书签 分享 收藏 举报 版权申诉 / 129

四环素及其类似物的合成.pdf

  • 上传人:00****42
  • 文档编号:1529252
  • 上传时间:2018-06-22
  • 格式:PDF
  • 页数:129
  • 大小:44.37MB
  • 摘要
    申请专利号:

    CN201310052794.1

    申请日:

    2005.05.20

    公开号:

    CN103214409A

    公开日:

    2013.07.24

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效IPC(主分类):C07D 209/58申请日:20050520|||公开

    IPC分类号:

    C07D209/58; C07C237/26; C07D209/56; C07D213/56; C07D221/18; C07D235/02; C07D237/26; C07D239/70; C07D241/38; C07D261/20; C07D263/52; C07D277/30; C07D277/56; C07D277/64; C07D277/66; C07D307/77; A61K31/65; A61P31/04; A61P35/00

    主分类号:

    C07D209/58

    申请人:

    哈佛大学校长及研究员协会

    发明人:

    安德鲁·G·迈尔斯; 马克·G·查尔斯特; 克里斯蒂安·D·莱纳; 贾森·D·布鲁巴克; 戴恩尼西奥·R·西格尔

    地址:

    美国马萨诸塞州

    优先权:

    2004.05.21 US 60/573,623; 2005.03.11 US 60/660,947

    专利代理机构:

    北京律盟知识产权代理有限责任公司 11287

    代理人:

    刘国伟

    PDF完整版下载: PDF下载
    内容摘要

    在过去的50年里,四环素类抗生素在治疗传染病方面发挥了重要的作用。然而,在人类及兽类医药中大量使用四环素已导致先前易受四环素抗生素影响的许多有机体产生抗性。所述四环素及四环素类似物的模块式合成可为各种四环素类似物及先前通过早期四环素合成和半合成方法难以获得的多环素(polycyclines)提供一种有效的对映体选择性路径。这些类似物在人类或其他动物的疾病治疗中可用作抗微生物剂或抗增生剂。

    权利要求书

    权利要求书
    1.   一种下式化合物:或其盐、同分异构体或互变异构体,
    其中R1是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;酰基;经取代或未经取代芳基;经取代或未经取代杂芳基;‑ORA;‑C(=O)RA;‑CO2RA;‑CN;‑SCN;‑SRA;‑SORA;‑SO2RA;‑NO2;‑N(RA)2;‑NHC(O)RA;或‑C(RA)3;其中RA在每次出现时独立地为氢、保护基团、脂肪族基团、杂脂肪族基团、酰基;芳基;杂芳基;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基;
    R2是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;酰基;经取代或未经取代芳基;经取代或未经取代杂芳基;‑ORB;‑C(=O)RB;‑CO2RB;‑CN;‑SCN;‑SRB;‑SORB;‑SO2RB;‑NO2;‑N(RB)2;‑NHC(O)RB;或‑C(RB)3;其中RB在每次出现时独立地为氢、保护基团、脂肪族基团、杂脂肪族基团、酰基;芳基;杂芳基;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基;
    R3是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;酰基;经取代或未经取代芳基;经取代或未经取代杂芳基;‑ORC;‑C(=O)RC;‑CO2RC;‑CN;‑SCN;‑SRC;‑SORC;‑SO2RC;‑NO2;‑N(RC)2;‑NHC(O)RC;或‑C(RC)3;其中RC在每次出现时独立地为氢、保护基团、脂肪族基团、杂脂肪族基团、酰基;芳基;杂芳基;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基;
    R4是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;酰基;经取代或未经取代芳基;经取代或未经取代杂芳基;‑ORD;‑C(=O)RD;‑CO2RD;‑CN;‑SCN;‑SRD;‑SORD;‑SO2RD;‑NO2;‑N(RD)2;‑NHC(O)RD;或‑C(RD)3;其中RD在每次出现时独立地为氢、保护基团、脂肪族基团、杂脂肪族基团、酰基;芳基;杂芳基;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基;
    R5是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;酰基;经取代或未经取代芳基;经取代或未经取代杂芳基;‑ORE;‑CN;‑SCN;‑SRE;或‑N(RE)2;其中RE在每次出现时独立地为氢、保护基团、脂肪族基团、杂脂肪族基团、酰基;芳基;杂芳基;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基;
    R7在每次出现时独立地为氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;酰基;经取代或未经取代芳基;经取代或未经取代杂芳基;‑ORG;‑C(=O)RG;‑CO2RG;‑CN;‑SCN;‑SRG;‑SORG;‑SO2RG;‑NO2;‑N(RG)2;‑NHC(O)RG;或‑C(RG)3;其中RG在每次出现时独立地为氢、保护基团、脂肪族基团、杂脂肪族基团、酰基;芳基;杂芳基;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基;
    P在每次出现时独立地为氢、经取代或未经取代脂肪族基团、经取代或未经取代杂脂肪族基团、保护基团、经取代或未经取代酰基、经取代或未经取代芳基或经取代或未经取代杂芳基;
    表示经取代或未经取代芳基、经取代或未经取代杂芳基、经取代或未经取代非芳香碳环基团、或经取代或未经取代杂环基团,其中X在每次出现时皆选自由‑O‑、‑S‑、‑NR8‑、‑C(R8)2‑组成的群组;
    R8是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;酰基;经取代或未经取代芳基;经取代或未经取代杂芳基;‑ORH;‑C(=O)RH;‑CO2RH;‑CN;‑SCN;‑SRH;‑SORH;‑SO2RH;‑NO2;‑N(RH)2;‑NHC(O)RH;或‑C(RH)3;其中RH在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    n是介于1至5之间且包含1和5的整数;且
    相邻X部分间的键结是单键或双键。

    2.   如权利要求1所述的化合物,其中R1、R2、R3和R4每次出现时为氢。

    3.   如权利要求1或2所述的化合物,其中R5为‑N(RE)2;其中RE在每次出现时独立地为氢、保护基团或低碳烷基(C1‑C6)基团。

    4.   如权利要求1或2所述的化合物,其中R7在每次出现时独立地为卤素;环状、经取代或未经取代杂脂肪族基团;经取代或未经取代杂芳基;‑ORG;‑CO2RG;‑CN;‑SCN;‑SRG;‑SORG;‑SO2RG;或‑NHC(O)RG;其中RG在每次出现时独立地为氢、保护基团、脂肪族基团、杂脂肪族基团、酰基;芳基;杂芳基;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基。

    5.   如权利要求4所述的化合物,其中R7中至少一个为卤素。

    6.   如权利要求4所述的化合物,其中R7中至少一个为‑ORG。

    7.   如权利要求4所述的化合物,其中一个R7为‑ORG且一个R7为卤素。

    8.   如权利要求1或2所述的化合物,其中卤素为‑Cl。

    9.   如权利要求1或2所述的化合物,其中卤素为‑I。

    10.   如权利要求1或2所述的化合物,其中卤素为‑Br。

    11.   如权利要求1或2所述的化合物,其中卤素为‑F。

    12.   如权利要求1所述的化合物,其中各P为氢。

    13.   如权利要求1所述的化合物,其中n为1。

    14.   如权利要求1或2所述的化合物,其中表示经取代或未经取代的杂环基团,其中X为‑NR8‑且n为1。

    15.   一种医药组合物,其包括如权利要求1至14中任一权利要求所述的化合物或其盐、同分异构体或互变异构体及医药上可接受的赋形剂。

    说明书

    说明书四环素及其类似物的合成
    本申请是针对申请号为200580023494.4,申请日为2005年5月20日,申请人为哈佛大学校长及研究员协会,发明名称为“四环素及其类似物的合成”的中国发明专利申请的分案申请。
    相关申请案
    本申请案在35U.S.C.§119(e)下主张优先于在2005年3月11日提出申请的美国临时专利申请案第USSN 60/660,947号和在2004年5月21日提出申请的第USSN60/573,623号的权利,所述案件各自以引用的方式并入本文中。
    政府支持
    本文所述工作部分受到国立卫生研究院(Naional Institutes of Health)(R01AI48825)和国家科学基金会(National Science Foundaion)(博士研究生奖学金R10964)的资助。美国政府可拥有本发明中的某些权利。
    技术领域
    背景技术
    四环素是广泛用于人类和兽类医学的广谱抗微生物剂(Schappinger等人,“Tetracyclines:Antibiotic Action,Uptake,and Resistance Mechanisms”Arch.Microbiol.165:359‑69,1996;Mitscher,Medicinal Research Series,第9卷,The Chemistry of the Tetracycline Antibiotics,Marcel Dekker Inc.New York,1978)。每年,通过发酵或半合成所生产的四环素总量达数千公吨。第一种四环素,氯四环素(1)(AureomycinTM)在1945年由Lederle Laboratories(Wyeth‑Ayerst Research)自土壤细菌金黄色链霉菌(Streptomyces aureofacien)分离出(Duggar,Ann.N.Y.Acad.Sci.51:177‑181,1948;Duggar,Aureomycin and Preparation ofSome,美国专利第2,482,055号,1949;各自以引用的方式并入本文中)。不久,科学家们在Pfizer Laboratories中自龟裂链霉菌(S.rimosus)分离出氧四环素(2)(Finlay等人,Science111:85,1950)。Pfizer的科学家们联合Harvard大学的R.B.Woodward及其合作者阐明了氯四环素和氧四环素的结构(Hochstein等人,J.Am.Chem.Soc.74:3708‑3709,1952;Hochstein等人,J.Am.Chem.Soc.75:5455‑75,1953;Stephens等人,J.Am.Chem.Soc.74:4976‑77,195);Stephens等人,J.Am.Chem.Soc.76:3568‑75,1954)。后来,通过水解氯四环素制得四环素(3)且人们已经发现其保留了氯四环素和氧四环素的抗微生物活性且具有增强稳定性(Boothe等人,J.Am.Chem.Soc.75:4621,1953;Conover等人,J.Am.Chem.Soc.75:4622‑23,1953)。后来,人们发现四环素是金霉素链霉菌(S.aureofaciens)、生绿链霉菌(S.viridofaciens)和龟裂链霉菌的自然产物。

