书签 分享 收藏 举报 版权申诉 / 18

记录载体以及用于扫描记录载体的设备和方法.pdf

  • 上传人:1**
  • 文档编号:160782
  • 上传时间:2018-01-31
  • 格式:PDF
  • 页数:18
  • 大小:1,010.52KB
  • 摘要
    申请专利号:

    CN03802804.2

    申请日:

    2003.01.24

    公开号:

    CN1623194A

    公开日:

    2005.06.01

    当前法律状态:

    终止

    有效性:

    无权

    法律详情:

    专利权的终止(未缴年费专利权终止)授权公告日:2008.4.9|||授权|||实质审查的生效|||公开

    IPC分类号:

    G11B7/125; G11B7/0045

    主分类号:

    G11B7/125; G11B7/0045

    申请人:

    皇家飞利浦电子股份有限公司;

    发明人:

    J·H·M·斯普鲁伊特

    地址:

    荷兰艾恩德霍芬

    优先权:

    2002.01.28 EP 02075376.0

    专利代理机构:

    中国专利代理(香港)有限公司

    代理人:

    邹光新;张志醒

    PDF完整版下载: PDF下载
    内容摘要

    描述了一种记录载体和用于记录和/或读取记录载体的设备。该记录载体具有用于记录由标记(8)代表的信息的轨道。该设备具有:具有激光器的光头,用于产生光束,光束经过轨道上的扫描光点到达检测器从而检测读取信号。传感器(33)从射束(24)检测感测信号(32),控制单元将激光功率控制到希望的数值。该设备具有用于产生校正信号的校正单元。该校正信号取决于从扫描光点(23)附近的轨道的至少一部分上测量的感测信号中得出的记录载体局部光学特性。该设备在使用校正信号的同时校正功率控制或其它检测信号。此外,记录载体具有用于设定校正单元的预先记录的控制参数。

    权利要求书

    1、  一种用于扫描记录载体(4)的设备,该记录载体具有用于记录以标记(8)代表的信息的轨道(11),所述设备包括:
    一个扫描单元(22),包括辐射源和光学元件,它们用于产生一个辐射束,该辐射束从该辐射源经过轨道上的扫描斑点到达用于检测至少一个读取信号的检测器,
    一个传感器(33),用于从射束(24)检测出一个感测信号(32),和一个控制单元,用于根据该感测信号将辐射源功率控制到希望的数值,
    其特征在于,
    所述设备包括校正装置(31),用于根据在扫描光点(23)附近的轨道的至少一部分上测量的至少一个感测信号产生指示记录载体的局部光学特性的校正信号(34),并用于根据校正信号校正所述检测信号中的至少一个信号。

    2、
      根据权利要求1所述的设备,其中,校正装置包括用于选择所述部分轨道以使测量的感测信号具有指示记录载体的作为局部光学特性的局部双折射或消偏振效应的分量的装置(20)。

    3、
      根据权利要求1或2所述的设备,其中,校正装置包括用于在读取没有标记的部分轨道时通过检测感测信号产生空值FSE和在读取有标记的部分轨道时通过检测感测信号产生写入值FSW的装置,以及用于将空值与写入值合并以产生校正信号的装置。

    4、
      根据权利要求1所述的设备,其中,校正装置耦合到用于校正辐射源功率的希望值的控制单元。

    5、
      根据权利要求4所述的设备,其中,扫描单元包括用于在扫描包括标记的部分轨道时根据来自检测器的读取信号产生不对称信号β的装置,不对称信号是标记与其希望长度之间一致性的量度。

    6、
      根据权利要求5所述的设备,其中,不对称信号β是通过测量相对于读取信号的DC电平的正峰值电平A1和负峰值电平A2而产生的,
    并且,根据校正信号通过第一校正计算将读取信号的正峰值电平A1校正到A1’,和
    根据校正信号通过第二校正计算将读取信号的负峰值电平A2校正到A2’,和
    计算不对称信号β,其中,β=(A1’+A2’)/(A1’-A2’)。

