高压燃气轮机和空气分离系统综合 本发明涉及高压燃气轮机和低温空气分离系统的综合作业。
燃气轮机很容易可以和空气分离系统相结合,产生常压气体产物和电力。燃气轮机空气压缩机对涡轮燃烧室提供压缩空气并且还可将一部分或全部压缩空气供给空气分离系统。一般燃气轮机是和一低温空气分离系统相结合来形成氧和/或氮产物的,燃气轮机和空气分离系统也可以在一气化合并循环发电系统中和一气化流程相结合。
用一些先进气化合并循环发电系统来发电,在减低动力费用和对环境影响小于标准燃煤电力厂方面是有潜力的。在这些先进系统中煤或其他碳素物是与氧气化的,而所产生的气体则经纯化形成一低硫可燃气体。这种可燃气体被应用于燃气轮机发电系统中产生降低环境发射物的电力。由空气分离系统产生的一部分氮或全部氮最好将其导回到燃烧室以减少氧化氮的形成并提高整套燃气轮机/低温空气分离系统的效率。
近年来由较高的效率来促进气化合并循环工艺的利益不断增加并显示出用于整套气化合并循环系统中的先进燃气轮机、气化流程和空气分离系统的可靠性。整套气化合并循环系统上述三大组成部分的适当综合对于实现最大工作效率和最小动力成本是不可缺少的。
对气化合并循环和整套气化合并循环发电系统中现有技术的总评是由D.M戴德(Todd)在题为“燃气轮机的净煤工艺”文章中发表的,该文章是在1993年7月通用电气公司涡轮现代化工艺技术研讨会上提出的第1-18页。A.K.阿南德(Anand)等人在一题为“改进整套气化合并循环系统性能的新工艺倾向”论文中提出包含整套气化合并循环系统设计在内的诸因素评论,该论文是在1995年6月5-8日德克萨斯,休士顿的国际燃气轮机和航空发动机会议和展览会上发表的。各种综合工艺和该工艺对气化合并循环经济影响的评论发表在A.D.雷欧(Rao)等人题为“德士古公司TQ气化与高压空气分离装置地综合”的论文中,该论文发表在1994年10月19-21日加州旧金山的第13届EPRI论气化发电厂讨论会议上。
1994年10月19-21日加州旧金山A.R.斯密司(Smith)在第13届EPR1气化电力厂讨论会议上提出一题为“改进整套气化合并循环动力输出和结合一备用燃气轮机的经济学”论文中评论燃气轮机与空气分离装置之间在一整套气化合并循环流程中的若干综合方式。在一方式中,空气分离装置进给空气是由一单独压缩机来提供的,而一部分来自空气分离装置的氮产物则被压缩并被导入到燃气轮机燃烧室中。这一氮综合方式使整套气化合并循环系统的工作能提高燃气轮机动力输出,并能减少氧化氮的生成。在另一工作方式中,氮综合与空气综合相结合,其中一部分进给空气分离装置的空气是由从燃气轮机压缩机抽出的空气来供给的。这一可选用被称为空气和氮综合方式使工作有较大的适应性,而在局部负荷条件下则使整套气化合并循环系统工作达到较高程度的最佳化。
以燃烧为基础的发电系统包含整套气化合并循环系统均以其工作期间低于系统设计容量为条件,这是由于周围空气温度的变化和/或周期性耗电所致。在这些时期,这类系统工作是低于设计效率的。因而整套气化合并循环系统的设备选择和流程设计必须按设计能力提出在稳定状态下工作以及在局部负荷或关小状态下工作。上述空气和氮综合整套气化合并循环是一最佳选择方案,这是由于使这一系统在最大总效率下工作是有潜力的,特别是使该系统长期在局部负荷或关小状态下工作。
低温空气分离流程可以特别设成与燃气轮机综合,而具有空气和氮都与燃气轮机综合的空气分离流程则是特别实用的。大多数空气分离流程在该设施中应用著名的双柱蒸馏系统以有效地回收氧产物和氮产物。
美国专利3,731,495公开一空气和氮综合燃气轮机系统,其中一部分来自燃气轮机压缩机的空气被进一步压缩,经处理去除气态杂质,加以冷却,并且将其全部导入到一双柱蒸馏系统的高压力柱内。
美国专利4,019,314阐述一空气和氮综合蒸汽发生/燃气轮机系统,其中一部分来自燃气轮机压缩机的空气被进一步压缩,并将其导入一空气分离装置内。氧产物被用于一燃煤气化系统产生燃气轮机用的燃料。
一空气和氮综合燃气轮机系统由美国专利4,224,045所公开,其中一部分来自燃气轮机压缩机的空气被冷却,并在一可逆式热交换器内被纯化。将该冷却纯化空气分成一第一部分和一第二部分,该第一部分被导入到一双柱蒸馏系统的高压力柱内,而第二部分则被加热,完成膨胀而被导入到低压力柱内。可选用的是将部分来自燃气轮机压缩机的空气在冷却和纯化以前进一步压缩。可选用的是使部分来自燃气轮机压缩机的空气(1)在冷却和纯化以前完成膨胀,或(2)在冷却和纯化以后完成膨胀,但要在将空气分别导入低压力柱和高压力柱以前进行。
美国专利4,557,735阐述一空气和氮综合燃气轮机系统,其中一部分来自燃气轮机压缩机的空气经由吸附作用来纯化,并加以冷却以形成经由高压力柱单独进给一双柱蒸馏系统。来自高压力柱的一氮产物经膨胀以形成制冷,用于恢复该进给吸附系统,使其压缩并导入燃气轮机系统的燃烧室中。
一空气和氮综合燃气轮机系统还与一燃煤气化系统综合形成燃气轮机用的燃料被阐述在美国专利4,697,415中。从燃气轮机压缩机抽出的空气被直接导入到空气分离系统,此时既无膨胀也无进一步压缩。
美国专利5,386,686描述一空气和氮综合燃气轮机系统,其中合并进给空气的含氧量和将氮回流到燃烧室内是由控制抽出空气或回流氮的流量来控制的。
一些空气和氮综合燃气轮机系统均描述在美国专利5,406,786中,其中进给空气和氧产物压缩生成的热量被用来湿润至燃气轮机系统燃烧室的压缩空气。由燃气轮机压缩机抽出的部分空气可选用地在导入到空气分离系统以前完成膨胀。
氮综合燃气轮机系统均描述在美国专利5,081,845、5,410,869和5,459,994以及英国专利申请No、GB2067668A内。
在产物耗量小的期间低温空气分离系统中贮有一种或多种低温液已描述在美国专利5,082,482、5,084,081和5,224,336中。在产物耗量大的期间所贮液是作为附加产物而被抽出的,或是作为柱间进给或回流被应用于空气分离系统中。