    如今在临床上具有重要作用的主要四环素类包括四环素(3)(Boothe等人,J.Am.Chem.Soc.75:4621,1953)、氧四环素(2,TerramycinTM)(Finlay等人,Science111:85,1950)、强力霉素(doxycycline)(Stephens等人,J.Am.Chem.Soc.85:2643,1963)和米诺环素(minocycline)(Martell等人,J.Med.Chem.10:44,1967;Martell等人,J.Med.Chem.10:359,1967)。四环素类通过抑制细菌蛋白质合成来发挥其抗微生物活性(Bentley和O′Hanlon编写的Anti‑Infectives:Recent Advances in Chemistry and Structure‑Activity Relationships The Royal Society of Chemistry:Cambridge,UK,1997)。大多数四环素具有抑菌作用而非杀菌作用(Rasmussen等人,Antimicrob.Agents Chemother.Antibiotics35:2306‑11,1991;Primrose和Wardlaw编写的“The Bacteriostatic and Bacteriocidal Action of Antibiotics”Sourcebook of Experiments for the Teaching of Microbiology Society for General Microbiology,Academic Press Ltd.,London,1982)。已经有人提出:在四环素经过细菌的细胞质膜后,其与Mg+2螯合且此四环素‑Mg+2络合物与细菌核糖体的30S亚单元结合(Goldman等人,Biochemistry22:359‑368,1983)。络合物与核糖体结合会抑制与氨基酰基‑tRNA结合进而抑制蛋白质合成(Wissmann等人,Forum Mikrobiol.292‑99,1998;Epe等人,EMBOJ.3:121‑26,1984)。人们还发现四环素类可与真核核糖体的40S亚单元结合;然而,其在真核细胞中不能够达到足够浓度以影响蛋白质合成,此因为其不可以活性方式输送到真核细胞(Epe等人,FEBS Lett.213:443‑47,1987)。
    已有人根据50年来对母体结构的半合成改良经验确定了四环素抗生素的结构‑活性关系(Sum等人,Curr.Pharm.Design4:119‑32,1998)。改变天然产物的上方左旋部分(也称作疏水结构域)提供新颖治疗活性剂而修饰所述极性疏水结构域会导致活性丧失。然而,根据其实际性质进行半合成已限制了可制备和研究的四环素类似物的数量。

    四环素包含4个具有高密度极性官能度和立体化学复杂度的线性稠合6元环。在1962年,Woodward和合作者报道了最简单的生物活性四环素外消旋6‑去甲基‑6‑脱氧四环素(山环素(sancycline),4)的首次全合成(Conover等人,J.Am.Chem.Soc.84:3222‑24,1962)。在那时,所述合成路径是一个重大的成就且其是通过在22步线性顺序中逐步构造所述环来进行的(总产率为约0.003%)。在2000年,Tatsuda和合作者报道了自A‑环前体D‑葡萄糖胺首次以对映体选择性方式合成(‑)‑四环素(3)(34个步骤,总产率为0.002%)(Tatsuta等人,Chem.Lett.646‑47,2000)。还可通过使用D或CD前体逐步组合ABCD环系统进行的合成四环素抗生素的其他方法包括(±)‑12a‑脱氧‑5a,6‑无水四环素的Shemyakin合成(Gurevich等人,Tetrahedron Lett.8:131,1967;以引用的方式并入本文中)及(±)‑5‑氧四环素(土霉素,22步,产率为0.06%)的Muxfeldt合成(Muxfeldt等人,J.Am.Chem.Soc.101:689,1979;以引用的方式并入本文中)。由于少数现有四环素路径的长度和低效率且不能根据合成可变性进行设计,因此,四环素类似物的合成仍受到限制。

    人们仍需要一种实用且有效的四环素类似物合成路径,其能够快速制备可测试其改良抗菌和潜在抗肿瘤活性的特定类似物此路径能够制备以前未曾制得的四环素类似物。
    发明内容
    本发明涉及用于制备四环素类似物的新颖合成方法。这些合成方法尤其可用于制备6‑脱氧四环素,其较6‑羟基四环素对酸和碱更稳定。强力霉素和米诺环素(临床上两种最重要的四环素)以及替加环素(一种先进的临床候选药)是6‑脱氧四环素类别的成员。

    所述方法还可用于制备6‑羟基四环素、五环素、六环素、C5‑经取代四环素、C5‑未经取代四环素、具有杂环D‑环的四环素和其他四环素类似物。
    所述四环素类似物的新颖合成方法涉及使用高官能化手性烯酮(5)作为关键中间体来汇集合成四环素环系统。第一种方法涉及使烯酮与通过去质子化甲苯甲酸酯(6)或金属化苄基卤化物所形成的阴离子反应,如下文所示。去质子化甲苯甲酸酯尤其可用于制备具有或不具有C5‑取代基的6‑脱氧四环素类。金属化作用(例如,金属‑卤素交换(例如,锂‑卤素交换)、金属‑类金属交换(例如,锂‑类金属交换))尤其可用于制备具有或不具有C5‑取代基的6‑脱氧四环素类以及五环素类。任何有机金属试剂可用于环化反应。特别有用的试剂可包括锂试剂、格氏(Grignard)试剂、0价金属试剂、和酸根型络合物。在某些实施例中,环化反应较佳可在较温和条件下进行。

    第二种方法涉及使烯酮(5)在Diels‑Alder型反应中与二烯(7)或苯并环丁烯醇(8)反应。

    在这两种方法中,手性烯酮提供四环素核的官能化A环和B环且D‑环是衍生自甲苯甲酸酯(6)、苄基卤化物或苯并环丁烯醇(8)。以对映体选择性方式使所述分子的两个部分连接在一起形成C‑环。这些方法不仅能够以对映体选择性方式有效地合成许多先前未曾制得的四环素类似物而且其还能够制备其中D‑环经杂环、5‑元环或其他环系统替代的四环素类似物。所述方法还可用于制备含有芳香族和非芳香族碳环和杂环的各种五环素或更多环素。
    通过氧化6‑脱氧四环素类似物的C6,可按照下文所示反应图制备6‑氧四环素类似物:

    6‑脱氧四环素可转化成芳香族萘酚中间体,其经历自发自然氧化形成氢过氧化物。水解所述氢过氧化物形成6‑氧四环素。氧化6‑脱氧四环素类似物可用于制备其中D‑环经杂环、5‑元环或其他环系统替代的四环素以及含有芳香族和非芳香族碳环和杂环的五环素和其他多环素。
    本发明不仅提供用于制备这些四环素类似物的合成方法而且提供用于这些合成的中间体(包括手性烯酮(5)、甲苯甲酸酯(6)、二烯(7)、苄基卤化物和苯并环丁烯醇(8))及借助其可获得的新颖衍生物。
    通过所述新颖方法可获得且被视为本发明一部分的某些广泛类别的化合物包括四环素类及各种类似物。重要的亚类别四环素类包括具有或不具有C5‑羟基的6‑脱氧四环素类和具有或不具有C5‑羟基的6‑羟基四环素类。通过这些新颖方法可获得的许多类似物由于受半合成方法和早期全合成的限制以前未曾合成过。例如,使用本发明新颖方法可达成某些D‑环取代。在某些类别的本发明化合物中,四环素类似物的D‑环(其通常为苯环)可经杂环部分替代,所述杂环可为二环或三环。在其他类别中,D‑环经非芳香族环替代。D‑环大小也不限于6‑元环,其可为3元、4元、5元、7元或更多元环。如果为五环素,则5个环可呈直线或非直线排列。每个D‑环和E‑环可为杂环或碳环,可为芳香环或非芳香环且可含有任意数量的原子,介于3至10个原子之间。此外,可制备诸如六环素等更多环素。在某些类别中,可能不完全形成C‑环,形成具有完整A‑B稠合环系统的二环素。本发明化合物包括任何特定化合物的同分异构体、立体异构体、对映异构体、非对映异构体、互变异构体、经保护形式、前药、盐和衍生物。