    7、
      根据权利要求6所述的设备,其中,测量装置包括用于在读取没有标记的部分轨道时通过检测感测信号产生空值FSE和在读取有标记的部分轨道时通过检测感测信号产生写入值FSW的装置,和
    A1’=A1*(1+((FSW-FSE)/FSW)),和
    A2’=A2*(1+((FSW-FSE)/FSW)×A2/A1)

    8、
      根据权利要求1所述的设备,其中,传感器是正向检测二极管,用于在光束从记录载体上反射时从光束的一部分检测辐射。

    9、
      一种在利用从辐射源经过轨道上的扫描光点到达检测器的辐射束对记录载体上的轨道进行扫描的期间从检测器产生信号的方法,该轨道用于记录以标记表示的信息,所述方法包括:通过传感器从光束中检测感测信号,和根据感测信号将辐射源功率控制到希望的数值,其特征在于,所述方法包括根据在扫描光点附近的轨道的至少一部分上测量的至少一个感测信号产生指示记录载体的局部光学特性的校正信号,和根据校正信号校正所述检测信号中的至少一个检测信号。

    10、
      一种控制辐射源的功率的方法,所述辐射源特别是激光器,该方法用在利用从辐射源经过轨道上的扫描光点到达检测器的辐射束将由标记表示的信息记录到记录载体上的轨道内的期间,所述方法包括:通过传感器从光束中检测感测信号,和根据感测信号将激光功率控制到希望的数值,其特征在于,所述方法包括根据校正信号校正希望的数值,该校正信号根据扫描光点附近的轨道的至少一部分上测量的至少一个感测信号来指示记录载体的局部光学特性。

    11、
      一种具有用于记录以标记(8)表示的信息的轨道(11)的可记录型记录载体,所述记录载体包括用于控制记录过程的预先记录的控制信息,其特征在于,控制信息包括用于指示校正类型的至少一个参数,该类型的校正用于根据在扫描光点(23)附近的轨道(11)的至少一部分上测量的至少一个感测信号来校正记录载体的局部光学特性。