高压氧和/或氮产物可以通过泵抽从一低温空气分离系统中抽出液体来达到,此时通过用冷却进给空气流传热来汽化压缩泵抽液体,其描述由美国专利5,098,457。5,148,680、5,303,556和5,355,682来代表。
目前一些燃气轮机系统在使用上一般供给燃烧空气的压力高达200磅/英寸2(14公斤/厘米2)。最近采用的新型燃气轮机系统是在较高压力下工作,其中所供的燃烧空气是在240至440磅/英寸2(16.8公斤/厘米2至30.8公斤/厘米2)范围内。目前在使用中表明这些高压涡轮系统的工作效率高于较低压力系统,而且对于改进与低温空气分离系统的综合还具有潜力。对于这类高压燃气轮机与低温空气分离系统的综合改进方法均描述在下面公开的本发明中并由后面的权利要求所限定。
按照现有技术的一整套燃气轮机/空气分离流程包含下列诸阶段:在一燃气轮机空气压缩机中压缩空气,与一燃料在一燃气轮机燃烧室内燃烧一第一部分所得压缩空气形成热燃烧产物,在一燃气轮机膨胀器中膨胀所得热燃烧产物,驱动燃气轮机空气压缩机和一可选用发电机,冷却一第二部分压缩空气,从所得冷却压缩空气中去除杂质,接着将所得纯化压缩空气分成一种或多种产物。按照本发明,分离纯化压缩空气是由冷却纯化压缩空气来完成的,完成臌胀一第一部分所得冷却空气,并将所得冷却完成膨胀空气导入到一较低压蒸馏柱内。一第二部分所得冷却空气被进一步冷却,而压力则有所减低,将所得减压冷却空气导入较高压蒸馏柱内,此时其绝对压力一般是在来自燃气轮机空气压缩机的压缩空气绝对压力的20%左右至85%左右。较高压蒸馏柱是在绝对压力120和380磅/英寸2(8.4公斤/厘米2和26.6公斤/厘米2)之间工作,最好是在190和280英磅/英寸2(13.3公斤/厘米2和19.6公斤/厘米2)之间。一增浓氧液底部沉积物流从较高压蒸馏柱中被抽出,加以冷却并减压,将所得冷却减压流体导入到较低压蒸馏柱内。从较低压蒸馏柱中抽出一增浓氮产物。
最好是使至少有一部分来自较低压蒸馏柱的增浓氮产物加热、压缩并导入到燃烧室内。一般增浓氮产物包含小于4克分子%氧。可选用的是该流程还包含冷却一部分加热压缩增浓氮流,减少所得冷却流的压力,并将所得冷却减压流导入到较高压蒸馏柱内。
对所得冷却空气的第二部分进一步冷却可以完全冷凝空气,而该冷凝空气压力则经由等焓节流或完成膨胀在导入到较高压蒸馏柱以前被减小的。另一方面,可以对所得冷却空气加以局部冷凝,该局部冷凝空气被分离成一蒸汽和一液体,其中液体由等焓节流或完成膨胀来减压,将其导入到较高压蒸馏柱内,而蒸汽则经完成膨胀也被导入到较高压蒸馏柱内。
必要时将附加进给空气加以压缩、纯化和冷却,然后将该冷却纯化的空气导入到较高压蒸馏柱内,以补充来自燃气轮机压缩机的纯化压缩空气进给。
在前述空气分离流程中可选用地将一增浓氧液流从较低压蒸馏内抽出泵抽至一高压,通过与纯化压缩空气和任一流程流体的间接热交换使其加热。这样先冷却纯化压缩空气再汽化液体就形成一高压增浓氧气产物。一部分来自较低压力柱的这种压缩液氧是可以贮存的,在该期间对高压增浓氧气产物耗量少并且是在较低环境温度下(即在夜间),当对高压增浓氧气产物的耗量较高期间,并且是在较高环境温度下(即在白天),将所贮液氧抽出并在导入到液氧泵以前与增浓氧液流合并。
高压增浓氧气产物可用于气化碳素物,在一整套气化合并循环发电系统中形成燃气轮机燃烧室用的燃料。
在以前所述的空气分离流程中将一增浓氧液底部沉积物从较高压力柱抽出,加以冷却、减压并将其导入较低压力柱。在该期间对高压增浓氧和氮气产物耗量少,而且是在较低环境温度(即在夜间)下,将一部分底部沉积物液贮存。在该期间高压增浓氧和增浓氮气体产物耗量大,并且是在环境温度较高情况下(即在白天),在将其导入到较低压蒸馏柱以前使所贮液与增浓氧底部沉积物液合并。
任意从较高压蒸馏柱内抽出一增浓氮蒸汽流,加以冷凝,泵抽至一高压,并经由与纯化压缩空气进给到蒸馏柱和任一流程流体的间接热交换使其加热,因而冷却纯化压缩空气和汽化液体形成一高压增浓氮气产物。将一增浓氮液从较高压蒸馏柱中抽出,加以冷却使其减压,并且作为回流液导入到较低压蒸馏柱内。在高压增浓氮气产物耗量少期间,而且是在较低环境温度下(即在夜间),将一部分来自较高压蒸馏柱的增浓氮液贮存起来。当对高压增浓氮气产物的耗量较高期间,并在较高的环境温度下(即在白天)将所贮增浓氮液在导入到较低压蒸馏柱以前作为回流液与增浓氮液合并。
在另一实施例中,一部分所得冷却压缩空气在完成膨胀后,加以冷却、纯化、进一步冷却并将其导入到较高压蒸馏柱内。在完成膨胀阶段所作的功使一部分所需功在将所得热压缩增浓氮流导入到涡轮燃烧室以前压缩来自较低压蒸馏柱的增浓氮产物。如需补充空气进给,将一附加空气流压缩,并且在膨胀和去除其中杂质以前与来自燃气轮机压缩机的冷却压缩空气合并。可选用的是将附加压缩空气在去除其中杂质以前与冷却膨胀压缩空气合并。另一方面,通过应用一多级压缩机可以将补充压缩空气提供到较低压和较高压两个蒸馏柱内,该压缩机提供一中间级较低压力空气流和一最终级较高压力空气流。这些较低压和较高压补充空气流在冷却和纯化以前相应地与较高压力和较低压力空气进给流合并。
不同于现有技术论及整套燃气轮机/空气分离系统作用原理的在于,本发明纯化抽出空气是经由将全部流体冷却到一个中间温度上而导入到空气分离蒸馏柱内,将进入较低压力柱内完成膨胀的一部分抽出,并且进一步冷却进入较高压力柱内减压的剩余空气。对进入较高压力柱内的冷却纯化进给空气的减压是本发明的唯一特征,使其对较低压力柱和较高压力柱都能单独地控制进给压力。此外,上述进给压力对两个蒸馏柱都可起作用,而在其他方面则与从燃气轮机压缩机抽出空气的压力无关。这些蒸馏柱可在恒定压力下工作而与所抽出空气压力的变化无关,这样就使空气分离系统能在一个稳定状态中工作。
现在结合附图和实施例对本发明高压燃气轮机和空气分离系统综合作进一步的阐述,其中:
图1为本发明一个实施例的流程示意图。
图2为本发明第二实施例的流程示意图。
图3为本发明第三实施例的流程示意图。
图4为本发明第四实施例的流程示意图。
图5为说明本发明第四实施例补充空气进给的流程示意图。
图6为说明本发明第四实施例另一补充空气进给的流程示意图。