    本发明还包括用于合成本发明化合物的中间体。这些中间体包括手性烯酮、甲苯甲酸酯、苄基卤化物和苯并环丁烯醇。所述中间体包括各种经取代形式、同分异构体、互变异构体、立体异构体、盐和其衍生物。
    另一方面,本发明提供涉及本发明新颖化合物的治疗方法和医药组合物。所述医药组合物还可包括医药上可接受的赋形剂。所述方法和医药组合物可用于治疗任何感染,包括霍乱、流感、支气管炎、粉刺、疟疾、尿道感染、性传播疾病(包括梅毒和淋病)、军团病(Legionnaires′disease)、莱姆(Lyme)病、落基山斑疹热(Rocky Mountain spotted fever)、Q热、斑疹伤寒、腺鼠疫、气性坏疽、钩端螺旋体病、百日咳和炭疽。在某些实施例中,所述感染是由四环素‑抗性有机体引起的。在某些情况中,本发明化合物呈现抗肿瘤或抗增生活性,在此情况下,所述化合物可用于治疗诸如癌症、自体免疫性疾病、炎症性疾病和糖尿病性视网膜病等疾病。所述方法和组合物可用于治疗人类和包括饲养动物在内的其他动物的疾病。可使用任何投药模式,包括以经口或非经肠方式投与所述医药组合物。
    对于过去的四环素合成工作而言,本发明策略是一个突破,其可提供四环素和各种类似物的新颖合成路径。制备各种四环素类似物的能力及在治疗诸如癌症和感染疾病等疾病中某些所述化合物的使用不仅标志着合成有机化学的进步而且标志着医学的进步。在过去的50年里,四环素类抗生素在人类或兽类医学中治疗传染病方面发挥了重要的作用。然而,长年大量使用这些抗生素使得抗性成为一个主要问题。幸运的是,根据本发明可形成对四环素抗性有机体具有活性的四环素类似物。因此,本文所述形成允许四环素类抗生素仍然是内科医师用来对抗感染疾病的武器的一部分。说明
    定义
    具体官能基和化学术语的定义更详细地陈述于下文中。出于于本发明目的,化学元素根据元素周期表(CAS版,化学及物理手册(Handbook of Chemistry and Physics),第75版,内封面)确定,且特定官能基通常如本文所定义。此外,有机化学的一般原则以及特定官能部分及反应性都阐述于“有机化学(Organic Chemistry)”(Thomas Sorrell,University Science Books,Sausalito:1999,其整体内容以引用的方式并入本文中)中。
    本发明的某些化合物可以特定的几何异构体或立体异构体形式存在。本发明涵盖全部所述化合物,包括顺式‑和反式‑同分异构体、R‑和S‑对映异构体、非对映异构体、(D)‑同分异构体、(L)‑同分异构体、其外消旋混合物及其其他混合物,这些皆属于本发明的范围。在诸如烷基等取代基中可存在额外的不对称碳原子。所有这些同分异构体以及其混合物欲包含于本发明中。
    按照本发明,可使用含有任何比例的各种同分异构体的同分异构体混合物。例如,当仅组合两种同分异构体时,本发明涵盖具有50∶50、60∶40、70∶30、80∶20、90∶10、95∶5、96∶4、97∶3、98∶2、99∶1或100∶0同分异构体比例的混合物。那些所属领域的一般技术人员应容易地理解:本发明涵盖具有类似比例的更复杂同分异构体混合物。
    例如,如果需要本发明化合物的特定对映异构体,则其可通过不对称合成或通过使用手性辅助剂衍生制备,其中分离出所得非对映异构体混合物并切除辅助基团以提供纯的期望对映异构体。另一选择为,当所述分子含有诸如氨基等碱性官能基或诸如羧基等酸性官能基时,其与适当的光学活性酸或碱可形成非对映异构体盐,继而通过此项技术中熟知的分段结晶或层析方法解析由此形成的非对映异构体并接下来回收纯的对映异构体。
    所属领域的一般技术人员应理解:本文所述合成方法可利用各种保护基团。本文所用术语“保护基团”意指暂时封阻一特定官能部分(例如,O、S或N),以便反应可选择性地在多官能化合物的另一反应位置处进行。在较佳实施例中,一保护基团以高产率选择性地反应,生成一对预计反应稳定的被保护基质;所述保护基团应可高效率地由不攻击其他官能团且易于获得(较佳无毒)的试剂选择性去除;所述保护基团形成一易于分离的衍生物(更佳不产生新的立体中心);且所述保护基团具有最少的附加官能度以避免其他反应位置。如本文所详述,可使用氧、硫、氮和碳保护基团。羟基保护基团包括甲基、甲氧基甲基(MOM)、甲硫基甲基(MTM)、叔‑丁硫基甲基、(苯基二甲基甲硅烷基)甲氧基甲基(SMOM)、苄氧基甲基(BOM)、对‑甲氧基苄氧基甲基(PMBM)、(4‑甲氧基苯氧基)甲基(p‑AOM)、愈创木酚甲基(GUM)、叔‑丁氧基甲基、4‑戊烯氧基甲基(POM)、甲硅烷氧基甲基、2‑甲氧基乙氧基甲基(MEM)、2,2,2‑三氯乙氧基甲基、双(2‑氯乙氧基)甲基、2‑(三甲基甲硅烷基)乙氧基甲基(SEMOR)、四氢吡喃基(THP)、3‑溴四氢吡喃基、四氢硫吡喃基、1‑甲氧基环己基、4‑甲氧基四氢吡喃基(MTHP)、4‑甲氧基四氢硫吡喃基、4‑甲氧基四氢硫吡喃基S,S‑二氧化物、1‑[(2‑氯‑4‑甲基)苯基]‑4‑甲氧基哌啶‑4‑基(CTMP)、1,4‑二氧六环‑2‑基、四氢呋喃基、四氢硫呋喃基、2,3,3a,4,5,6,7,7a‑八氢‑7,8,8‑三甲基‑4,7‑亚甲基苯并呋喃‑2‑基、1‑乙氧基乙基、1‑(2‑氯乙氧基)乙基、1‑甲基‑1‑甲氧基乙基、1‑甲基‑1‑苄氧基乙基、1‑甲基‑1‑苄氧基‑2‑氟乙基、2,2,2‑三氯乙基、2‑三甲基甲硅烷基乙基、2‑(苯基氢硒基)乙基、叔‑丁基、烯丙基、对‑氯苯基、对‑甲氧基苯基、2,4‑二硝基苯基、苄基、对‑甲氧基苄基、3,4‑二甲氧基苄基、邻‑硝基苄基、对‑硝基苄基、对‑卤代苄基、2,6‑二氯苄基、对‑氰基苄基、对‑苯基苄基、2‑吡啶甲基、4‑吡啶甲基、3‑甲基‑2‑吡啶甲基N‑环氧、二苯基甲基、p,p′‑二硝基二苯甲基、5‑二苯并环庚基、三苯基甲基、α‑萘基二苯基甲基、对‑甲氧基苯基二苯基甲基、二(对‑甲氧基苯基)苯基甲基、三(对‑甲氧基苯基)甲基、4‑(4′‑溴苯甲酰基氧基苯基)二苯基甲基、4,4′,4″‑叁(4,5‑二氯苯二甲酰亚氨基苯基)甲基、4,4′,4″‑叁(乙酰丙酰基氧基苯基)甲基、4,4′,4″‑叁(苯甲酰基氧基苯基)甲基、3‑(咪唑‑1‑基)双(4′,4″‑二甲氧基苯基)甲基、1,1‑双(4‑甲氧基苯基)‑1′‑芘基甲基、9‑蒽基、9‑(9‑苯基)占吨基(、9‑(9‑苯基‑10‑氧代)蒽基、1,3‑苯并二硫杂环戊烷‑2‑基、苯并异噻唑基S,S‑二氧离子基、三甲基甲硅烷基(TMS)、三乙基甲硅烷基(TES)、三异丙基甲硅烷基(TIPS)、二甲基异丙基甲硅烷基(IPDMS)、二乙基异丙基甲硅烷基(DEIPS)、二甲基1,1,2‑三甲基丙基甲硅烷基、叔‑丁基二甲基甲硅烷基(TBDMS)、叔‑丁基二苯基甲硅烷基(TBDPS)、三苄基甲硅烷基、三‑对‑二甲苯基甲硅烷基、三苯基甲硅烷基、二苯基甲基甲硅烷基(DPMS)、叔‑丁基甲氧基苯基甲硅烷基(TBMPS)、甲酸根基、苯甲酰基甲酸根基、乙酸根基、氯乙酸根基、二氯乙酸根基、三氯乙酸根基、三氟乙酸根基、甲氧基乙酸根基、三苯基甲氧基乙酸根基、苯氧基乙酸根基、对‑氯苯氧基乙酸根基、3‑苯基丙酸根基、4‑氧代戊酸根基(乙酰丙酸根基)、4,4‑(亚乙基二硫代)戊酸根基(乙酰丙酰基二硫代乙缩醛)、特务酸根基、金刚烷酸根基、巴豆酸根基、4‑甲氧基巴豆酸根基、苯甲酸根基、对‑苯基苯甲酸根基、2,4,6‑三甲基苯甲酸根基(米酮酸根基(mesitoate))、碳酸烷基酯甲基酯、碳酸9‑芴基甲基酯(Fmoc)、碳酸烷基酯乙酯、碳酸烷基酯2,2,2‑三氯乙基酯(Troc)、碳酸2‑(三甲基甲硅烷基)酯乙基酯(TMSEC)、碳酸2‑(苯基磺酰基)乙基酯(Psec)、碳酸2‑(三苯基膦酰基)酯乙基酯(Peoc)、碳酸烷基酯异丁基酯、碳酸烷基酯乙烯基酯、碳酸烷基酯烯丙基酯、碳酸烷基酯对‑硝基苯基酯、碳酸烷基酯苄基酯、碳酸烷基酯邻‑甲氧基苄基酯、碳酸烷基酯3,4‑二甲氧基苄基酯、碳酸烷基酯邻‑硝基苄基酯、碳酸烷基酯对‑硝基苄基酯、硫代碳酸烷基酯S‑苄基酯、碳酸4‑乙氧基‑1‑萘基酯、二硫代碳酸甲酯、2‑碘苯甲酸根基、4‑叠氮基丁酸根基、4‑硝基‑4‑甲基戊酸根基、邻‑(二溴甲基)苯甲酸根基、2‑甲酰基苯磺酸根基、2‑(甲硫基甲氧基)乙基、4‑(甲硫基甲氧基)丁酸根基、2‑(甲硫基甲氧基甲基)苯甲酸根基、2,6‑二氯‑4‑甲基苯氧基乙酸根基、2,6‑二氯‑4‑(1,1,3,3‑四甲基丁基)苯氧基乙酸根基、2,4‑双(1,1‑二甲基丙基)苯氧基乙酸根基、氯二苯基乙酸根基、异丁酸根基、单琥珀酸根基、(E)‑2‑甲基‑2‑丁烯酸根基、邻‑(甲氧基羰基)苯甲酸根基、α‑萘酸根基、硝酸根基、N,N,N′,N′‑四甲基二氨基磷酸烷基酯、N‑苯基氨基甲酸烷基酯、硼酸根基、二甲基硫瞵基、2,4‑二硝基苯基次磺酸烷基酯、硫酸根基、甲烷磺酸根基(甲磺酸根基)、苄基磺酸根基和甲苯磺酸根基(Ts)。对于保护1,2‑或1,3‑二醇而言,保护基团可包括亚甲基缩醛、亚乙基缩醛、1‑叔‑丁基亚乙基缩酮、1‑苯基亚乙基缩酮、(4‑甲氧基苯基)亚乙基缩醛、2,2,2‑三氯亚乙基缩醛、缩丙酮化物、环亚戊基缩酮、环亚己基缩酮、环亚庚基缩酮、亚苄基缩醛、对‑甲氧基亚苄基缩醛、2,4‑二甲氧基亚苄基缩酮、3,4‑二甲氧基亚苄基缩醛、2‑硝基亚苄基缩醛、甲氧基亚甲基缩醛、乙氧基亚甲基缩醛、二甲氧基亚甲基原酸酯、1‑甲氧基亚乙基原酸酯、1‑乙氧基亚乙基原酸酯、1,2‑二甲氧基亚乙基原酸酯、α‑甲氧基亚苄基原酸酯、1‑(N,N‑二甲基氨基)亚乙基衍生物、α‑(N,N′‑二甲基氨基)亚苄基衍生物、2‑氧杂环亚戊基原酸酯、二‑叔‑丁基亚甲硅烷基(DTBS)、1,3‑(1,1,3,3‑四异丙基二亚硅氧烷)衍生物(TIPDS)、四‑叔‑丁氧基二亚硅氧烷‑1,3‑二基衍生物(TBDS)、环状碳酸酯、环状硼酸酯、硼酸乙酯和硼酸苯基酯。氨基‑保护基团包括氨基甲酸甲酯、氨基甲酸乙酯、氨基甲酸9‑芴基甲基酯(Fmoc)、氨基甲酸9‑(2‑磺)芴基甲基酯、氨基甲酸9‑(2,7‑二溴)芴基甲基酯、2,7‑二‑叔‑丁基‑[9‑(10,10‑二氧代‑10,10,10,10‑四氢噻噁烷基)]甲基氨基甲酸酯(DBD‑Tmoc)、氨基甲酸4‑甲氧基苯甲酰基酯(Phenoc)、氨基甲酸2,2,2‑三氯乙基酯(Troc)、氨基甲酸2‑三甲基甲硅烷基乙基酯(Teoc)、氨基甲酸2‑苯基乙基酯(hZ)、氨基甲酸1‑(1‑金刚烷基)‑1‑甲基乙基酯(Adpoc)、氨基甲酸1,1‑二甲基‑2‑卤代乙基酯、氨基甲酸1,1‑二甲基‑2,2‑二溴乙基酯(DB‑/‑BOC)、氨基甲酸1,1‑二甲基‑2,2,2‑三氯乙基酯(TCBOC)、氨基甲酸1‑甲基‑1‑(4‑联苯基)乙基酯(Bpoc)、1‑(3,5‑二‑叔‑丁基苯基)‑1‑甲基乙基氨基甲酸酯(t‑Bumeoc)、氨基甲酸2‑(2′‑和4′‑吡啶基)乙基酯(Pyoc)、氨基甲酸2‑(N,N‑二环己基甲酰氨基)乙基酯、氨基甲酸叔‑丁基酯(BOC)、氨基甲酸1‑金刚烷基酯(Adoc)、氨基甲酸乙烯基酯(Voc)、氨基甲酸烯丙基酯(Alloc)、氨基甲酸1‑异丙基烯丙基酯(Ipaoc)、氨基甲酸肉桂基酯(Coc)、氨基甲酸4‑硝基肉桂基酯(Noc)、氨基甲酸8‑喹啉基酯、氨基甲酸N‑羟基哌啶基酯、二硫代氨基甲酸烷基酯、氨基甲酸苄基酯(Cbz)、氨基甲酸对‑甲氧基苄基酯(Moz)、氨基甲酸对‑硝基苄基酯、氨基甲酸对‑溴苄基酯、氨基甲酸对‑氯苄基酯、氨基甲酸2,4‑二氯苄基酯、氨基甲酸4‑甲基亚磺酰基苄基酯(Msz)、氨基甲酸9‑蒽基甲基酯、氨基甲酸二苯基甲基酯、氨基甲酸2‑甲硫基乙基酯、氨基甲酸2‑甲基磺酰基乙基酯、氨基甲酸2‑(对‑甲苯磺酰基)乙基酯、氨基甲酸[2‑(1,3‑二噻烷基)]甲基酯(Dmoc)、氨基甲酸4‑甲硫基苯基酯(Mtpc)、氨基甲酸2,4‑二甲基硫基苯基酯(Bmpc)、氨基甲酸2‑膦酰基乙基酯(Peoc)、氨基甲酸2‑三苯基膦酰基异丙基酯(Ppoc)、氨基甲酸1,1‑二甲基‑2‑氰基乙基酯、氨基甲酸间‑氯‑对‑酰基氧基苄基酯、氨基甲酸对‑(二羟基鹏烷基)苄基酯、氨基甲酸5‑苯并异噁唑基甲基酯、氨基甲酸2‑(三氟甲基)‑6‑苯并二氫吡喃基甲基酯(Tcroc)、氨基甲酸间‑硝基苯基酯、氨基甲酸3,5‑二甲氧基苄基酯、氨基甲酸邻‑硝基苄基酯、氨基甲酸3,4‑二甲氧基‑6‑硝基苄基酯、氨基甲酸苯基(邻‑硝基苯基)甲基酯、吩噻嗪基‑(10)‑羰基衍生物、N′‑对‑甲苯磺酰基氨基羰基衍生物、N′‑苯基氨基硫代羰基衍生物、氨基甲酸叔‑戊基酯、硫代氨基甲酸S‑苄基酯、氨基甲酸对‑氰基苄基酯、氨基甲酸环丁基酯、氨基甲酸环己基酯