    说明书

    记录载体以及用于扫描记录载体的设备和方法
    技术领域
    本发明涉及一种用于扫描具有轨道的记录载体的设备,该轨道用于记录以标记表示的信息,所述设备包括:扫描单元,包括辐射源和光学元件,它们用于产生这样的一个辐射束:该辐射束从辐射源经过轨道上的一个扫描斑点到达一个检测器,以检测至少一个读取信号;传感器,用于从所述射束检测出一个感测信号;和控制单元,用于根据所述感测信号将辐射源功率控制到希望的数值。
    本发明还涉及一种在通过从辐射源经过轨道上的一个扫描斑点到达检测器的辐射束对记录载体上的轨道进行扫描的过程中由检测器产生信号的方法,所述轨道用于记录以标记表示的信息,该方法包括:以通过一个传感器从所述射束中检测出一个感测信号,和根据所述感测信号将辐射源功率控制到希望的数值。
    本发明还涉及一种在信息记录的过程中控制辐射源(特别是激光器)的功率的方法。
    本发明还涉及一种具有用于记录以标记表示的信息的轨道的可记录型记录载体,该记录载体包括用于控制记录过程的预先记录的控制信息。
    背景技术
    从US5303217(PHN12994)中,我们知道了一种记录载体以及用于扫描记录载体的方法和装置。该记录载体具有用于记录以标记表示的信息的轨道,例如盘形载体上以摆动预置纹槽表示的螺旋形轨道。标记具有不同长度,通过将辐射源(特别是激光器)发出的射束照射到记录层(如可记录的CD上的染料类涂层)上而被记录在轨道上。该设备包括扫描单元,具有激光器和光学元件,它们用于产生从激光器经过轨道上的扫描斑点到达用于检测读取信号的检测器的辐射束。该设备包括驱动单元,用于旋转记录载体。为了扫描轨道,由所述元件构成的光头在旋转记录载体时被定位单元定位于与轨道相对。该设备包括用于从光束检测出感测信号的传感器,和用于根据感测信号将激光器功率控制为希望的数值的控制单元。所述传感器是监控二极管,接收由激光器产生的射束的一部分。此外,控制单元包括计算单元,用于根据读取信号相对于DC信号的正负峰值计算不对称信号。不对称信号是标记与其希望的长度的一致性的量度。
    激光器功率的希望的数值根据用于产生记录标记和具有预定长度比的中间未记录纹脊的不对称信号而被设定,所述长度比等于表示信息的信号的比。当对这种盘进行再现时,期望检测信号具有这种比值。其问题在于,当对记录载体进行再现时,检测信号有可能偏离期望数值。
    发明内容
    本发明的目的在于提供一种用于获得与期望数值相应的检测信号的扫描设备和相应的方法。
    为了上述目的,如首段所述的设备的特征在于,该设备包括:测量装置,用于根据在扫描光点附近的轨道的至少一部分上测量的至少一个感测信号产生指示记录载体的局部光学特性的校正信号,和校正装置,用于根据校正信号校正所述检测信号中的至少一个信号。所首段所述的方法的特征在于,该方法包括根据在扫描光点附近的轨道的至少一部分上测量的至少一个感测信号产生指示记录载体的局部光学特性的校正信号,和根据校正信号校正所述检测信号中的至少一个信号。如首段所述地记录载体的特征在于,控制信息包括用于指示校正类型的至少一个参数,该校正用于根据在扫描光点附近的轨道的至少一部分上测量的至少一个感测信号校正记录载体的局部光学特性。
    本发明是基于下述因素的认识。首先,发明人已经认识到再现过程中的检测信号的偏离是由记录过程中的对于功率的不正确设定引起的。例如,虽然记录过程中的辐射源的功率被基于不对称的测量而控制到希望的数值,但是,所得到的记录载体证实具有偏离的不对称。第二,发明人已经认识到检测信号的偏离是由于激光功率的不希望的变化引起的。激光功率的变化是由记录载体的局部光学特性引起的,其证实在跨越记录载体时是非恒定的。例如,局部光学特性可引起由记录载体反射的辐射的光反馈返回到激光器,这增加了激光功率。第三,发明人已经认识到当在选定的轨道的一部分上进行测量时,感测信号具有指示局部光学特性的分量,校正信号可以从感测信号中得到。校正信号用于校正检测信号。