图7为说明综合一燃气轮机和一空气分离系统的惯用方法流程示意图。
图8为一动力对氧增浓的图表,表示图1中回流氮39的氧增浓对空气分离流程总相对动力的作用。
图9为一动力对进给压力的图表,表示图1中较高压力柱123的空气进给压力对空气分离流程总动力的作用。
目前一般重型燃气轮机系统(气导式涡轮除外)在工作中将压缩空气供给燃烧室其压力高达200磅/英寸2(14公斤/厘米2)左右。最近采用的新燃气轮机系统是在较高压力下工作的,其中所形成的燃烧空气压力高达400磅/英寸2(28公斤/厘米2)以上。目前这些新的高压涡轮系统比低压系统的工作效率要高,因而对改进与低温空气分离系统的综合作业具有潜力。通常这些燃气轮机系统具有较多抽出空气适用于较低环境温度,而且此时氧产物的耗量是最低的,而具有较少抽出空气则适用于较高环境温度,此时氧产物耗量是最大的(即在白天)。
本发明对这些新的高压燃气轮机与低温空气分离系统的综合提出若干可供选用的方法。这些新的综合方法可以有效地使用从燃气轮机压缩机抽出的高压空气来减低设备成本,减少使空气分离系统工作所需的附加动力,而在燃气轮机负荷发生变化时则可提供稳定的工作。
本发明的第一实施例说明在图1的整套燃气轮机/空气分离系统内。燃料1可任意与氮3合并(以后详述),而合并流5则与压缩空气7在燃烧室101内燃烧。燃料1最好是天然燃气或由气化碳素物产生的合成燃气,但其他气体燃料或液体燃料也可使用。压缩空气7是由压缩机105供给的,其压力大于150磅/英寸2(10.5公斤/厘米2),最好是240至440磅/英寸2(16.8至30.8公斤/厘米2)。热燃烧气体9具有温度为2000至2600°F(1100℃至1444℃)和压力为240至440磅/英寸2是经由热气体膨胀器103被膨胀的,以形成转轴作用驱动压缩机105和任一种发电机107。整套燃烧室101、热气体膨胀器103和压缩机105在此可称为燃气轮机109。高压燃气轮机109是典型新的商用系统,例如有通用电气公司制造的G和H系列和ABB公司制造的GT24/26。
由术语“抽出空气”限定的压缩空气11是作为一部分从压缩机105抽出的压缩空气,其温度在600°F(333℃)以上。抽出空气11相对于氮13(以后详述)在热交换器111内被冷却,冷却空气14在冷却器113内被进一步冷却并在纯化系统115内被处理去除水分、二氧化碳和其他在低温下可能冻结的组分。纯化系统115最好是一种已知的可变温度和/或可变压力的吸附系统。
纯化空气15在热交换器117内相对于冷流程流体(以后详述)被冷却,一部分气流17是在-150至-200°F(-83°至-111 ℃)温度下被抽出,并在膨胀器118内完成膨胀。冷却空气19在温度-275与-290°F(-152与-160℃)之间和压力在50与100磅/英寸2(13.5与7公斤/厘米2)之间被导入到较低压蒸馏柱119中。剩余纯化空气21被进一步冷却,而且一般至少有局部冷凝,冷却空气22通过节流阀121被减压,所得空气流23其温度在-240与-260°F(-122与-144℃)之间,而压力则在150与275磅/英寸2之间,被导入到较高压蒸馏柱123内。一般冷却空气22被完全冷凝。按照流程条件,冷却空气22的压力可用另一种方法在一膨胀涡轮内减低。较高压蒸馏柱123最好是在其绝对压力相当于从燃气轮机空气压缩机105抽出空气11的约20%至约85%绝对压力下工作。
较低压力柱119和较高压力柱123是经由重沸冷凝器125在著名用于低温空气分离的双柱蒸馏系统内进行热力综合的。要是抽出空气11不能提供足够的空气进给到该双柱蒸馏系统,就由主空气压缩机127内的压缩空气25来供给补充空气,此时相应地冷却和纯化在冷却器129和纯化系统131内的压缩空气,并且进一步冷却在热交换器117内的纯化空气26。纯化系统131最好是一种已知可变温度和/或可变压力的吸附系统。冷却空气27是在或接近较高压力柱123的底部被引入的。冷却再循环增浓氮流29(以后详述)可选择地通过节流阀133被减压以产生附加制冷作用,而冷却膨胀增浓氮流31则被导入到较高压力柱123内。
原始液氧33在热交换器135内相对于冷氮35(以后详述)被冷却,通过节流阀137-减压,并被导入到较低压力柱119内。增浓氮液37是在一中间点从较高压力柱123中被抽出的,使其在热交换器135中冷却、通过节流阀139减压,并且作为回流液在较低压力柱119顶部被引入。冷氮35一般包含0.1至0.4克分子%氧是在较低压力柱119的顶部被抽出的,使其在热交换器135内加热,并进一步在热交换器117内加热,由此对冷却空气进给流15和16形成制冷作用。最好是将热氮39在压缩机141内压缩,而所得压缩氮12的一部分13则在热交换器111内相对于抽出压缩空气11被加热。所得氮3与燃料1结合被导入到燃烧室101内。
将氮3回流到燃烧室101是最好的工作方式,在燃烧时可减少氧化氮生成,还可使整套燃气涡轮和低温空气分离系统能最有效地工作。热氮39可以有选择地用于其他目的而不是回流到燃烧室101;这一方案可用于例如要是燃料1是受潮的低热值来自一燃煤气化系统的合成燃气。可选择地和最好的是将一部分来自压缩机141的氮41在冷却器143内冷却,而且使其在热交换器117内相对于热流进一步冷却,以形成冷再循环增浓氮流29,如前所述加以节流并导入到较高压力柱123内。
高纯度氮43包含低于0.2克分子%氧是从较高压蒸馏柱123中抽出的,使其在再沸冷凝器125中相对于较低压力柱119底部的沸液氧冷凝。一部分所得液氮对较高压力柱123形成回流液,而剩余液氮45则由泵145有选择地泵抽至50至490磅/英寸2(3.5至34.3公斤/厘米2)的压力。压缩液氮47被加热并相对于冷却流在热交换器117内被汽化形成高压氮产物49。在一最好工作方式中,此时需要高压氮产物,由泵145将液氮45泵抽至一超临界压力,而超临界液47则在热交换器117内被加热,形成高压氮产物是在490磅/英寸2或更高的压力下。
