的情况下,通过驱动与电机相连的风扇和冷气分配导管,能够迅速将冷冻室内的冷气供给冷藏室,使其快速致冷,而且在冷藏室中某些部分的温度因新放置食物而升高的情况下,可以用冷气分配导管加大对该部分的冷气排放量,从而使冷藏室内的温度总是保持均匀。
因此,当冷藏室的致冷负载稳定时,本发明的装置能够使冷藏室各部分的温度都与预设温度基本上保持相同,如图9所示,从而使冷藏室内的食品能够保鲜储藏。
对本领域的普通技术人员来说,很明显,有许多方法可以制造本发明的半导体装置,可以对所述方法进行改进或变更,而不会超出本发明的精神和范围。因此,本发明的范围将覆盖各种改进和变化,这些改进和变化都落在权利要求书和其等同物所限定的范围内。