    在设备的一个实施例中,测量装置包括用于在读取没有标记的部分轨道时通过检测感测信号产生空值FSE和在读取有标记的部分轨道时通过检测感测信号产生写入值FSW的装置,和用于合并空值与写入值以产生校正信号的装置。其效果在于,局部光学特性在空轨道的感测信号和写入轨道的感测信号上具有不同的影响。因此,校正信号基于所述差别具有校正分量。
    附图说明
    本发明的这些和其他方面参考下文中以实施例方式描述的优选实施方式以及相应的附图将更加明显和易于阐明,其中
    图1示出了传统光学记录设备图,
    图2示出了扫描设备,
    图3示出了记录信息图案和相关读取信号之间的关系,用以阐明本发明,
    图4示出了作为写入占空比的函数的正向感测信号,
    图5示出了记录设备的激光控制,
    图6示出了用于计算不对称信号的分析电路,和
    图7示出了检测信号的测量和校正值。
    具体实施方式
    图1示意性地表示一种光学记录设备,该光学记录设备包括转盘1和驱动电机2,用于在箭头5所指明的方向上围绕轴3旋转盘形记录载体4。记录载体4包括辐射敏感的记录层,该记录层一旦暴露于足够高强度的辐射下就产生可采用光学手段检测的改变,如反射率的改变,用以形成表示信息的标记。这种辐射敏感层可以包括薄金属层,该薄金属层可以通过曝光于相对高强度的激光束下而被局部去除。可选择的,记录层可以由另一种材料如辐射敏感的染料或相变材料组成,上述材料的结构可以在辐射的影响下从非晶态转变为晶态或反之。记录载体包括用于记录标记的轨道11,轨道由用于产生相对轨道定位光头的伺服跟踪信号的伺服图案表示。伺服图案可以是振幅很小的摆动纹槽,通常被称为预置纹槽,和/或压纹图案,通常被称为预置凹坑或伺服凹坑。光写入头6设置于与旋转的记录载体相对的位置处。光写入头6包括辐射源,例如固态激光器,用于产生写入光束13。写入光束13的光强I以公知的方式调制到与控制信号Vs相一致。写入光束13的光强I在足以引起辐射敏感的记录载体的光学特性发生可检测的改变的写光强Iw与不会引起任何可检测的变化的光强In之间改变。按照该设备的另一实施方式,采用了更为复杂的写策略,如根据要被写入的标记的长度控制写入功率。当利用其光强被如此调制的光束13扫描记录层时,光学特性改变的记录区8的信息图案形成在记录层上,该记录层的记录区与光学特性未改变的中间区交替。如此形成的信息图案通过以恒定光强的读取光束扫描图案而被读取出来,该恒定光强足够低,以至于不会引起光学特性发生可检测的改变。在扫描过程中,由记录载体反射的读取光束被调制为与正在扫描的信息图案相一致。读取光束的调制可以借助于辐射敏感的检测器以传统方式被检测出来,该检测器产生表示光束调制的读取信号。
    图2示出了用于在可写入型或可重写型记录载体4(如CD-R或CD-RW)上写入信息和/或从其上读取信息的扫描设备。该设备配备有扫描装置,用于扫描记录载体上的轨道,该装置包括旋转记录载体4的驱动单元21、包括光头和附加电路的扫描单元22、用于在轨道上径向粗定位光头的定位单元25和控制单元20。光头包括用于产生射束24的已知类型的光学系统,该射束被光学元件所引导,在记录载体的信息层的轨道上聚焦为辐射点23。光头和附加电路构成用于产生自射束中检测出的信号的扫描单元。射束24由辐射源如激光二极管产生。光头包括用于从射束检测感测信号32的传感器33。光头还包括(未示出)用于沿所述光束的光轴移动射束24的焦点的聚焦致动器和用于在轨道的中心沿径向精细定位光点23的跟踪致动器。跟踪致动器可以包括径向移动光学元件的线圈或按照另外一种方案将其设置为用于改变反射元件的角度。为了写入信息,将辐射控制为可以在记录层上产生可采用光学手段检测的标记。为了进行读取,由信息层反射的辐射被常用类型的检测器检测,该检测器可以是四象限二极管,该检测器设置在光头中,用于产生读取信号和另外一些检测信号,这些检测信号包括用于控制所述跟踪和聚焦致动器的跟踪误差和聚焦误差信号。读取信号被通用类型的读取处理单元30处理,该处理单元包括解调器、解格式器和输出单元,以检索信息。因此,用于读取信息的检索装置包括驱动单元21、光头、定位单元25和读取处理单元30。