液氧51包含少于15克分子%氮是从较低压力柱119的底部被抽出的,并在泵147内可选择地被泵抽至压力80至250磅/英寸2(5.6至17.5公斤/厘米2)。压缩液氧53被加热并相对于冷却流在热交换器117内汽化,以生成气体氧产物54,将其在压缩机149内可选择地压缩至120至2000磅/英寸2(8.4至140公斤/厘米2)形成高压氧产物55。
另一抽出并泵抽液氧45的方案是将氮作为蒸汽和/或液体从较高压力柱123顶部抽出,也可作为流体45或作为一部分蒸汽流43抽出,在热交换器117内加热该抽出流体。可能需要一氮产物压缩机(未示出)来形成一高压氮产物相当于图1中的氮产物49。在另一方案中,氧是作为一蒸汽从较低压力柱(未示出)底部抽出的,而抽出蒸汽则在热交换器117中加热,而且必要时可在压缩机149内压缩。在该方案中压缩机149和以前所述的方式相比可能需要更多级并且耗费更多动力来形成高压氧产物55,此时液氧是在汽化前由泵147来抽出和压缩的。和上述两个方案相反的是,本发明的一最佳实施例利用对上述液氧和液氮作有选择地泵抽。泵抽液体产物的优点是消除或减少热产物压缩,这在某些情况下将会减低总空气分离功率耗量,还有优点和对全部产物作压缩相比可保持工作稳定性。
在某些工作条件下,冷却空气22被局部冷凝,最好是在膨胀前将两相流体分成蒸汽和液体。这种方案示于图2中,如在图1的实施例那样,冷却和纯化空气15的一部分17在膨胀器118内完成膨胀,而所得膨胀冷却流体19则进给至较低压力柱119中。但剩余物21只有局部在热交换器117内冷凝,而所得两相流体22则在分离器203内被分离。液体205通过节流阀207被减压。蒸汽209被稍为加热,在膨胀器211内完成膨胀,所得冷却完成膨胀流体213与来自节流阀207的减压流体合并,该合并流体215被导入到较高压力柱123内。
这一方案在纯化空气15流量改变显著和/或周期性地超时是有用的。这个实施例在一气化合并循环发电系统中是特别有用的,此时氧产物55被用于一燃煤气化系统中产生燃料1使燃气轮机系统109工作。在一气化合并循环系统中,抽出空气11的有效流量一般在来自发电机107的动力耗量增大时和环境温度增高时是减少的。在这一情况下,流体22可能被完全冷凝,并且没有蒸气209可适用于膨胀器211,因此会使该膨胀器不工作。另一方案是抽出空气11的有效流量在来自发电机107的动力耗量减少时和/或环境温度减少时增大。在这一情况下,流体22会被局部冷凝,而蒸汽209则会在膨胀器211内完成膨胀,由此对较高压力柱123提供附加制冷作用。这样随后可如下所述使液体产物供量增加。
在抽出空气11可用性增加时选用膨胀器211工作是本发明的一个重要特征,而且最好是连同利用图3所示实施例的附加特征。在低环境温度和动力耗量减少时,这一般是在夜间,空气流22只是局部被冷凝,而蒸汽209则是在膨胀器211内如前面所述完成膨胀。在这期间形成的制冷作用加强使其可以贮存作为液流51抽出的液氧,并将其泵抽至形成压缩液氧53。将该液的一部分301抽出并贮存在贮器303内。随后,在动力耗量增加期间(因而氧产物55耗量也增加而抽出空气11的可用性则减少),将液氧305从贮器303中抽出,经过阀307减压,将其导入到泵147的吸入装置。一部分液氧305可按要求作为液体产物抽出(未示出)。如前所述在该期间膨胀器211是不工作的;此外,可以不需要膨胀器118的工作,而所有空气进给到空气分离系统则可由流体27和215来提供。
在另一贮液方法中,此时是在供氧和动力耗量少的期间,原始液氧33的一部分309被抽出并被贮存在贮器311内。随后,在动力耗量增大期间(而且因此对氧产物54或55耗量也增大,而抽出空气11的可用性则减少),将原始液氧313从贮器311抽出,与原始液氧33合并,在热交换135中冷却,经阀137减压,并将其导入到较低压力柱119。到那时才可将附加液氧51从其中抽出。这一可选方案特别有用,要是氧产物55对回流氮13的关系必须保持不变。
在另一可选用贮液方法中,此时是在供氧和动力耗量少的期间,液氮38的一部分315被抽出并被贮存在贮器317内。随后,在动力耗量增大期间(而且因此对回流氮产物13的耗量也增大,而抽出空气11的可用性则减少),将原始液氮从贮器317抽出,经阀319节流,而减压液321则与来自节流阀139的液氮合并,接着将合并氮流导入到较低压力柱119中。这一供给较低压力柱119的附加氮就使从较低压力柱119抽出附加氮35成为可能,因而形成回流氮13的流量增加。要是该空气分离系统是适用于供氮而不是供氧,则这一可选用方案是特别有用的。
这一循环使用贮存低温液(高纯度氧、原始氧或氮)使该空气分离系统能在较低动力耗量下工作,此时是在氧或氮耗量大的期间,因为该系统(特别是主空气压缩机127)可以适用平均供气量而不是高峰供气量。这样就减少压缩机主要费用和该空气分离系统整个总的和最大动力消耗,所以是特别有用的,此时最高动力值大大高于正常(平均)动力。
本发明的一可选用实施例示于图4,其中从热交换器111抽出的冷却空气12一部分401在膨胀器403内完成膨胀,进一步在冷却器129内被冷却,并在纯化系统131内被处理去除水分、二氧化碳和其他可在低温下去除的组分。纯化空气26进一步相对于热交换器117内的热流被冷却,而纯化冷却空气流27则被导入较高压蒸馏柱123。抽出空气12的剩余部分14如前所述形成对蒸馏柱119和123的进给。这一可选用实施例类似于图1的实施例,除了通往冷却器129的空气是由来自膨胀器403的膨胀抽出空气(图4)提供的,而不是由来自主空气压缩机127(图1)的空气提供的。
