《波分复用光学性能监视器.pdf》由会员分享,可在线阅读,更多相关《波分复用光学性能监视器.pdf(16页完整版)》请在专利查询网上搜索。
本发明总体涉及光学信号设备,其用于通过评估不同波长信道中的信息来监视波分复用系统中的光学信号质量。 。
CN02824553.9
2002.12.10
CN1602598A
2005.03.30
撤回
无权
发明专利申请公布后的视为撤回|||实质审查的生效|||公开
H04B10/08; H04J14/02
纳幕尔杜邦公司;
L·埃尔达达; P·格尔哈德特
美国特拉华州威尔明顿
2001.12.10 US 60/338,952
中国专利代理(香港)有限公司
邹光新;王忠忠
本发明总体涉及光学信号设备,其用于通过评估不同波长信道中的信息来监视波分复用系统中的光学信号质量。
1. 一种波分复用(WDM)光学性能监视装置,其基于可调谐的滤光器,并显示出基本上与偏振无关的特性,其中偏振无关性是通过使用从下组选出的设备以及偏振器而获得的,该组包括:(a)偏振模式分路器;(b)功率分路器或开关。2. 如权利要求1的装置,其中可调谐滤光器基于布拉格光栅。3. 如权利要求1的装置,其显示出基本上绝对的波长精确性。4. 如权利要求3的装置,其中绝对的波长精确性是通过使用绝对的波长基准获得的。5. 如权利要求4的装置,其中将专用光源与该绝对波长基准结合使用。6. 如权利要求4的装置,其中绝对波长基准包括反射滤光器。7. 如权利要求6的装置,其中反射滤光器是光纤布拉格光栅。8. 如权利要求7的装置,其中光纤布拉格光栅是无热的。9. 如权利要求4的装置,其中绝对波长基准包括透射滤光器。10. 如权利要求9的装置,其中透射滤光器是校准器。11. 如权利要求10的装置,其中校准器是无热的。12. 如权利要求1的装置,其中对将被监视的入射光学信号的以下特性中的至少一个进行测量:每一波长信道中的光功率、光学信噪比(OSNR)、信道的中心波长以及偏振模式色散(PMD)。
波分复用光学性能监视器 发明领域 本发明总体涉及光学信号设备,该设备通过评估不同波长信道中的信息(例如,每一波长信道中的光功率、光学信噪比、信道的中心波长)来监视波分复用系统中的光学信号质量。 背景技术 为了确保光学信号的质量,光学通信公司将光学监视器放置在其网络中的不同位置,网络中的监视器位置的数量越多,对于所述通信公司来讲,就越容易找出问题的根源在哪里,从而更快地将它修正。为了成为有效的信息,光学监视器所收集的信息需要具有高度的精确性。一种能够限制该监视器的精确性和有效性的效应是偏振相关性。例如,一种基于可调谐布拉格光栅的光学陷波滤光器可能具有过高的双折射程度(两个偏振本征模(两个独立的偏振态,这两个偏振态的线性组合形成了其他所有的偏振态)的折射率之差),导致滤光器下降了不同的波长(在特定的调谐设置时),这种下降是取决于偏振的,或者下降了两个波长的组合(如果该光学信号是两个偏振本征模的组合)。这种偏振的分离是不符合要求的,这是因为它降低了监视器的精确性,极端的情况下还会使监视器无效。 典型地,光学性能监视器的核心在于其可调谐滤光器。当通过一些致动机构(热、压力、电场、磁场等)对滤光器进行调谐时,滤光器的一些特性就会典型地发生变化(除下降了不同波长之外)。改变的特性会包括一些有害的影响,随着滤光器被调整到所关心的波长带中的不同位置,这些影响会变得更为严重或更不严重。 各种类型的光学性能监视器可以通过以下文章获知:US6433901描述了一种“光学性能监视器”;US6407376描述了一种“具有自校正功能的光学信道监视系统”,在该系统中同时执行光学性能的监视和校正;US6396051描述了一种“用于DWDM系统的高分辨率光学性能监视器”,其利用陷波滤光器执行光学性能的监视,该滤光器是形成在玻璃光纤中的布拉格光栅;US6373632描述了一种“可调谐法布里-珀罗滤光器”;US6344910描述了一种“光学性能监视器”,其中利用解复用器和开关执行监视;US6341039描述了一种“用于可调谐法布里-珀罗滤光器的柔性薄膜”,其中利用可调谐法布里-珀罗滤光器执行光学性能的监视;US6310703描述了一种“在波分复用光纤光学系统中用于光学性能监视的方法和装置”,其中的光学性能监视是通过以下方法执行的:将光学信号分成两个部分,并将一部分通过光学滤光器发送,该光学滤光器具有作为波长的函数的连续递增或递减的透射率,而保持另一部分未受干扰,将两部分的比值用于校正,同时获得从未受干扰的信号部分读取的功率;US6407376描述的一种“具有自动校正功能的光学信道监视系统”,同时执行光学性能的监视和校正。 