设备包括写处理装置,用于处理输入信息,产生写入信号来驱动光头,该装置包括输入单元27和具有格式器28和调制器29的调制装置。控制单元20控制信息的记录和检索,可以设置为用以从用户或主机接收命令。控制单元20经过控制线26如系统总线连接到所述输入单元27、格式器28和调制器29,连接到读取处理单元30,连接到驱动单元21和定位单元25。控制单元20包括控制电路,如微处理器、程序存储器和控制门,用于执行写入和/或读取功能。控制单元20还可以用作逻辑电路中的状态机。在写入过程中,代表信息的标记形成在记录载体上。该标记可以是任意可采用光学手段读取的形式,如以在染料、合金或相变材料等材料中进行记录时得到的、其反射系数不同于周边环境的区域的形式,或以在磁光材料中进行记录时得到的、其磁化强度方向不同于周边环境的区域的形式。用于在光盘上进行记录的信息写入和读取技术和有用的格式化技术、误差校正技术以及通道编码规则都是本领域的公知技术,可以通过对CD系统的了解而知晓。通常来源于激光二极管的电磁辐射的射束24在记录层上产生光点23,形成了标记。用户信息可以通过输入单元27输入,该输入单元包括用于输入信号如模拟音频和/或视频或数字未压缩音频/视频的压缩装置。对音频进行压缩的适当的压缩装置在WO9816014A1(PHN16452)中得以描述,对视频进行压缩的适当的压缩装置在MPEG2标准中得以描述。输入单元27将音频和/或视频信号处理为信息单位,将这些信息单位传送给格式器28,以添加控制数据并根据记录格式对数据进行格式化,例如,通过添加误差校正编码(ECC)和/或进行交织来格式化数据。为了实现计算机应用,信息单位可以直接输入到格式器28。格式器28输出的格式化数据输入到调制单元29,该调制单元包括如通道编码器,用于产生驱动光头的调制信号。此外,调制单元29还包括同步装置,用于在调制信号中加入同步图案。输入到调制单元29的格式化单元包括地址信息,并在控制单元20的控制下被写入到记录载体上相应的可寻址位置上。该设备还包括校正单元31,用于产生指示记录载体的局部光学特性的校正信号34。感测信号32输入到校正单元31。校正信号34连接到调制单元29,用于校正写入信号,和/或连接到扫描单元,用于校正检测信号,和/或连接到读取处理单元30,用于校正读取信号。例如,轨道跨越信号,即光头跳跃到不同轨道上的过程中产生的来自扫描单元的信号之一,可以校正为更可靠的指示跨越的轨道的校正过的轨道跨越信号。校正单元31设置为用于测量扫描光点附近的轨道的至少一部分上的感测信号,如上所述。
    图3示出了记录信息图案和相关读取信号之间的关系,用以阐明本发明。图3a表示通过最佳写入光强记录的信息图案。同样的信息图案也在附图3b和3c中示出,但这些图案是分别通过过低和过高的写入电平记录的。从图3中明显可以看出,在最佳写入光强的情况下,电平DC基本位于读取信号VI中最大信号值(A1)和最小信号值(A2)的中间,而在写入电平过低或过高的情况下,电平DC分别位于所述中间值之上和之下。图3中所示的信息图案仅是包括相对大量的由短区即标记(8)和中间区构成的子图案与相对少量的由长区构成的子图案的可能的信息图案中的一种。与标准EFM信号相应的图案也是非常合适的子图案。这种图案包括长度至少与3位(I3效应)和至多与11位(I11效应)相应的区域。在这种EFM图案中,全部效应的大约三分之一是I3效应,而只有全部效应的4%是I11效应。I3效应的尺寸使这些效应中只有基础值位于光读取系统中的光截止频率之下。I11效应中也只有高次谐波位于光截止频率之下。因此,对于I3和I11的响应也会不同。