膨胀涡轮403与压缩机405接合并使其驱动,该压缩机将回流氮36压缩至呈一中间压力100至200磅/英寸2(7至14公斤/厘米2),并对其在压缩机407内进一步压缩以形成压缩回流氮13,该回流氮则是在热交换器111内加热的,与燃料1合并,并且如前所述被导入到燃烧室101内。级间氮流409是从压缩机407抽出的,在冷却器143和热交换器117内被冷却,并经节流阀133减压,以对较高压蒸馏柱123提供冷氮再循环流31。这样随后在从较高压力柱123抽出的氮产物流45内形成一较高纯度。这一实施例类似于图1-3的实施例,除了一部分压缩再循环氮409(相当于图1的氮41)的动力是由使压缩机405工作的膨胀器403所提供的以外。本发明的这一实施例之所以可行是由于本发明的一个主要特征,即较高压蒸馏柱123的工作压力低于抽出空气12或401的压力。这样膨胀器403的工作与节流阀121相结合,就形成将空气流23和27进给到较高压力蒸馏柱123。此外,由膨胀器403完成还原可减少压缩回流氮13和再循环氮409所需的功,因而使经由图4压缩机407的动力耗量明显地小于图1中压缩机141的动力耗量。
在上述图4的实施例中,空气分离系统的全部进给空气是由抽出空气12提供的。在某些设计条件下,附加进给空气将是需要的,以补充抽出空气12,此时燃烧室101内压缩空气需要较大流量。这样就能以图5所示的一可选用方式来完成,此时补充空气501由压缩机503来压缩,而所得补充压缩空气505则在分成空气进给流14和401以前与抽出空气12合并。压缩机503在该情况下最好是一绝热压缩机,虽则可按要求使用一中间冷却压缩机。另一方面,可以将空气501作为流体507压缩至一较低压力,并在进到冷却器129以前与来自膨胀器403的膨胀空气404合并。按该方式补充空气作为进给流27只是提供给高压蒸馏柱123。另一可选用方式示于图6,其中空气501是由多级压缩机601压缩的;级间压缩空气603是在一中间压力下被抽出,并与来自膨胀器403的排放空气流404合并。该合并空气流经如前所述处理形成至较高压蒸馏柱123的空气进给27。附加压缩空气605是从压缩机601的最后级抽出的,并且与抽出空气14合并形成冷却、膨胀的空气进给15,然后如前所述导入到蒸馏柱119和123中。压缩机601可以或是一绝热压缩机或是一中间冷却压缩机。
在上述实施例中结合图1至6,冷却器113、129和143都是在压缩后用于冷却气流的。在这些冷却器中冷却工作一般是由与水间接热交换提供的。在由这些冷却器排出的水中所回收的热可用于燃气轮机/空气分离流程别的部位。这些使用包含在导入到燃烧室101以前对回流氮3和/或可燃气体1增湿,予热锅炉进给水,和加热气体纯化系统115和131的吸附剂再生气体。
实例1
对图1所述本发明实施例来说流程热量和物质已准备平衡,其中来自高压燃气轮机109的抽出空气11适用于压力为348磅/英寸2和温度为750°F(24.36公斤/厘米2和416℃),并在压力为338磅/英寸2(23.66公斤/厘米2)下供给纯化空气进给15。环境温度为95°F(52℃)。较高压蒸馏柱123和较低压蒸馏柱119相应工作平均压力为185和63磅/英寸2(13和4.4公斤/厘米2)。液氧51被泵抽至压力为152磅/英寸2(10.64公斤/厘米2),经汽化,并被压缩至743磅/英寸2(52公斤/厘米2)以形成氧产物55。液氮45被泵抽至压力为998磅/英寸2(70公斤/厘米2),并经汽化形成氮产物49,此时压力为991磅/英寸2。回流氮39包含0.86克分子%氧。热量和物质平衡的流体概述被概列在表1内。
图7表示一个双柱空气分离系统在某种程度上是与一燃气轮机综合的,此时利用现有技术的若干特征。燃气轮机701相当于图1的燃气轮机109,并且在压力为348磅/英寸2(24.36公斤/厘米2)下提供抽出空气703。在图7的惯用空气分离系统中,冷却抽出空气705经膨胀,与来自压缩机700的补充压缩空气709合并,在冷却器711中被冷却,并在纯化系统723内纯化去除可冷凝杂质。纯化空气713在压力为190磅/英寸2(13.3公斤/厘米2)下在热交换器725内进一步被冷却,而冷却空气729的一部分727则在膨胀器731内完成膨胀,并被直接导入到较低压蒸馏柱733内。剩余进给空气被进一步冷却至形成冷进给空气735,并被导入到较高压蒸馏柱737内。氮739是从较低压力柱733抽出的,在热交换器741和725内被加热,并由压缩机747压缩至形成回流氮749。其中一部分相对于热交换器704内抽出空气被加热,并被导入到燃气轮机701的燃烧室内。该回流氮749的剩余部分751在冷却器753和热交换器725内被冷却,而冷却氮755则是经节流阀757被减压,并被导入到较高压蒸馏柱737内。液氧763被抽出后,在热交换器725内被汽化,而汽化氧764则在压缩机765内被压缩至形成氧产物767,其压力为743磅/英寸2(52.01公斤/厘米2)。氮蒸汽761被抽出后并在热交换器725内被加热,而热氮762则在压缩机769内被压缩至形成氮产物771,其压力为993磅/英寸2(69.51公斤/厘米2)。
表1
实例1流体性质(图1)
(95°F环境温度)流体 压力 温度 流量 组成(克分子%)序号 (磅/英寸2) (F度) (磅克分子/时) 相 N2 Ar O2 15 338 80 6842 V 78.12 0.93 20.95 17 335 -187 1772 V 78.12 0.93 20.95 22 333 -247 5070 L 78.12 0.93 20.95 26 190 80 18783 V 78.12 0.93 20.95 39 60 75 22419 V 98.78 0.36 0.86 42 388 80 4125 V 98.78 0.36 0.86 47 998 -254 1848 L 99.85 0.05 0.10 48 993 75 1848 V 99.85 0.05 0.10 53 152 -267 5483 L 1.87 3.13 95.00 54 147 75 5483 V 1.87 3.13 95.00 55 743 269 5483 V 1.87 3.13 95.00
热量和物质已实现平衡说明上述参阅图7的流程,而其结果则示于表2中。图7的惯用空气分离系统产生如图1中本发明实施例相同的氧产物和氮产物。
按图1和7空气分离流程的相对动力耗量经计算并列于表3中比较,环境空气温度为95°F(52.77℃)而且对燃气轮机和空气分离系统是以全部设计负荷工作的。对每一单独压缩机和膨胀器的相对动力经计算并加以标称。总相对动力消耗值是按压缩机和膨胀器实际总动力消耗加以标称的。结果表明图1所示本发明的空气分离法使用一平均总动力,其值比在这些条件下图7所示惯用法的总动力小1.3%。