、氨基甲酸环戊基酯、氨基甲酸环丙基甲基酯、氨基甲酸对‑癸基氧基苄基酯、氨基甲酸2,2‑二甲氧基羰基乙烯基酯、氨基甲酸邻‑(N,N‑二甲基甲酰氨基)苄基酯、氨基甲酸1,1‑二甲基‑3‑(N、N‑二甲基甲酰氨基)丙基酯、氨基甲酸1,1‑二甲基丙炔基酯、氨基甲酸二(2‑吡啶基)甲基酯、氨基甲酸2‑呋喃基甲基酯、氨基甲酸2‑碘乙基酯、氨基甲酸异莰基酯、氨基甲酸异丁基酯、氨基甲酸异烟碱基酯、氨基甲酸对‑(p′‑甲氧基苯基偶氮基)苄基酯、氨基甲酸1‑甲基环丁基酯、氨基甲酸1‑甲基环己基酯、氨基甲酸1‑甲基‑1‑环丙基甲基酯、氨基甲酸1‑甲基‑1‑(3,5‑二甲氧基苯基)乙基酯、氨基甲酸1‑甲基‑1‑(对‑苯基偶氮基苯基)乙基酯、氨基甲酸1‑甲基‑1‑苯基乙基酯、氨基甲酸1‑甲基‑1‑(4‑吡啶基)乙基酯、氨基甲酸苯基酯、氨基甲酸对‑(苯基偶氮基)苄基酯、氨基甲酸2,4,6‑三‑叔‑丁基苯基酯、氨基甲酸4‑(三甲基铵)苄基酯、氨基甲酸2,4,6‑三甲基苄基酯、甲酰胺、乙酰胺、氯乙酰胺、三氯乙酰胺、三氟乙酰胺、苯基乙酰胺、3‑苯基丙酰胺、甲基吡啶酰胺、3‑吡啶基甲酰胺、N‑苯甲酰基苯基丙胺酰基衍生物、苯甲酰胺、对‑苯基苯甲酰胺、邻‑硝基苯基乙酰胺、邻‑硝基苯氧基乙酰胺、乙酰乙酰胺、(N′‑二硫代苄氧基羰基氨基)乙酰胺、3‑(对‑羟基苯基)丙酰胺、3‑(邻‑硝基苯基)丙酰胺、2‑甲基‑2‑(邻‑硝基苯氧基)丙酰胺、2‑甲基‑2‑(邻‑苯基偶氮基苯氧基)丙酰胺、4‑氯丁酰胺、3‑甲基‑3‑硝基丁酰胺、邻‑硝基肉桂酰胺、N‑乙酰基甲硫氨酸衍生物、邻‑硝基苯甲酰胺、邻‑(苯甲酰基氧基甲基)苯甲酰胺、4,5‑二苯基‑3‑噁唑啉‑2‑酮、N‑邻苯二甲酰亚胺、N‑二噻琥珀酸亚胺(Dts)、N‑2,3‑二苯基马来酰亚胺、N‑2,5‑二甲基吡咯、N‑1,1,4,4‑四甲基二甲硅烷基氮杂环戊烷加合物(STABASE)、5‑经取代1,3‑二甲基‑1,3,5‑三氮杂环己烷‑2‑酮、5‑经取代1,3‑二苄基‑1,3,5三氮杂环己烷‑2‑酮、1‑经取代3,5‑二硝基‑4‑吡啶酮、N‑甲基胺、N‑烯丙基胺、N‑/2‑(三甲基甲硅烷基)乙氧基]甲基胺(SEM)、N‑3‑乙酰氧基丙基胺、N‑(1‑异丙基‑4‑硝基‑2‑氧代‑3‑吡咯啉基‑3‑基)胺、季铵盐、N‑苄基胺、N‑二(4‑甲氧基苯基)甲基胺、N‑5‑二苯并环庚基胺、N‑三苯基甲基胺(Tr)、N‑[(4‑甲氧基苯基)二苯基甲基]胺(MMTr)、N‑9‑苯基芴基胺(PhF)、N‑2,7‑二氯‑9‑芴基亚甲基胺、N‑二茂铁基甲基氨基(Fcm)、N‑2‑吡啶甲基氨基N′‑氧化物、N‑1,1‑二甲硫基亚甲基胺、N‑亚苄基胺、N‑对‑甲氧基亚苄基胺、N‑二苯基亚甲基胺、N‑[(2‑吡啶基)三甲苯基]亚甲基胺、N‑(N′,N′‑二甲基氨基亚甲基)胺、N,N′‑亚异丙基二胺、N‑对‑硝基亚苄基胺、N‑亚水杨基胺、N‑5‑氯亚水杨基胺、N‑(5‑氯‑2‑羟基苯基)苯基亚甲基胺、N‑环亚己基胺、N‑(5,5‑二甲基‑3‑氧代‑1‑环己烯基)胺、N‑硼烷衍生物、N‑二苯基硼酸衍生物、N‑[苯基(五羰基铬‑或钨)羰基]胺、N‑铜螯合物、N‑锌螯合物、N‑硝基胺、N‑亚硝基胺、胺N‑氧化物、二苯基次膦酰胺(Dpp)、二甲硫基次膦酰胺(Mpt)、二苯基硫代次膦酰胺(Ppt)、二烷基磷酰胺化物、二苄基磷酰胺化物、二苯基磷酰胺化物、苯次磺酰胺、邻‑硝基苯次磺酰胺(Nps)、2,4‑二硝基苯次磺酰胺、五氯苯次磺酰胺、2‑硝基‑4‑甲氧基苯次磺酰胺、三苯基甲基次磺酰胺、3‑硝基吡啶次磺酰胺(Npys)、对‑甲苯磺酰胺(Ts)、苯磺酰胺、2,3,6,‑三甲基‑4‑甲氧基苯磺酰胺(Mtr)、2,4,6‑三甲氧基苯磺酰胺(Mtb)、2,6‑二甲基‑4‑甲氧基苯磺酰胺(Pme)、2,3,5,6‑四甲基‑4‑甲氧基苯磺酰胺(Mte)、4‑甲氧基苯磺酰胺(Mbs)、2,4,6‑三甲基苯磺酰胺(Mts)、2,6‑二甲氧基‑4‑甲基苯磺酰胺(iMds)、2,2,5,7,8‑五甲基苯并二氫吡喃‑6‑磺酰胺(Pmc)、甲烷磺酰胺(Ms)、β‑三甲基甲硅烷基乙烷磺酰胺(SES)、9‑蒽磺酰胺、4‑(4′,8′‑二甲氧基萘基甲基)苯磺酰胺(DNMBS)、苄基磺酰胺、三氟甲基磺酰胺和苯甲酰基磺酰胺。本文详细阐述了例示性保护基团,然而,应了解,本发明并非意欲限于这些保护基团;相反,多种其他等效保护基团使用上述标准可容易地识别出并用于本发明方法中。此外,多种保护基团阐述于“有机合成中的保护基团”(“Protective Groups in Organic Synthesis”第3版,Greene,T.W.及Wuts,P.G.编辑,John Wiley & Sons,New York:1999,其整体内容以引用的方式并入本文中)中。
    应了解,本文所述化合物可用任何数量的取代基或官能部分取代。一般而言,术语“取代”(无论其前是否有术语“视需要”)及本发明化学式中所包含的取代基指用一规定取代基替代给定结构中的氢基。当任何给定结构中的一个以上位置被选自一规定群组的一个以上取代基取代时,每一位置处的取代基可相同或不同。本文所用术语“取代”意欲包括有机化合物的所有容许的取代基。广义上,所述容许的取代基包括有机化合物的非环状及环状、支链及非支链、碳环及杂环、芳香族及非芳香族取代基。出于本发明目的,诸如氮等杂原子可具有满足所述杂原子化合价要求的氢取代基及/或本文所述的任何容许的有机化合物取代基。而且,本发明并不意欲以任何方式受限于有机化合物的容许取代基。本发明所预想取代基和变量的组合较佳为那些可形成用于治疗(例如)感染疾病或增生病症的稳定化合物者。本文所用术语“稳定”较佳指以下化合物,所述化合物具有足以容许制造的稳定性并可在足够长的待检测时期内及对本文所述目的而言有用的足够长的时期内保持化合物完整性。
    本文所用术语“脂肪族基团”包括饱和及不饱和、直链(即,非支链)、支链、非环状、环状或多环脂肪族碳氢化合物,其可视需要用一或多个官能团取代。所属领域的一般技术人员应了解,“脂肪族基团”在本文中意欲包括但不限于烷基、烯基、炔基、环烷基、环烯基及环炔基部分。因此,本发明所用术语“烷基”包括直链、支链和环状烷基。一类似惯例可用于诸如“烯基”、“炔基”及类似基团等其他通称。而且,本文所用术语“烷基”、“烯基”、“炔基”及类似基团涵盖经取代和未经取代基团二者。在某些实施例中,本文所用术语“低碳烷基”用于指那些具有1至6个碳原子的烷基(环状、非环状、经取代、未经取代、有支链或无支链)。
    在某些实施例中,本发明所用烷基、烯基、炔基包含1至20个脂肪族碳原子。在某些其他实施例中,本发明所用烷基、烯基和炔基包含1至10个脂肪族碳原子。在另外一些实施例中,本发明所用烷基、烯基和炔基包含1至8个脂肪族碳原子。在另外一些实施例中,本发明所用烷基、烯基和炔基包含1至6个脂肪族碳原子。在另一些实施例中,本发明所用烷基、烯基和炔基包含1至4个碳原子。因此,说明性脂肪族基团包括但不限于(例如)甲基、乙基、正‑丙基、异丙基、环丙基、‑CH2‑环丙基、乙烯基、烯丙基、正‑丁基、仲‑丁基、异丁基、叔‑丁基、环丁基、‑CH2‑环丁基、正‑戊基、仲‑戊基、异戊基、叔‑戊基、环戊基、‑CH2‑环戊基、正‑己基、仲‑己基、环己基、‑CH2‑环己基部分及类似基团,其又可具有一或多个取代基。烯基包括但不限于(例如)乙烯基、丙烯基、丁烯基、1‑甲基‑2‑丁烯‑1‑基及类似基团。代表性炔基包括但不限于乙炔基、2‑丙炔基(炔丙基)、1‑丙炔基及类似基团。本文所用术语“烷氧基”或“烷硫基”指通过一氧原子或通过一硫原子键结至一母体分子的上文所定义烷基。在某些实施例中,所述烷基、烯基和炔基包含1至20个脂肪族碳原子。在某些其他实施例中,所述烷基、烯基和炔基包含1至10个脂肪族碳原子。在另外一些实施例中,本发明所用烷基、烯基和炔基包含1至8个脂肪族碳原子。在又一些实施例中,所述烷基、烯基和炔基包含1至6个脂肪族碳原子。在再一些实施例中,所述烷基、烯基和炔基包含1至4个脂肪族碳原子。烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基、异丙氧基、正‑丁氧基、叔‑丁氧基、新戊氧基及正‑己氧基。烷硫基的实例包括但不限于甲硫基、乙硫基、丙硫基、异丙硫基、正‑丁硫基及类似基团。术语“烷基氨基”是指具有‑NHR’结构的基团,其中R’是本文所定义的脂肪族基团。在某些实施例中,所述脂肪族基团包含1至20个脂肪族碳原子。在某些其他实施例中,所述脂肪族基团包含1至10个脂肪族碳原子。在又一些实施例中,本发明所用脂肪族基团含有1至8个脂肪族碳原子。在另外一些实施例中,所述脂肪族基团包含1至6个脂肪族碳原子。在再一些实施例中,所述脂肪族基团包含1至4个脂肪族碳原子。烷基氨基的实例包括但不限于甲基氨基、乙基氨基、正‑丙基氨基、异‑丙基氨基、环丙基氨基、正‑丁基氨基、叔‑丁基氨基、新戊基氨基、正‑戊基氨基、己基氨基、环己基氨基、及类似基团。
    术语“二烷基氨基”指一个具有‑NRR′结构的基团,其中R和R′各自为如本文所定义的脂肪族基团。二烷基氨基部分中的R和R′可为相同或不同。在某些实施例中,所述脂肪族基团包含1至20个脂肪族碳原子。在另外一些实施例中,所述脂肪族基团包含1至10个脂肪族碳原子。在又一些实施例中,本发明所用脂肪族基团含有1至8个脂肪族碳原子。在又一些实施例中,所述脂肪族基团包含1至6个脂肪族碳原子。在再一些实施例中,所述脂肪族基团包含1至4个脂肪族碳原子。二烷基氨基的实例包括但不限于二甲基氨基、甲基乙基氨基、二乙基氨基、甲基丙基氨基、二(正‑丙基)氨基、二(异‑丙基)氨基、二(环丙基)氨基、二(正‑丁基)氨基、二(叔‑丁基)氨基、二(新戊基)氨基、二(正‑戊基)氨基、二(己基)氨基、二(环己基)氨基、及类似基团。在某些实施例中,R和R′连接在一起形成环状结构。所得环状结构可为芳香族或非芳香族。环状二氨基烷基的实例包括但不限于氮丙啶基、吡咯烷基、哌啶基、吗啉基、吡咯基、咪唑基、1,3,4‑三唑基和四唑基。
    本发明化合物上述脂肪族(或其他)部分的取代基的某些实例包括但不限于:脂肪族基团;杂脂肪族基团;芳基;杂芳基;芳基烷基;杂芳基烷基;烷氧基;芳氧基;杂烷氧基;杂芳氧基;烷硫基;芳硫基;杂烷硫基;杂芳硫基;F;Cl;Br;I;‑OH;‑NO2;‑CN;‑CF3;‑CH2CF3;‑CHCl2;‑CH2OH;‑CH2CH2OH;‑CH2NH2;‑CH2SO2CH3;‑C(O)Rx;‑CO2(Rx);‑CON(RX)2;‑OC(O)RX;‑OCO2Rx;‑OCON(RX)2;‑N(RX)2;‑S(O)2RX;‑NRx(CO)Rx,其中Rx在每次出现时独立地包括但不限于脂肪族基团、杂脂肪族基团、芳基、杂芳基、芳基烷基或杂芳基烷基,其中上文及此处所阐述的任一脂肪族基团、杂脂肪族基团、芳基烷基或杂芳基烷基取代基皆可为经取代或未经取代、有支链或无支链、环状或非环状,且其中上文及此处所阐述的任一芳基或杂芳基取代基皆可经取代或未经取代。通常可用取代基的其他实例由本文所述实例中所示的特定实施例阐述。一般而言,本文所用术语“芳基”和“杂芳基”指较佳具有3至14个碳原子的稳定单环或多环、杂环、多环及多杂环不饱和部分,每一部分皆可经取代或未经取代。取代基包括但不限于上述任一取代基,即,所述用于脂肪族部分或用于本文所述其他部分导致形成稳定化合物的取代基。在本发明的某些实施例中,“芳基”是指具有一或两个芳香族环的单或二环碳环系统,其包括但不限于苯基、萘基、四氢萘基、二氢茚基、茚基及类似基团。在本发明的某些实施例中,本文所用术语“杂芳基”是指具有5至10个环原子的环状芳香族基团,其中一个环原子选自S、O和N;零、一或两个环原子是独立选自S、O和N的另外杂原子;且其余环原子为碳,所述基团通过任一环原子结合至分子的其余部分,例如,吡啶基、吡嗪基、嘧啶基、吡咯基、吡唑基、咪唑基、噻唑基、噁唑基、异噁唑基、噻二唑基、噁二唑基、噻吩基、呋喃基、喹啉基、异喹啉基及类似基团。
    应了解,芳基及杂芳基可未经取代或经取代,其中取代包括独立地用任一个或多个包括但不限于下列的以下部分替换其上的一、二或三个氢原子:脂肪族基团;杂脂肪族基团;芳基;杂芳基;芳基烷基;杂芳基烷基;烷氧基;芳氧基;杂烷氧基;杂芳氧基;烷硫基;芳硫基;杂烷硫基;杂芳硫基;F;Cl;Br;I;‑OH;‑NO2;‑CN;‑CF3;‑CH2CF3;‑CHCl2;‑CH2OH;‑CH2CH2OH;‑CH2NH2;‑CH2SO2CH3;‑C(O)Rx;‑CO2(Rx);‑CON(RX)2;‑OC(O)RX;‑OCO2Rx;‑OCON(RX)2;‑N(RX)2;‑S(O)2RX;‑NRx(CO)Rx,其中Rx在每次出现时皆独立地包括但不限于脂肪族基团、杂脂肪族基团、芳基、杂芳基、芳基烷基或杂芳基烷基,其中上文及此处所述的任一脂肪族基团、杂脂肪族基团、芳基烷基或杂芳基烷基取代基可为经取代或未经取代、有支链或无支链、环状或非环状,且其中上文及此处所阐述的任一芳基及杂芳基取代基皆可经取代或未经取代。常用取代基的额外实例通过本文所述实例中所示具体实施例加以说明。