以上的全部技术涉及多个大型光学元件,而不涉及集成光学元件(芯片上的光学电路),并且没有解决光学滤光器的偏振相关特性的问题。 术语 “可调谐滤光器”在这里表示一种设备,其在所关心的波长带上进行扫描,从而探测信号并将这些探测得到的信号按规定路线发送到光功率探测器。 “光功率探测器”在这里是一种用于探测信号的设备(例如,光电二极管)。“致动机构”在这里表示一种用于引起滤波器致动机构设备中的调谐变化的装置,其包括热、压力、电场、磁场以及类似的机构。 “双折射程度”为两个偏振本征模的折射率之差。 “耦合器”在这里是由两个或多个光纤组成的波导,这些波导彼此靠得很近,接近程度使得相邻的波导的模场在某种程度上相互重叠。 “偏振本征模”是指一种独立的偏振态。每个独立的本征模的线性组合形成了其他所有的偏振态。本征模的分离使得可以对“偏振模式色散(PMD)”进行测量。 “光学监视器”是指可以安置在光学网络中不同位置的一个或多个设备,从而确保光学信号的质量。所监视的信息包括每个波长信道地光功率、光学信噪比(OSNR)、信道的中心波长和偏振模式色散。 “波分复用系统”在这里是指“WDM”。 发明概述 本发明通过将两个偏振本征模分开进行处理,避免了由调谐机构引起的性能偏差。每个偏振本征模的滤光器可以以不同的速率进行调谐,从而适应了随着调谐由于双折射程度的变化而引起的偏振分离的变化。本发明总体涉及光学信号设备,该设备通过评估不同波长信道中的信息(例如,每一波长信道中的光功率、光学信噪比、信道的中心波长),从而监视波分复用系统中的光学信号质量。该设备的实施例包括可调谐滤光器,该滤光器在所关心的波长带上进行扫描,并且在它们调谐时分出窄信号,其中所述分出的信号按照规定路线被发送到光功率探测器(例如光电二极管)。在滤光器对两个偏振本征模进行了不同处理的情况下,在本设备的一些实施例中通过沿着两条独立的路径发送两个偏振本征模并将每个模分开地进行处理,从而校正这种偏差。两种偏振本征模的分离也使得可以对偏振模式色散进行测量。 更特别地,本发明涉及波分复用(WDM)光学性能监视器装置,该装置基于可调谐滤光器并且表现出基本上与偏振无关的特性,其中的偏振无关性是通过使用从下组中选择的设备以及偏振器而获得的,该组包括:(a)偏振模式分路器;和(b)功率分路器或开关。该装置可以包括一个实施例,其中可调谐滤光器基于布拉格光栅。在一个实施例中,通过使用一个绝对波长基准,使监视器表现出基本上绝对的波长精确度。可以将一种专用的光源与该绝对波长基准结合使用。该绝对波长基准可以包括反射滤波器。在一个实施例中,反射滤波器为光纤布拉格光栅。该光栅可以是无热的。该基准可以包括一个包含透射滤波器的绝对波长基准。该透射滤波器可以是校准器,其可以是无热的。 上述的装置可以测量以下所要监视的输入光学信号的特性中的至少一个:每个波长信道的光功率、光学信噪比(OSNR)、信道的中心波长和偏振模式色散(PMD)。 图1描述了一种在输入端处具有偏振分路器的光学监视器,其中具有两个可调谐反射滤光器。 图2描述了一种在输入端处具有偏振分路器的光学监视器,其中具有多个可调谐反射滤光器。 图3描述了一种光学监视器,其中在输出端处发生偏振分离。 图4描述了一种光学监视器,其中在输出端处通过1×2开关发生偏振分离。 图5描述了一种光学监视器,其中在输出端处发生偏振分离,并且其中利用1×2功率组合器将两个MXI的输出组合在一起,允许使用一对偏振器或探测器。 图6描述了一种光学监视器,其中在输出端处通过1×2开关发生偏振分离,并且其中利用1×2功率组合器将两个MXI的输出组合在一起,允许使用一对偏振器或探测器。 图7描述了一种光学监视器,其中在输出端处发生偏振分离,并且其中利用1×2功率组合器将两个MXI的输出组合在一起,允许使用一对偏振器或探测器。 