表2
实例1的流体性质(图7)
(95°F环境温度)流体 压力 温度 流量 组成(克分子%)序号 (磅/英寸2) (F度) (磅克分子/时) 相 N2 Ar O2 709(a) 192 80 18967 V 77.35 0.92 20.74 713 190 80 25619 V 78.12 0.93 20.95 727 187 -226 1288 V 78.12 0.93 20.95 735 185 -238 24331 V 78.12 0.93 20.95 745 58 75 20185 V 98.70 0.44 0.86 754 388 80 1896 V 98.70 0.44 0.86 761 185 -266 1848 V 99.83 0.07 0.10 762 180 75 1848 V 99.83 0.07 0.10 763 64 -268 5482 V 2.13 2.87 95.00 764 59 75 5482 V 2.13 2.87 95.00 767 743 193 5482 V 2.13 2.87 95.00 771 987 80 1848 V 99.83 0.07 0.10(a)包含0.99克分子%水
表3
空气分离相对动力消耗
实例1
(95°F环境温度)
本发明 惯用的
(图1) (图7)主空气压缩机(127、700) 1.000 1.000氧气压缩机 (149、765) 0.653 1.000回流N2压缩机(141、747) 1.000 0.914纯N2压缩机(759) 1.000液氧泵(147) 1.000液氮泵(145) 1.000冷却空气膨胀器(118、731) 1.000 0.452热抽出空气膨胀器(707) 1.000净总相对动力消耗 0.987 1.000
进一步的相对动力计算是在一较低环境温度41°F作出的,用于最高燃气轮机设计负荷和设计负荷的86.8%关小条件,而其结果则概列于表4内。
表4
实例1的空气分离相对动力消耗
(41°F环境温度)
本发明 惯用综合
(图1) (图7)最高设计流量 1.0127 1.0000关小(设计的86.8%) 0.8140 0.8110
可见本发明和惯用流程的动力耗量在关小时是大致相等的,而在最高设计负荷时本发明则有1.27%动力损失。本发明超过图7惯用流程的显著优点是消除空气膨胀器707和氮压缩机769。此外,图1的氧压缩机149和图7的压缩机765相比是较简单机械,该机具有较低的压缩比。虽然图1中本发明需要两空气纯化装置115和131,这并不是一严重的缺点,因为多重平行纯化装置一般均为大型综合燃气轮机/空气分离系统所需的。
实例2
图3的实施例经历白天环境温度和耗电量变动而在一气化合并循环发电系统内工作。氧55被用于一燃煤气化系统(未示出)以形成燃料1,在夜间工作时环境空气温度较低,而对由发电机107发出的电耗量则是减小的。对该实例来说,夜间温度设为41°F为期10小时,并且在这些条件下抽出空气其压力为343磅/英寸2(24.01公斤/厘米2)供给该空气分离系统所需进给空气的41.3%;剩余部分则是由主空气压缩机127来供给。该空气分离系统产生含纯度为95克分子%的氧51每天2000吨。含氧的氧气55在压力为743磅/英寸2(52.01公斤/厘米2)时每天1960吨被应用于燃煤气化系统(未示出),而剩余部分40则是每天40吨被贮在贮器303内10小时。抽出空气的一部分17在膨胀器118内膨胀,并进给至较低压蒸馏柱119,而剩余部分22则被局部冷凝并分成液体205和蒸汽209。液体205经节流进到高压力柱123;蒸汽209被局部加热、在膨胀器211内膨胀,并进给至较低压蒸馏柱119。由膨胀器211产生的制冷作用使附加液氧在夜间为如上所述贮存而工作。
对按图3所示本发明的夜间工作(41°F)来说,热量和物质已实现平衡,其结果概列于表5内。为了对比,对用图2实施例的等同物需要量来说,热量和物质已实现到平衡,此时在夜间工作未贮存液氧,其结果概列于表6内。
表5
实例2的流体性质
(图3贮存液氧)
(41°F环境温度)体 压力 温度 流量 组分(克分%)序号 (磅/英寸2) (F度) (磅克分子/时) 相 N2 Ar O2 15 338 80 10580 V 78.12 0.93 20.95 17 335 -187 1516 V 78.12 0.93 20.95 26 190 80 15037 V 78.12 0.93 20.95 39 60 75 22565 V 98.77 0.37 0.86 42 388 80 4278 V 98.77 0.37 0.86 49 993 75 1848 V 99.84 0.06 0.10 54 147 75 5373 V 1.90 3.10 95.00 55 743 269 5373 V 1.90 3.10 95.00205 333 -240 4917 L 74.68 1.04 24.28210 333 -240 4146 V 82.20 0.80 17.00301 152 -267 110 L 1.90 3.10 95.00
表6
实例2的流体性质
(图1-未贮存液氧)
(41°F环境温度)流体 压力 温度 流量 组分(克分子%)序号 (磅/英寸2)(F度) (磅克分子/时) 相 N2 Ar O2 15 338 80 10578 V 78.12 0.93 20.95 17 335 -187 1553 V 78.12 0.93 20.95 22 333 -240 3741 V 82.47 0.79 16.74 22 333 -240 5285 L 75.04 1.03 23.93 26 190 80 15035 V 78.12 0.93 20.95 39 60 75 22586 V 98.78 0.37 0.85 42 388 80 4303 V 98.78 0.37 0.85 49 993 75 1848 V 99.84 0.06 0.10 54 147 75 5482 V 1.90 3.10 95.00 55 743 269 5482 V 1.90 3.10 95.00