    本文所用术语“环烷基”特定地指具有3至7个(较佳3至10个)碳原子的基团。适宜环烷基包括但不限于环丙基、环丁基、环戊基、环己基、环庚基及类似基团,如同在其他脂肪族基团、杂脂肪族或杂环部分的情况,其可视需要经取代基取代,所述取代基包括但不限于:脂肪族基团;杂脂肪族基团;芳基;杂芳基;芳基烷基;杂芳基烷基;烷氧基;芳氧基;杂烷氧基;杂芳氧基;烷硫基;芳硫基;杂烷硫基;杂芳硫基;F;Cl;Br;I;‑OH;‑NO2;‑CN;‑CF3;‑CH2CF3;‑CHCl2;‑CH2OH;‑CH2CH2OH;‑CH2NH2;‑CH2SO2CH3;‑C(O)Rx;‑CO2(Rx);‑CON(RX)2;‑OC(O)RX;‑OCO2Rx;‑OCON(RX)2;‑N(RX)2;‑S(O)2RX;‑NRx(CO)Rx,其中Rx在每次出现时皆独立包括但不限于脂肪族基团、杂脂肪族基团、芳基、杂芳基、芳基烷基或杂芳基烷基,其中上文及此处所述的任一脂肪族基团、杂脂肪族基团、芳基烷基或杂芳基烷基取代基可为经取代或未经取代、有支链或无支链、环状或非环状,且其中上文及此处所阐述的任一芳基及杂芳基取代基可经取代或未经取代。常用取代基的额外实例通过本文所述实例中所示具体实施例说明。本文所用术语“杂脂肪族”是指含有一或多个(例如)替代碳原子的氧、硫、氮、磷或硅原子的脂肪族部分。杂脂肪族部分可为支链、非支链、环状或非环状且包括饱和及不饱和杂环,例如吗啉基、吡咯烷基等。在某些实施例中,杂脂肪族部分上的一或多个氢原子独立地经一或多个包括但不限于下列的部分取代:脂肪族基团;杂脂肪族基团;芳基;杂芳基;芳基烷基;杂芳基烷基;烷氧基;芳氧基;杂烷氧基;杂芳氧基;烷硫基;芳硫基;杂烷硫基;杂芳硫基;‑F;‑Cl;‑Br;‑I;‑OH;‑NO2;‑CN;‑CF3;‑CH2CF3;‑CHCl2;‑CH2OH;‑CH2CH2OH;‑CH2NH2;‑CH2SO2CH3;‑C(O)Rx;‑CO2(Rx);‑CON(Rx)2;‑OC(O)Rx;‑OCO2Rx;‑OCON(Rx)2;‑N(RX)2;‑S(O)2Rx;‑NRx(CO)Rx、其中Rx在每次出现时独立地包括但不限于脂肪族基团、杂脂肪族基团、芳基、杂芳基、芳基烷基、或杂芳基烷基,其中上文及本文中所述任一个脂肪族基团、杂脂肪族基团、芳基烷基、或杂芳基烷基取代基可为经取代或未经取代、有支链或无支链、环状或非环状且其中上文及本文中所述任一个芳基或杂芳基取代基可经取代或未经取代。常用取代基的额外实例通过本文所述实例中所示具体实施例说明。
    本文所用术语“卤代”及“卤素”指一选自氟、氯、溴及碘的原子。
    术语“卤代烷基”指上文所定义的具有1、2或3个键结至其的卤素原子的烷基且可由诸如氯甲基、溴乙基、三氟甲基及类似基团等基团例示。
    本文所用术语“杂环烷基”或“杂环”指非芳香族5‑、6‑或7‑元环或一多环基团,其包括但不限于二或三环基团,所述基团包含具有1至3个独立选自氧、硫及氮的杂原子的稠合六元环,其中(i)每一5元环皆具有0至1个双键且每一6元环皆具有0至2个双键,(ii)氮及硫杂原子可视需要经氧化,(iii)氮杂原子可视需要经季铵化,及(iv)任一上述杂环皆可稠合至一苯环。代表性杂环包括但不限于吡咯烷基、吡唑啉基、吡唑烷基、咪唑啉基、咪唑烷基、哌啶基、哌嗪基、噁唑烷基、异噁唑烷基、吗啉基、噻唑烷基、异噻唑烷基及四氢呋喃基。在某些实施例中,使用一“经取代杂环烷基或杂环”且如本文所用指一其上1、2或3个氢原子被以下基团(但不限于这些基团)独立替换来取代的如上所定义杂环烷基或杂环基团:脂肪族基团;杂脂肪族基团;芳基;杂芳基;芳基烷基;杂芳基烷基;烷氧基;芳氧基;杂烷氧基;杂芳氧基;烷硫基;芳硫基;杂烷硫基;杂芳硫基;F;Cl;Br;I;‑OH;‑NO2;‑CN;‑CF3;‑CH2CF3;‑CHCl2;‑CH2OH;‑CH2CH2OH;‑CH2NH2;‑CH2SO2CH3;‑C(O)Rx;‑CO2(Rx);‑CON(RX)2;‑OC(O)RX;‑OCO2Rx;‑OCON(RX)2;‑N(RX)2;‑S(O)2RX;‑NRx(CO)Rx,其中Rx在每次出现时独立包括但不限于脂肪族基团、杂脂肪族基团、芳基、杂芳基、芳基烷基或杂芳基烷基,其中上文及此处所阐述的任一脂肪族基团、杂脂肪族基团、芳基烷基或杂芳基烷基取代基可为经取代或未经取代、有支链或无支链、环状或非环状,且其中上文及此处所阐述的任一芳基或杂芳基取代基可经取代或未经取代。常用取代基的额外实例通过本文所述实例中所示具体实施例说明。
    “碳环”:本文所用术语“碳环”指其中所述环的每个原子为碳原子的芳香族或非芳香族环。
    “独立地选自”:本文所用术语“独立地选自”指R基团可相同或不同。“标记”:本文所用术语“标记”意欲指一化合物具有至少一种使得能够检测所述化合物的元素、同位素或化学物。一般而言,标记通常分为3类:a)同位素标记,其可为放射性或重同位素,包括但不限于2H、3H、32P、35S、67Ga、99mTc(Tc‑99m)、111In、123I、125i、169yb和186Re;b)免疫标记,其可为可与生成检测剂的酶(例如,辣根过氧化物酶)结合的抗体或抗原;及c)彩色、发光、磷光或荧光染料。应了解,所述标记物可在任一不干扰正被检测化合物的生物活性或特性的位置处纳入所述化合物中。在某些实施例中,使用氘原子(H)替换所述化合物中的氢原子以减缓化合物在体内降解。由于同位素效应,可减缓氘代四环素的酶促降解从而延长所述化合物在体内的半衰期。在本发明的某些实施例中,光亲和性标记物用于直接说明生物系统中分子间相互作用。可使用各种已知发光团,多数是依赖于重氮化合物、叠氮化物或重氮甲烷光转化为氮烯或碳烯(参见,Bavlev,H.,Photogenerated Reagents in Biochemistrv and Molecular Biology(1983),Elsevier,Amsterdam.),其整体内容以引用的方式并入本文中。在本发明的某些实施例中,所用光亲和性标记物为经一或多个卤素部分取代的邻、间及对‑叠氮苯甲酰基,其包括但不限于4‑叠氮基‑2,3,5,6‑四氟苯甲酸。
    “互变异构体”:本文所用术语“互变异构体”是指其中氢和双键相对于所述分子的其他原子位置改变的化合物的特定同分异构体。如果存在一对互变异构体,则一定会存在互变机制。互变异构体的实例包括酮‑烯醇形式、亚胺‑烯胺形式、酰胺‑亚氨基醇形式、脒‑胺啶形式、亚硝基‑肟形式、硫酮‑烯硫醇形式、N‑亚硝基‑羟基偶氮基形式、硝基‑酸式硝基形式和吡啶酮‑羟基吡啶形式。
    用于整个说明书的非化学术语的定义包括:
    “动物”:本文所用术语动物是指人类以及非人类动物,包括(例如)哺乳动物、鸟类、爬虫类、两栖类和鱼类。较佳地,非人类动物是哺乳动物(例如,啮齿类动物、小鼠、大鼠、兔子、猴子、狗、猫、灵长类或猪)。非人类动物可为转基因动物。
    “缔合”:当两个实体按照本文所述相互“缔合”在一起时,这两个实体通过直接或间接共价键或非共价键相互作用连接。较佳地,所述缔合是共价键结。期望的非共价键相互作用包括氢键结、范德瓦耳斯相互作用(van der Waals interaction)、疏水性相互作用、磁相互作用、静电相互作用等。
    “有效量”:一般而言,活性剂或微粒的“有效量”是指足以产生期望生物响应的数量。那些所属领域的一般技术人员应理解:本发明化合物的有效量可视诸如下列等因素而变化:期望生物学终点、所述化合物的药物动力学、所治疗疾病、投药模式和患者。例如,有效量的四环素类似物抗生素是在所述感染位点可产生足够浓度以杀死造成所述感染的微生物(杀菌)或以抑制这些微生物繁殖(抑菌)的数量。在另一实施例中,有效量的四环素类似物抗生素是足以逆转所述感染的临床体征和病状(包括发烧、充血、发热、疼痛、寒战、细菌繁殖和生成脓液)的数量。
    附图说明
    图1展示始于苯甲酸的四环素和四环素类似物的模块式合成。
    图2绘示始于苯甲酸并涉及手性烯酮10与苯并环丁烯醇11间的邻‑醌二甲基化物Diels‑Alder反应的(‑)‑四环素全合成。17步骤合成的总产率为1.1%。
    图3是(‑)‑强力霉素在18个步骤中的总合成(总产率为8.2%)。所述合成包括手性烯酮23与阴离子24生成四环素核的反应。前7步与图2所示(‑)‑四环素合成的前7步相同。
    图4展示用于合成图2所示(‑)‑四环素和(‑)‑强力霉素的异噁唑4的第一代和第二代合成。
    图5示用于合成图2所示(‑)‑四环素的苯并环丁烯醇11的合成。
    图6展示二环素的合成。二环素保留了被认为对于四环素的抗微生物活性具有重要作用的亲水域。
    图7绘示通过手性烯酮10与二烯(41)的Diels‑Alder反应合成三环素。三环素保留了被认为对于抗微生物活性具有重要作用的疏水域。图8展示五环素的合成。
    图9展示通过使阴离子47与手性烯酮反应合成架桥五环素。
    图10展示可用作用于合成四环素类似物的类似平台的5种化合物。
    图11是展示吡啶酮/山环素羟基吡啶类似物合成的反应图。
    图12展示在14个步骤中自苯甲酸全合成6‑脱氧四环素(总产率为8%)。前10步与图2所示(‑)‑四环素合成的前10步相同。
    图13A展示山环素吡啶类似物,7‑氮杂‑10‑脱氧山环素的合成。图13B展示10‑脱氧山环素的合成。
    图14A和14B展示借助本发明方法可能获得的杂环素、四环素类似物、五环素或多环素的许多实例。
    图15展示各种四环素抗生素的化学结构。开始,(‑)‑四环素(1)通过水解发酵产物金霉素(7‑氯四环素)以半合成方式生成,但后来,人们发现其是一种天然产物且现在可通过发酵生成(M.Nelson、W.Hillen、R.A.Greenwald、Eds.,Tetracyclines in Biology,Chemistry and Medicine(Birkhauser Verlag,Boston,2001);以引用的方式并入本文中)。(‑)‑强力霉素(2)和米诺环素(3)是在临床上具有重要作用的非天然抗生素且二者皆可通过多步化学转化发酵产物(半合成)来生产(M.Nelson,W.Hillen,R.A.Greenwald,Eds.,Tetracyclines in Biology,Chemistry and Medicine(Birkhauser Verlag,Boston,2001);以引用的方式并入本文中)。结构4‑6代表不能够通过任何已知半合成路径制备的四环素类似分子,但其现在可通过图15B所绘示汇集组合获得。图15B绘示自偶合结构不同的碳负离子D‑环前体与AB前体7或8之一形成四环素C‑环的常用Michael‑Dieckmann反应序列。
    图16展示苯甲酸在7个步骤中到关键二环中间体14的转化。随后,此产物通过所示4步序列用于制备AB前体烯酮7或烯酮8,AB前体通过所示8步序列生成6‑脱氧‑5‑羟基四环素衍生物。图17展示通过汇集偶合衍生自18的邻‑甲苯甲酸酯阴离子与AB前体烯酮8来合成在临床上具有重要作用的抗生素(‑)‑强力霉素(2)。
    图18展示通过偶合结构不同的D‑环前体与AB前体7或8合成结构不同的6‑脱氧四环素。自苯甲酸开始,步骤数目和总产率示于所合成每个结构下的括号内。MIC值(微克/毫升)还展示每种类似物抵抗5革兰氏阳性和5革兰氏阴性微生物的全细胞抗菌测试。下方展现四环素(1)(测试对照)的对应MIC。
    图19展示作为锂阴离子与手性烯酮产物的结晶Michael加合物。
    图20展示通过Michael‑Dieckman反应序列合成五环素。
    图21展示各种新颖四环素类似物及其对应D‑环前体的合成。这些化合物填补了四环素领域的重大空白,其可能由于缺乏可行的合成法而未曾在文献中出现过。
    图22展示源自1S,2R‑顺式‑二羟基苯甲酸的AB烯酮前体的替换序列。
    图23展示生成AB前体的新颖路径。这些路径不涉及苯甲酸的微生物二羟基化反应。
    具体实施方式
    本发明提供一种用于通过使用如下所示高官能化手性烯酮9作为中间体进行汇集合成来合成四环素类似物的策略:

    其中R3是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORC;=O;‑C(=O)RC;‑CO2RC;‑CN;‑SCN;‑SRC;‑SORC;‑SO2RC;‑NO2;‑N(RC)2;‑NHC(O)RC;或‑C(RC)3;其中RC在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R4是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORD;=O;‑C(=O)RD;‑CO2RD;‑CN;‑SCN;‑SRD;‑SORD;‑SO2RD;‑NO2;‑N(RD)2;‑NHC(O)RD;或‑C(RD)3;其中RD在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R5是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORE;‑CN;‑SCN;‑SRE;或‑N(RE)2;其中RE在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R6选自由下列组成的群组:氢、卤素、经取代或未经取代脂肪族基团、经取代或未经取代杂脂肪族基团、经取代或未经取代烷氧基、‑OH、‑CN、‑SCN、‑SH、烷硫基、芳硫基、‑NO2、氨基、烷基氨基及二烷基氨基;
    P独立地选自由氢或保护基团组成的群组。手性烯酮9可与酞阴离子、甲苯甲酸酯的阴离子、苯并环丁烯醇或二烯反应以生成四环素类似物,包括杂环状四环素、二环素、三环素、五环素、杂环五环素、多环素和杂环多环素。测试这些新颖化合物的抵抗微生物(包括传统四环素敏感性有机体以及已知对四环素具有抗性的有机体)的抗微生物活性。被发现具有杀菌或以菌作用的化合物可用于调配在人类或兽类医学中用于治疗感染的医药物。还可测试所述化合物的抗增生活性。这些化合物可用于治疗抗增生疾病,包括癌症、抗炎疾病、自身免疫疾病、良性新生物和糖尿病性视网膜病。本发明合成四环素类似物的方法允许有效地合成许多使用早期路径和半合成技术未曾制得或获得的化合物。
    化合物
    本发明化合物包括四环素类似物、杂环状四环素类似物、二环素、三环素、五环素、杂环状五环素、桥接五环素、杂环状多环素、桥接多环素和其他多环素。本发明的特别有用的化合物包括那些具有生物活性者。在某些实施例中,本发明化合物呈现抗微生物活性。例如,所述化合物对于特定细菌具有一小于50微克/毫升、较佳小于25微克/毫升、更佳小于5微克/毫升且最佳小于1微克/毫升的平均抑制浓度。例如,使用本发明抗微生物化合物可治疗由下列有机体引起的感染:革兰氏阳性菌类‑金黄色葡萄球菌(Staphylocococcus aureus)、链球菌群A(Streptococcus Group A)、草绿色链球菌(Streptococcus viridans)、肺炎链球菌(Streptococcus pneumoniae);革兰氏阴性菌类‑脑膜炎双球菌(Neisseria meningitidis)、奈瑟氏淋病双球菌(Neisseria gonorrhoeae)、流感嗜血杆菌(Haemophilus influenzae)、埃希氏大肠杆菌(Escherichia coli)、脆弱类杆菌(Bacteroides fragilis)、其他类菌体;及其他‑肺炎支原体(Mycoplasma pneumoniae)、梅毒螺旋体(Treponema pallidum)、立克次氏体(Rickettsia)和衣原体(Chlamydia)。在其他实施例中,本发明化合物呈现抗增生活性。在某些实施例中,本发明四环素类似物是由下式表示:

    10的D‑环可包含1、2或3个双键。在某些实施例中,所述D‑环是芳香族的。在其他实施例中,所述D‑环仅包含1个双键且在另一些实施例中,所述D‑环包含2个双键,二者可为共轭或非共轭。D‑环可经如下文所定义的不同基团R7、R6和R8取代。
    在10中,R1可为氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORA;=O;‑C(=O)RA;‑CO2RA;‑CN;‑SCN;‑SRA;‑SORA;‑SO2RA;‑NO2;‑N(RA)2;‑NHC(O)RA;或‑C(RA)3;其中RA在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。在某些实施例中,R1是氢。在其他实施例中,R1是低碳烷基、烯基或炔基。在又一些实施例中,R1是甲基、乙基、正丙基、环丙基或异丙基。在又一些实施例中,R1是甲基。
    R2可为氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORB;=O;‑C(=O)RB;‑CO2RB;‑CN;‑SCN;‑SRB;‑SORB;‑SO2RB;‑NO2;‑N(RB)2;‑NHC(O)RB;或‑C(RB)3;其中RB在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。在某些实施例中,R2是氢。在其他实施例中,R2是羟基或经保护羟基。在某些实施例中,R2是烷氧基。在另一些实施例中,R2是低碳烷基、烯基或炔基。在某些实施例中,R1是甲基且R2是羟基。在其他实施例中,R1是甲基且R2是氢。在某些实施例中,R1和R2一起形成螺接到10的碳环或杂环系统。
    R3是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORC;=O;‑C(=O)RC;‑CO2RC;‑CN;‑SCN;‑SRC;‑SORC;‑SO2RC;‑NO2;‑N(RC)2;‑NHC(O)RC;或‑C(RC)3;其中RC在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。在某些实施例中,R3是氢。在其他实施例中,R3是羟基或经保护羟基。在又一些实施例中,R3是烷氧基。在另一些实施例中,R3是低碳烷基、烯基或炔基。
    R4是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORD;=O;‑C(=O)RD;‑CO2RD;‑CN;‑SCN;‑SRD;‑SORD;‑SO2RD;‑NO2;‑N(RD)2;‑NHC(O)RD;或‑C(RD)3;其中RD在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。在某些实施例中,R4是氢。在其他实施例中,R4是羟基或经保护羟基。在又一些实施例中,R4是烷氧基。在另一些实施例中,R4是低碳烷基、烯基或炔基。在某些实施例中,R3与R4皆为氢。在其他实施例中,R3与R4一起形成螺接到10的B‑环上的碳环或杂环系统。
    R5可为氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORE;‑CN;‑SCN;‑SRE;或‑N(RE)2;其中RE在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。在某些实施例中,R5是氨基、烷基氨基或二烷基氨基;较佳为二甲基氨基、二乙基氨基、甲基(乙基)氨基、二丙基氨基、甲基(丙基)氨基或乙基(丙基)氨基。在其他实施例中,R5是羟基、经保护羟基或烷氧基。在又一些实施例中,R5是硫氢基、经保护硫氢基或烷基硫氧基。
    R7是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORG;=O;‑C(=O)RG;‑CO2RG;‑CN;‑SCN;‑SRG;‑SORG;‑SO2RG;‑NO2;‑N(RG)2;‑NHC(O)RG;或‑C(RG)3;其中RG在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。在某些实施例中,R7是羟基、经保护羟基、烷氧基、低碳烷基、低碳烯基、低碳炔基或卤素。
    如果连接R6和R8的两碳原子间的虚线表示一键结,则不存在R6和R8,或者二者各自独立地选自由下列组成的群组:氢、卤素、经取代或未经取代脂肪族基团、经取代或未经取代杂脂肪族基团、经取代或未经取代烷氧基、‑OH、‑CN、‑SCN、‑SH、烷硫基、‑NO2、氨基、烷基氨基和二烷基氨基。在某些实施例中,不存在R6和R8。在其他实施例中,不存在R6和R8。变量n是介于0至8之间且包含0和8的整数。所属领域的技术人员应理解:当D‑环是芳香环时,n是介于0与4之间,较佳介于1与3之间,更佳介于1与2之间的整数。在某些实施例中,当n是2时,取代基R7是呈邻位构型。在其他实施例中,当n是2时,取代基R7是呈对位构型。.且在又一些实施例中,当n是2时,取代基R7是呈间位构型。
    式10中虚线可表示存在键结或不存在键结。
    所属领域的技术人员应理解:式10化合物包括其衍生物、标记形式、盐、前药、同分异构体和互变异构体。衍生物包括经保护形式。盐包括任何医药上可接受的盐,包括HCl、HBr、HI、乙酸和脂肪酸(例如,乳酸、柠檬酸、肉豆蔻酸、油酸、戊酸)的盐。在某些实施例中,本发明化合物在中性pH下以两性离子形式呈现,其中R5是质子化氨基且C‑3羟基按照式10a所示去质子化。