    在该设备中,最佳写入功率应在开始记录之前进行设定。为了适当设定该写入功率,可以执行最佳功率控制(OPC)处理过程。对于CD-R和DVD+/-R系统来说,可以采用所谓βOPC过程。在该处理过程下,作为不对称的量度的β作为激光功率的函数而被确定下来。β的计算方法以及用于确定β的电路已经公开于US5303217中。β的数值可以根据数值A1和A2(参见上述图3,应当注意,A2是低于DC电平的负值)以下述公式得出:β=(A1+A2)/(A1-A2)。在另一实施方式中,可以使用以不同方式定义的不对称信号。在记录载体的一种实施方式中,示出了最佳β值,在特定激光功率下,测得的β将与盘中指示的数值相等(产生最佳写入性能)。通过设定写入功率的希望的数值以实现该数值,可以获得最佳写入条件下的最佳不对称值。对于获取良好OPC结果而言重要的一点在于参数β的可靠测量。现已发现,在实际情况下,β的测量值偏离β的真实值。例如,盘在写入器中被写入,β参数将不对称值控制为恒定。写入之后,以另一写入器或读取器读取该盘上的内容。测量结果显示出:在其它系统中进行读取的读取过程中,跨越盘片的不对称值远非恒定。这意味着,在原始写入器中是假设写入恒定不对称,但实际上情况并非如此。现在可以看出,β的测量中产生了误差。
    按照该设备的另一实施方式,对β误差的测量可以以下述方法进行校正。在不同的情况下,采用正向感应二极管监控激光功率。可以看出来,激光量随盘的半径和写入位置的改变而改变。这些变化有可能主要由写入标记的双折射和消偏振效应所引起。双折射值作为相同盘上半径的函数发生改变。通过双折射效应,光线的一部分可以反馈到激光器。光束反馈到激光器增加了激光器的光输出。光输出功率也出现在正向感测信号中。在使用部分记录的盘的实验中,空轨道是可见的。在写入纹槽上,激光输出是可见的,其输出高于空轨道的输出,而从激光的反馈所得到的输出则较低,因为写入纹槽的反射低于空轨道反射。双折射之间的关系是不很明显,但是写入标记的消偏振效应可以产生较高的功率电平。因此,激光输出作为盘的写入状态的函数而发生改变。在实验过程中,这种变化在最内直径处小,而在最外直径处大。引起激光输出改变的光反馈机构反应灵敏,因此,在信息标记的回放过程中,也可以调制激光器的光强。因此,也会产生不对称值的测量误差。在实验过程中,不对称中的测量误差在最内直径处较小。这里,激光器输出的变化很小,因而不会产生测量误差。在实验中,不对称值的变化在最外直径处较大,激光器输出的变化也很大,因而导致了测量误差。
    驱动器不同,对激光反馈的灵敏度也不不同,导致测量不对称值的误差不同。当使用感测信号测量反馈时,可以推算β的测量误差。在驱动器中,可以通过例如观看读取空轨道的过程中正向感测信号对读取写入轨道的过程中正向感测信号的关系曲线确定上述值。那些测量的正向感测信号之间的差给定了β中误差的量度。在测量过程中,激光输出不应被控制为恒定。有选择的,激光功率可以被控制为恒定,激光控制参数可以用作量度。写入区内的纹脊正向感测信号与纹槽正向感测信号之间的差也可以产生这种量度。
    图4示出了作为写入占空比的函数的正向感测信号。正向感测信号的数值沿y轴示出,写入标记的占空比沿x轴示出。现已测量出了激光输出对HF的写入占空比之间的关系曲线,其被证实基本呈线性。0的占空比对应完全的空轨道,而1的占空比对应标记为“无限”长的轨道。占空比0.21对应I11间隔之间标记为I3的轨道,而占空比0.79对应I3间隔之间标记为I11的轨道。对于占空比为0.5的情况,同时写入了I3-I3和I11-I11图案,都可以产生相同的结果。该结果示出:作为一种初步估测,可以假设其是线性的。为了校正β的数值,需要建立一个模型来变换感测信号的测量结果。该测量结果显示出线性模型适用于这种记录载体。因此,为了进行校正,采用了线性模型。应当注意,感测信号的测量值随记录载体的局部光学特性如双折射的不同而不同。因此,需要在扫描光写入新标记的位置附近进行局部测量,以获得真实的校正值。
    在记录设备的一个实施例中,例如在编码视频数据的情况下,由于设备需要等待新数据的输入,因此经常需要中断记录过程。参数β可以采用所谓“walking OPC”方法进行测量。在这种方法中,在盘的写入过程中,每次写入盘的特定部分时,都通过测量β来实现写入功率控制。在β偏离希望值的情况下,调整写入功率,以再次获得最佳β。在这种中断过程中,空转时间用于进行对局部光学特性的测量,该局部光学特性的测量是通过检测轨道上一些适当部分如写入部分和空白部分中的感测信号而实现的。这样,记录载体中任意位置处的局部光学特性都可以被校正。