在白天一段时间,环境温度和电力耗量都增加。空气分离系统的动力耗量在这一期间是最大的,而可用抽出空气11的量则有所减少。在这一实例中,图3的实施例是在70°F(38.8℃)温度下工作5小时,此时抽出空气11由空气分离系统供给所需空气进给量的27.4%,而剩余部分则由主空气压缩机127供给。一些工作压力均相当于上述那些夜间工作压力。液氧51是从较低压力柱119以每天1920吨的速度抽出的,并且是由抽出所贮存液氧305来补充的,此时其速度为每天80吨提供全部含氧产物55,其速度为每天2000吨。在这一期间,膨胀器118和211可能是空闲的,因为进给空气15的可用量被减少,而在热交换器117内汽化的附加液氧则形成充分的制冷作用。在这些情况下,抽出空气15被全部冷凝并且作为一液体进给215进给至较高压力柱123内。
对按图3所述本发明的白天工作(70°F)来说,热量和物质达已实现平衡,其结果概列在表7内。为了对比,对用图1实施例的等同物需要量来说,热量和物质已实现平衡,其中在夜间工作时没有贮存液氧,其结果概列于表8
表7
实例2的流体性质
(图3-贮存液氧)
(70°F环境)流体 压力 温度 流量 组分(克分子%)序号 (磅/英寸2)(F度)(磅克分子/时) 相 N2 Ar O2 15 338 80 6738 V 78.12 0.93 20.95 26 190 80 17852 V 78.12 0.93 20.95 39 60 75 20648 V 98.80 0.37 0.85 42 388 80 3172 V 98.80 0.37 0.85 49 993 75 1848 V 99.85 0.05 0.10 54 147 75 5482 V 1.82 3.18 95.00 55 743 269 5482 V 1.82 3.18 95.00205 333 -244 6736 L 78.12 0.93 20.95305 152 -244 219 L 1.82 3.18 95
表8实例2的流体性质(图1-未贮存液氧) (70°F环境)流体 压力 温度 流量 组分(克分子%)序号 (磅/英寸2)(F度)(磅克分子/时) 相 N2 Ar O2 15 338 80 6736 V 78.12 0.93 20.95 17 335 -187 1777 V 78.12 0.93 20.95 22 333 -247 4959 L 78.12 0.93 20.95 26 190 80 18877 V 78.12 0.93 20.95 39 60 75 22419 V 98.79 0.36 0.85 42 388 80 4137 V 98.79 0.36 0.85 49 993 75 1848 V 99.85 0.05 0.10 54 147 75 5482 L 1.87 3.13 95.00 55 743 269 5482 V 1.87 3.13 95.00
图1和3的空气分离流程相对动力耗量经计算并列于表9内对比,其工作环境空气温度如上所述为41°F和70°F(22.7℃和38.8℃)。相对动力经计算并对各单独压缩机和膨胀器标称。总相对动力耗量是按压缩机和膨胀器实际总动力耗量标称的。由于白天工作设定主空气压缩机127所需设计容量,图3的实施例就可使用一较小的压缩机(5.4%低于设计容量),而总动力耗量在白天工作时因而减少。从表9可知,使用图3的夜间贮氧可使空气分离动力耗量在上述两工作期间有所减少。总的平均动力按24小时期间计算对比于没有如图1所示这一特征的工作比使用图3液氧贮存实施例小1.4%。
如上所述在动力耗量小的期间贮存低温液体基本上是贮能的一种方式。在动力耗量大的期间(即在白天)使用这种贮能是特别有利的,因为电力值在这些时期可以高于动力耗量小的时期值。
表9
空气分离相对动力耗量
(实例2)
41°F环境 70°F环境
图3 图3 图3 图1
(贮存 (未贮存 (贮存 (未贮存
液氧) 液氧) 液氧) 液氧)主空气压缩机(127) 0.786 0.785 0.946 1.000氧气压缩机(149) 0.980 1.000 1.000 1.000回流N2压缩机(141) 0.999 1.000 0.915 0.993液氧泵(147) 1.000 1.000 1.000 1.000液氮泵(145) 1.000 1.000 1.000 1.000膨胀器1(118) 0.855 0.876 1.000膨胀器2(211) 1.000净总相对动力耗量 0.899 0.905 0.946 1.000
实例3
本发明的一实施例是由图4的流程来说明的,此时未使用液氧泵147和高压冷凝空气22。在该实施例中,所有抽出空气15是经由膨胀器118进入较低压力柱119被冷却和膨胀的。较高压蒸馏柱123是在一最佳进给压力约245磅/英寸2(17.15公斤/厘米2)下工作的,而氧产物55则是在压力为855磅/英寸2(59.85公斤/厘米2)下由压缩机149来形成的。氮气产物49是在压力为1100磅/英寸2(77公斤/厘米2)下经由泵抽液氮45至一超临界压力和加热所得压缩液47在热交换器117内来形成的。经由将氮47导入到热交换器117作为一超临界液,在那时可实现更有效的热交换,因为所得交换器的冷却曲线较之可能使临界液氮在交换器内被汽化而出现的更为平行。对本发明该实施例来说,热量和物质已实现平衡,其结果概列于表10内。
表10
实例3的流体性质