图8描述了一种如图7中的光学监视器,其中反射波长在输出端处从组合器和分路器之间的抽头中获得其输入。 图9描述了一种如图7中的光学监视器,其中一个单独的MZ I覆盖了整个光谱范围。 图10描述了一种如图8中的光学监视器,其中一个单独的MZI覆盖了整个光谱范围。 图11描述了一种与图10相似的监视器,其中将基准信号的输出与被监视的输入信号组合在一起。 图12描述了一种与图11相似的监视器,但是其中使用了两个基准。 图13描述了一种与图11相似的监视器,除了两个MZI覆盖了波长调谐器的两段之外。 图14描述了一种与图13相似的监视器,其中使用了两个基准。 图15描述了一种与图11相似的监视器,其中使用了一个透射波长基准。 图16描述了一种与图15相似的监视器,其中使用1×2开关取代了1×2组合器。 图17描述了对于热可调谐陷波滤光器,波长与温度关系的非同一调谐曲线。 本发明总体涉及光学信号设备,该设备通过评估不同波长信道中的信息来监视波分复用(WDM)系统中的光学信号质量。该设备监视的信息可以包括(但不限于)以下内容: -每一波长信道中的光功率 -光学信噪比 -信道的中心波长 -偏振模式色散(PMD) 该设备包括可调谐陷波滤光器,其在所关心的波长带上进行扫描,并且在它们进行调谐时分出窄信号,所述窄信号按照规定路线被发送到光功率探测器(例如光电二极管)。在一个单独的滤光器不能在整个所关心的谱带上调谐的情况下,可以用一个电路取代该滤光器,该电路包括多个独立的滤光器,这些滤光器覆盖了所述谱带的不同区段。 在滤光器对两个偏振本征模进行了不同处理的情况下,本发明的一些实施例通过沿着两条独立的路径发送两个偏振本征模并将每个模分开地进行处理,从而校正了这种偏差。偏振的分离可以出现在输入端,在输入端可以使用偏振分路器并且将每个偏振发送到分开的可调谐滤光器(当使用了可调谐滤光器时,与之相对的是开关和固定滤光器)。或者,当一个单独的可调谐滤光器处理了两个偏振并且将其输出发送到两个特定偏振探测器(每个探测器可以是偏振器和光电二极管的组合)时,偏振的分离也可以出现在输出端。偏振模式的分离也使得可以对PMD进行测量。 附图详解 图1: 输入到该芯片中的输入信号是被监视信号中的一小部分(典型地,所述的输入信号已经从主信号中分流出来,并且该信号典型地具有主信号光功率的百分之一到十分之一)。所述的输入信号进入芯片并穿过偏振分路器。偏振分路器可以包括1×2分路器,该1×2的两个臂相互足够分开,以避免它们之间的渐逝耦合,2个臂中的一条具有一个半波片,另一条具有一个移相器(例如加热器),然后这两个臂在一个渐逝区域会合,继而再次分开,在一个臂中具有两个偏振本征模中的一个(比如TE-横向电模),另一个本征模(比如TM-横向磁模)在另一个臂中。两个不同的偏振信号中的每一个都按规定路线发送到可调谐陷波滤光器。可调谐滤光器可以是半个具有光栅的马赫-曾德尔干涉仪(MZI),其中光进入一个3dB的耦合器(可以是渐逝耦合器、MMI耦合器或小MZI耦合器,其可调谐为50/50的平衡,其调谐过程可通过热学方法完成),然后光的功率被分为50/50,并进入两个具有布拉格光栅的臂,布拉格光栅(窄带反射滤光器)横跨这两个臂,该光栅为可调谐的(比如利用特定模式的加热器通过热量调谐)。使每个MZI反射一个窄波带,该波带沿一个输出臂输出(可以借助于移相器(可以是热的)从而确保MZI臂之间适当的相位关系),并且使该波带按规定路线发送到探测器(比如光电二极管)。每个光栅可以处于不同的设定点(比如温度),并且如果两个偏振本征模未调谐到相同的等级,那么每个光栅也可以被调谐到不同的等级。同样,通过控制电路可以将MZI的耦合器的调谐和相同MZI的光栅的调谐连接起来,从而使50/50的耦合出现在光栅被调谐到的波长处,这是因为典型的耦合器是波长相关的。 此外,使用高速探测器使得可以通过测量两个偏振本征模之间的延迟来测量PMD。 图2: 除了每个调谐滤光器被两个可调谐滤光器取代之外,均与图1相似,这是为了防止单独的滤光器不能覆盖所关心的整个波长带。利用一个1×2开关可以在滤光器对中选择一个或另一个滤光器。