    在记录载体的一个实施例中,预先记录了控制信息,以控制记录过程。例如,控制信息可以编码在伺服图案如摆动图案或预置凹坑中,或编码在盘中具有预先记录的信息的区域中。为了进行上述校正,表明校正的类型的控制信号中包括了至少一个参数。例如,可以通过控制参数指出在记录载体上所使用的校正模型。也可以在记录载体上的控制信息内包括其它校正参数,以对特定记录载体的校正信息如指示空白和写入纹槽之间的反射率的变化的因数进行调整。在设备的一个实施例中,考虑到对其它类型的记录载体的线性模型的偏离,如模型或记录载体上作为控制参数指示的校正因数的偏离,可以采用变化的校正模型。
    图5示出了记录设备的激光控制。记录设备包括光头50,具有第一半导体激光器51,用于产生写入光束13。该设备具有第二半导体激光器52,用于产生激光波长不同的第二光束53,例如,第一激光器51具有用于CD的波长,第二激光器具有用于DVD的波长。根据记录载体的类型以与第一写入光束13相同的方式控制第二写入光束53。设备中DVD电路部分并未示出在附图中,对CD元件的描述同样适用于DVD元件。写入光束13被包含物镜54的光学系统引导到记录载体4,该记录载体在箭头55所表示的方向上经过光头50。上述过程可以传统方式实现。可以将写入光束13的光强I设定为信号Vs所指示的数值。为此,记录设备包括辐射敏感二极管56,该二极管用于检测光束13的一部分57,该部分光束从半导体激光器51的背侧发出,与写入光束的光强成比例。而后,辐射敏感二极管56产生与检测的光强成比例的感测信号32。比较电路58将信号Vs与所述信号电流进行比较。指示比较结果的信号输入到可控电流源59,该电流源产生用于半导体激光器51的控制电流,使二极管56产生的信号电流以及写入光束13的光强被控制为写入信号Vs所表示的数值。记录设备还包括级联的传统CIRC编码电路60和EFM调制器61,用于将输入的信息信号Vi转换为被调制成与CD标准一致的EFM信号Vefm。信号Vefm输入到可控开关62的控制输入端,该可控开关是可以根据输入到其控制输入端的逻辑值将两个输入信号is或il中的一个信号输入到其输出端的类型的可控开关。开关62的输出端的信号作为信号Vs输入到比较电路58。信号is定义了希望写入光强Is,信号Il定义了不影响记录层的低光强。表示信号Vi的信息图案以下述方式进行记录。CIRC编码电路60和EFM调制器61将信号Vi转换为EFM调制的二价信号Vefm。该信号以这种方式控制开关62:即使信号il和is被可选择地输入到比较电路58中,结果,写入光束的光强在信号is所定义的写入光强Is与信号il所定义的光强Il之间进行切换,从而,与信号Vefm相应的信息图案被记录在记录载体上。为了进行读取,产生了低光强的光束,该光束被记录载体4反射,反射光束调制为与被扫描的信息图案相一致。如此调制的读取光束被半透明镜63引导到辐射敏感的检测器64,该检测器产生指示光束调制的读取信号VI。读取信号VI输入到分析电路65,该电路产生指示直流电平DC偏离与最佳写入光强相应的数值的程度的信号Va。信号Va输入到积分电路66。积分电路的输出信号Δis输入到加法电路67的输入端。相应于恒定光强的信号io输入到加法电路67的另一输入端。表示信号io和信号Δis的和的输出信号以信号is的形式输入到开关62。在图5所示的记录设备中,如果写入光强Is偏离最佳值,则这种偏离将被具有非零信号值的分析信号Va指示出来。结果,积分电路66的输出端的信号Δis将发生改变,从而,控制写入光强Is向最佳值变化。可以对写入光强Is施加连续控制,以将写入光强Is基本保持在最佳值。设备包括校正单元31,接收感测信号32作为输入。校正电路31计算用于校正读取信号VI的测量值的校正信号34,如下所述。