(图4)流体 压力 温度 流量 组分(克分子%)序号 (磅/英寸2)(F度) (磅克分子/时) 相 N2 Ar O2 3 490.0 750.0 71.39 V 98.77 0.37 0.86 11(a) 450.0 800.0 101.00 V 77.35 0.92 20.74 15 435.0 80.0 6.91 V 78.12 0.93 20.95 26 245.0 80.0 93.09 V 78.12 0.93 20.95 27 242.3 -239.3 93.09 V 78.12 0.93 20.95 31 240.4 -239.6 24.90 V 98.77 0.37 0.86 36 81.5 75.0 96.29 V 98.77 0.37 0.86 42 245.4 80.0 24.90 V 98.77 0.37 0.86 45 240.0 -257.8 7.21 L 99.84 0.06 0.10 47 1110.0 -243.5 7.21 L 99.84 0.06 0.10 49 1101.0 80.0 7.21 V 99.84 0.06 0.10 53 86.9 -259.8 21.4 V 1.90 3.10 95.00 54 81.9 75.0 21.4 V 1.90 3.10 95.00 55 855.0 220.7 21.4 V 1.90 3.10 95.00(a)包含0.99克分子%水
实例4
质量和能量平衡是用实例1的循环和流程条件算出的,其中回流氮39(图1)的氧浓度是从约0.48至约1.05克分子%变化的,以此来确定对空气分离流程总相对动力的作用。实际动力在1.05克分子%下标称,而在较低浓度下总相对动力则是在该基础上确定的。
一些结果示出在图8上,说明意外地发现相对动力作为氮纯度的一函数具有一最小值。对于该实例的循环和工作环境来说,该流程最好是这样来工作,使回流氮39包含约0.5和0.8克分子%之间的氧。这一发现是很意外的,因为在一般合并循环动力厂内操作人员在回流氮纯度上指定一最大值为1至2克分子%氧,而且一般认为较高纯度回流氮会使较大的动力被空气分离系统所消耗。在本发明环循中,在再循环氮41至较高压力柱123的流量稍有增加时对回流氮39的纯度起一显著的作用。增加回流氮39的纯度就增加总的氧回收,而对一所需氧产物55产量来说则减少主空气压缩机127动力。按图8的相对动力在回流氮纯度减少时减少至一最佳值约为0.65克分子%氧。
实例5
质量和能量平衡是用实例1的循环和流程诸条件经由改变空气进给27至较高压力柱123(图1)的压力从约155至约275磅/英寸2(约10.85至约19.25公斤/厘米2)来算出的,以确定该压力对空气分离流程总动力的作用。对空气进给23和再循环氮31的压力作相应调整。总动力是在若干选定空气进给压力下在该范围内算出的,并且意外地发现动力对进给压力有一最小值约为245磅/英寸2(17.15公斤/厘米2)。计算动力值均被定为最小值,而其结果则示于图9内,说明意外发现相对动力作为较高压力柱空气进给压力的一函数具有一最小值。对于该实例的循环和工作参数来说,该流程最好是在对较高压力柱的一最佳进给压力下工作,其范围为约190至约280磅/英寸2(约13.3至约19.6公斤/厘米2)。这一发现和现有燃气轮机-空气分离循环是不同的,其中较高压力柱的最佳压力出现在低得多的压力下;例如对美国专利4,224,045循环来说,该最佳值出现在约50磅/英寸2(3.5公斤/厘米2)时。
按本发明使较高压力柱在该最佳压力下工作对整套燃气轮机/空气分离系统来说具有下列诸优点:
●蒸馏作业设计更紧密地接近平衡曲线,有助于增加热力可逆性和分离流程的效果。
●作业线的规模和价值是较小的,这样就可减少主要投资。
●产物压缩耗能较少。
●由燃气轮机发电机发电的总成本可降低。
在上面所述所有实施例中本发明的主要特征在于,较高压蒸馏柱123在一比抽出空气11压力低得多的进给压力下工作,最好是将进给空气23在一绝对压力下导入到较高压蒸馏柱123内,该压力相当于从燃气轮机空气压缩机105抽出空气11绝对压力的约20%至约85%。这一重要特征使空气分离系统能在恒定压力下稳定地工作,其中较高压蒸馏柱的压力低于从燃气轮机压缩机105抽出空气11的最小有效压力,该压力在燃气轮机109以局部负荷工作时可以有很大的变化。此外,空气分离系统的恒定压力工作保证了氧产物压缩机149和回流氮压缩机141(或可选用回流氮压缩机405和407)在接近恒定的抽吸压力下工作,这在随后可将这些压缩机的设计用于较窄的和更有效的工作范围内。
不同于现有技术论及整套燃气轮机/空气分离系统作用原理的在于,本发明的纯化抽出空气15是经由冷却全部流体至一中间温度来导入到该空气分离蒸馏柱内的,抽出一部分使其完成膨胀进入到较低压力柱119内,并且进一步冷却剩余空气使其减压进入到较高压力柱123内。冷却纯化进给空气22的减压进入到较高压力柱123内是本发明唯一特征,使其对较低压力柱119和较高压力柱123的进给压力可以单独控制。此外,对两柱的进给压力可在另一低于抽出空气11而与其无关的压力下工作。
本发明的一个重要实施例是在低环境温度和/或低产物耗量的期间贮存选定的低温液。这一实施例最好是在液氧和/或液氮被加热或汽化形成高压气体产物以前连同泵抽液氧和/或液氮一起使用。这一实施例与上述主要实施例相结合可使一整套空气分离/燃气轮机系统能高效地工作,而与燃气轮机工作的变化性无关。这些实施例与新的高压燃气轮机系统相结合是特别有用的,该系统是在高于190磅/英寸2(13.7公斤/厘米2)的压缩机排放压力下工作的,其范围最好是在240至440磅/英寸2(16.8至30.8公斤/厘米2)。
本发明不限于使用一双柱空气分离流程,并且可在另一些循环中使用,即在产物耗量和环境温度易变的情况下工作。例如本发明可用于单柱、分馏柱、冷压缩和其他各种空气分离流程中。本发明的一些实施例还可用于使用三柱蒸馏系统的空气分离流程中,其中一第三柱是在一介乎较低和较高压力柱的压力下工作,例如那些循环阐述在美国专利4,022,030、5,291,737和5,231,837;待授权美国专利申请序号08/375,927和欧洲专利申请EP0636845A1。
本发明的主要特征均完整地阐明在这一说明书内。本行业专业人员可以理解本发明,并可作出各种变更方案而不脱离本发明的基本思路,并可不偏离和等同于下面权利要求的范围。为了清晰限定,权利要求还包含显示在附图中的参考特征。