相同的概念可以依照比例适用于任意数量N的具有1×N开关的滤光器。 图3: 除了偏振分离出现在芯片的输出端,而不是输入端之外,均与图2相似。全部输入信号(包括所有偏振)进入覆盖了所关心的波长范围的MZI,然后使反射信号分为2个功率基本相等的信号(通过使用一个3dB或50/50的功率分路器),它们穿过正交偏振的偏振器入射到探测器上(例如,一个探测器具有一个TE方向的偏振器,另一个探测器具有TM方向的偏振器)。通过收集对应于两种偏振的两种功率光谱,消除了滤光器的偏振相关性,同时根据校正表再次将两种光谱组合起来并具有适当的移位。图17通过表示出一种热可调谐滤光器的TE和TM调谐曲线(波长对温度)阐明了这个观点;本图分开地给出了两条功率相对于温度的曲线(在探测器处收集的),然后可以通过软件将两条曲线组合起来从而产生希望的功率相对于波长的光谱;对于每个波长,将在对应于该波长的温度TTE和TTM时测得的两个功率值PTE和PTM相加。 此外,在输出端处的偏振器和收集来自相同滤光器的反射的探测器可以获得比使用偏振模式分路器和分离的滤光器更加精确的PMD测量,这是因为在后者的情况中(如图1和2),两个滤光器可能不同步。 图4: 除了用1×2开关取代了在输出端处的功率分路器之外,均与图3相似,这使得有更大的功率到达探测器,从而提高了组件的动态范围。这个设备的操作需要切换该1×2开关从而交替地收集两种偏振态的数据。 图5: 除了用1×2功率组合器将2个MZI的输出组合在一起之外,均与图3相似,这使得可以使用单独一对偏振器/探测器。 图6: 除了用1×2开关将2个MZI的输出组合在一起之外,均与图4相似,这使得可以使用单独一对偏振器/探测器。该附加1×2开关被置于对应于所使用的MZI的单一状态。 图7: 与图5相似,但是包括了基于反射陷波滤光器(例如光纤布拉格光栅)的绝对波长基准,该基准是无热的或热的,其中热滤光器可被保持在基本上恒定温度状态或与温度传感器一起使用(然而其折射率典型地随环境和时间保持稳定)。在这种配置中,基准从两个MZI的输出的组合中获得其输入。 图8: 除了反射波长基准在输出端处从组合器和分路器之间的抽头中获得其输入之外,均与图7相似。 图9: 除了使用单独的MZI覆盖了所关心的整个光谱范围之外,均与图7相似。 图10: 除了使用单独的MZI覆盖了所关心的整个光谱范围之外,均与图8相似。 图11: 除了绝对反射波长基准从专用光源(例如发光二极管(LED))中获得其输入之外,均与图10相似,这是因为该基准对单一波长反射,被监视的入射光学信号中不保证具有该波长的信号。在这种情况下,将基准的输出与被监视的入射光学信号相互组合。可以用1×2开关取代1×2组合器。 图12: 与图11相似,除了使用了两个基准(典型地在调谐波长范围的每一端具有一个),从而在校正曲线上提供了两个点,获得了更高精确度。 图13: 与图11相似,除了使用两个MZI覆盖了波长调谐范围的两段。基准的输出和被监视的入射光学信号进入2×2(横杆)开关。在这种配置中,在一个MZI用于监视的同时,可以校正另一个MZI。 图14: 与图13相似,除了使用了两个基准(典型地在调谐波长范围的每一端具有一个),从而在校正曲线上提供了两个点,获得了更高精确度。 图15: 与图11相似,除了使用了透射绝对波长基准(例如法布里-珀罗校准器)。如果这个基准是校准器,那么它提供连续的梳状的基准峰值,使得可以在调谐范围上非常精确地校正调谐曲线。 图16: 与图15相似,除了用1×2开关取代了1×2组合器。所述1×2开关可被完全地切换,可以使通过该设备的光学透射损失更小,从而获得更高的动态范围。所述1×2开关也可用于有效的50/50的调整平衡。 图17: 对于热可调谐陷波滤光器的非同一TE和TM调谐曲线(波长对温度)的例子。 在以上的全部附图中,输出端、输入端和基准可以在芯片的任意面上,芯片的形状可以是除矩形外的其他形状。
下载文档到电脑,查找使用更方便
30 金币 0人已下载
还可以输入200字符
暂无评论,赶快抢占沙发吧。
copyright@ 2017-2018 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1