    设备的一种实施方式包括作为用于产生感测信号34的传感器的正向感应二极管,该传感器位于光头50内光束的主光轴的旁边,由此接收光束13或第二光束53的一部分,这部分光不进入其它的光学元件,如物镜。这种正向感应二极管在光束被引导到记录载体时可以提供对光束的真实激光功率更精确的测量(相比于监控二极管)。应当注意,所使用的正向感应二极管相对较大,因此反应过慢以致不能对各标记所引起的光束的光强的变化进行反应。在实施例中,可以将小而快的二极管用作附加的传感器。使用这种传感器,激光器的光输出功率可以通过控制快速控制回路中的电功率保持恒定,其变化可以被测量,也可以根据快速测量值进行校正。
    图6示出了用于计算不对称信号的分析电路。该分析电路包括低通滤波器70,用于确定读取信号VI中的直流电平DC。分析电路65还包括用于确定读取信号I中的最大值A1的正峰值检测器71和用于确定读取信号VI中的最小值A2的负峰值检测器72。峰值检测器71和72的输出信号输入到加法电路73的非倒相输入端,而经过放大至其两倍的低通滤波器70的输出信号输入到加法电路73的倒相输入端,从而构成分析信号Va的加法电路73的输出信号等于Va=A1+A2-2DC,而后指示出信号值DC的位置偏离希望值如最大信号值A1与最小信号值A2之间的中间值的程度。加法电路73具有用于将校正信号34加到A1和A2的测量值之上的另一输入端。
    图7示出了检测信号的测量和校正值。在图中的中间位置,测量和校正条件下的DC电平81绘制在同一电平线下。图中的左侧部分示出了以本发明的方法校正时的真实信号电平82的例子;以从上到下的顺序,图中给出了信号值I14hcorr、I3hcorr、DC电平81、I31corr和I141corr。右侧部分示出了相同信号的例子,除了测量电平83;以从上到下的顺序,图中给出了信号值I14hmeas、I3hmeas、DC电平81、I31meas和I141meas。以(I3h+I31)/2计算得到的电平是基准DC电平81。真实信号电平A1corr和A2corr是如下所述校正测量值A1和A2的结果。由于测量I14h电平时激光功率下降,因此,在这种情况下测量的电平I14meas过低。因而,上述数值应当校正为较高数值。为此目的,使用了测量写入(FSW)和空闲(FSE)轨道时得到的感测信号。在上述设备中,测量出了上述A1和A2值;应当注意,A2为负值。A1和A2值应以如下方式校正:
    A1corr=A1*(1+((FSW-FSE)/FSW))
    A2corr=A2*(1+((FSW-FSE)/FSW)*A2/A1)
    由此获得β的校正值:
                  βcorr=(A1corr+A2corr)/(A1corr-A2corr).
    校正之后,β数值更接近于真实β值。这是校正实际β值的一个实施例。考虑到非线性影响,也可以使用更复杂的方法。在存在写入和未写入轨道的情况下,使用(例如)正向感应二极管校正测量的不对称值(β)的方法也适用于CD-R和DVD+/-R系统。由于激光功率改变而产生的测量误差也出现在CD-RW和DVD+/-RW的伽马OPC过程中。然而,由于反射/消偏振对这些介质的影响很小,因此,其测量误差较小。
    虽然已经主要基于使用CD-R的实施例对本发明进行了描述,但是,同样的实施方式还适用于其它光记录系统中如DVD-R或DVD+RW。此外,虽然将光盘作为信息载体进行了描述,但是本发明也可以使用其它介质,如磁盘或磁带。应当注意,在本文献中,词语“包括”并不排除所罗列的元件或步骤之外的元件或步骤的存在,元件之前的词语“一个”并不排除多个这种元件的存在,任何附图标记都不限定权利要求的保护范围,本发明可以以硬件和软件的方式实现,多个“装置”也可以由同一硬件表示。此外,本发明的范围并不局限于实施例,本发明在于每个新的特征或上述特征的组合。

    关 键  词:
    记录 载体 以及 用于 扫描 设备 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:记录载体以及用于扫描记录载体的设备和方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-160782.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1