    同分异构体包括几何异构体、非对映异构体和对映异构体。互变异构体包括羰基部分的酮和烯醇形式以及经取代或未经取代杂环的各种互变异构形式。例如,如式10中所示B‑环包括所绘示烯醇部分,但在某些化合物中所述烯醇可以如下式10b和10c中所示酮基形式存在:

    所属领域的技术人员应了解其他互变异构形式且其将视核心环结构的取代方式而定。所绘示化学式仅作为实例给出且其不欲以任何方式代表特定化合物可存在的全部互变异构体。
    包含经取代或未经取代芳香族D‑环的式10化合物的各种亚类别示于下文中。这些亚类别包括未经取代、经单次取代、经两次取代和经三次取代的D‑环。

    其中R1、R2、R3、R4和R5的定义如上文所述且R7是卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORG;=O;‑C(=O)RG;‑CO2RG;‑CN;‑SCN;‑SRG;‑SORG;‑SO2RG;‑NO2;‑N(RG)2;‑NHC(O)RG;或‑C(RG)3;其中RG在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。在某些实施例中,R7是羟基、经保护羟基、烷氧基、低碳烷基、低碳烯基、低碳炔基或卤素。在其他实施例中,R7是环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;或环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团。在又一些实施例中,R7是氨基、烷基氨基或二烷基氨基。在其他实施例中,R7是经取代或未经取代环状、杂环状芳基或杂芳基。在某些实施例中,R7是有支链或无支链酰基。
    在C10处包含羟基的各种亚类别式10化合物为如下所示:



    其中R1、R2、R3、R4、R5、RE和R7的定义是如上文所述。在某些实施例中,所述化合物是如下述化学式所示的6‑脱氧四环素:


    其中R2是氢且R1、R3、R4、R5、RE和R7的定义是如上文所述。
    在本发明的另一方面中,四环素的碳环D‑环
    可用杂环或碳环部分替换,如下式(11)所示:

    R1、R2、R3、R4和R5的定义是如上文对于式10所述。
    由表示的D‑环可为经取代或未经取代芳基、杂芳基、碳环或杂环部分,其中X在每次出现时选自由‑O‑、‑S‑、‑NR7‑、‑C(R7)2‑组成的群组;n是介于1和5之间且包含1和5的整数;且相邻X部分间的键结是单键或双键。
    在某些实施例中,是多环系统,例如二环或三环部分。在其他实施例中,是单环部分。在又一些实施例中,是经取代或未经取代杂环状部分。在某些实施例中,不为经取代或未经取代苯环。在其他实施例中,是如下所示吡啶基部分:

    在另一实施例中,选自由下列组成的群组:

    在又一实施例中,选自由下列组成的群组的5元杂环:

    本发明的各种四环素(杂环素类)还展示于图14中。
    本发明的其他化合物包括具有下式的五环素:

    其中R1、R2、R3、R4、R5和皆为如上文所述。在某些实施例中,所述化合物的环是线性的。在其他实施例中,所述环系统是非线性的。在某些实施例中,环在每次出现时皆为单环系统。在每次出现时皆为杂环状或碳环。是3元、4元、5元、6元或7元;较佳为5元或6元。其他类别的五环素包括式(12)、(13)和(14)化合物:

    其中R1、R2、R3、R4、R5和R7是如上文所述。在式12、13和14中,代表经取代或未经取代芳基、杂芳基、碳环或杂环状部分,其中X在每次出现时选自由‑O‑、‑S‑、‑NR8‑、‑C(R8)2‑组成的群组;n是介于1至5之间且包含1和5的整数;且相邻X部分间的键结是单键或双键。在某些实施例中,是多环系统,例如二环或三环部分。
    在其他实施例中,是单环部分。在其他实施例中,是经取代或未经取代、芳香族或非芳香族碳环部分,例如苯环。在又一些实施例中,为经取代或未经取代杂环状部分。在某些实施例中,不为经取代或未经取代苯环。在其他实施例中,是如下所示吡啶基部分:

    在另一实施例中,选自由下列组成的群组:

    在又一实施例中,选自由下列组成的群组的5元杂环:

    各亚类别的式(12)包括:

    各亚类别的式(13)包括:

    各亚类别的式(14)包括:

    本发明的各种五环素还展示于图14中。
    在某些实施例中,本发明的四环素类似物是由下式表示:

    其中X是氮、硫和氧且R1、R3、R4、R5、R6、R7、R8和n皆为如上文所述,需声明的是:当X是S或O时,R1不存在。
    其他类别的本发明化合物包括具有下式(15)的二环素:

    其中R3、R4及R5皆为如上文所定义。P是氢或保护基团。R9是氢;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORI;‑CN;‑SCN;‑SRI;或‑N(RI)2;其中RI在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。在某些实施例中,R9是氢或低碳(C1‑C6)烷基、烯基或炔基。在其他实施例中,R9是乙烯基。在又一些实施例中,R9是经取代或未经取代芳基。在再一些实施例中,R9是经取代或未经取代杂环基团。
    R10是环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链芳基;或经取代或未经取代、有支链或无支链杂芳基部分。在某些实施例中,R10是经取代或未经取代苯环。在某些实施例中,R10是经取代或未经取代杂环。在某些实施例中,R10是经取代或未经取代芳基环。在其他实施例中,R10是低碳(C1‑C6)烷基、烯基或炔基。
    合成方法
    本发明还包括用于制备本发明化合物以及沿合成路径出现的中间体的所有步骤和方法。本发明提供四环素及其各种类似物的模块式合成,其通过结合将变成所述四环素核的A‑和B‑环的高官能化水性烯酮与一将变成四环素核D‑环的分子。这两个中间体的结合会导致形成C‑环,较佳以对映体选择性方式。这个方法还能够合成五环素、六环素或更多环系统以及将杂环并入所述环系统中。具体而言,这两个片段的结合包括多个如上文所述烯酮(9)的亲核加成反应和环化加成反应。所述合成以始于苯甲酸的烯酮(9)的制备开始。如图2所示,第一步合成涉及使用真养产碱杆菌(Alcaligenes eutrophus)微生物二羟基化苯甲酸。较佳为旋光纯的二醇(图2中1)随后经历羟基‑引导的环氧化反应以生成烯丙基环氧化物(图2中2)。保护并重排烯丙基环氧化物2生成同分异构体烯丙基环氧化物(图2中3)。向同分异构体烯丙基环氧化物中加入金属化异噁唑(图2中4)以生成5(图2),其接下来通过亲核攻击所述环氧化物经金属化以封闭6元环。中间体6(图2)随后经重排、去保护并氧化生成手性烯酮9(图2)。所属领域的技术人员应理解:官能化并重排图2中中间体6、7、8和9会允许制备不同类别的本发明化合物。
    在一个实施例中,烯酮(9)与由去质子化甲苯甲酸酯(6)生成的阴离子反应。具有下式的甲苯甲酸酯:

    其中R1是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORA;=O;‑C(=O)RA;‑CO2RA;‑CN;‑SCN;‑SRA;‑SORA;‑SO2RA;‑NO2;‑N(RA)2;‑NHC(O)RA;或‑C(RA)3;其中RA在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R7是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORG;=O;‑C(=O)RG;‑CO2RG;‑CN;‑SCN;‑SRG;‑SORG;‑SO2RG;‑NO2;‑N(RG)2;‑NHC(O)RG;或‑C(RG)3;其中RG在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    且n是介于0至3之间且包含0和3的整数;
    R9是‑OR1;‑CN;‑SCN;‑SR1;或‑N(R1)2;其中R1在每次出现时独立地为氢、保护基团;环状或非环状、经取代或未经取代脂肪族部分;环状或非环状、经取代或未经取代脂肪族基团杂脂肪族部分;经取代或未经取代芳基部分;或经取代或未经取代杂芳基部分;且
    P选自由下列组成的群组:氢、低碳(C1‑C6)烷基、酰基和保护基团;在碱性条件(例如,LDA、HMDS)下去质子化且所得阴离子与具有下式的烯酮反应:

    其中R3是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORC;=O;‑C(=O)RC;‑CO2RC;‑CN;‑SCN;‑SRC;‑SORC;‑SO2RC;‑NO2;‑N(RC)2;‑NHC(O)RC;或‑C(RC)3;其中RC在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R4是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORD;=O;‑C(=O)RD;‑CO2RD;‑CN;‑SCN;‑SRD;‑SORD;‑SO2RD;‑NO2;‑N(RD)2;‑NHC(O)RD;或‑C(RD)3;其中RD在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R5是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORE;‑CN;‑SCN;‑SRE;或‑N(RE)2;其中RE在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R6选自由下列组成的群组:氢、卤素、经取代或未经取代脂肪族基团、经取代或未经取代杂脂肪族基团、经取代或未经取代烷氧基、‑OH、‑CN、‑SCN、‑SH、烷硫基、芳硫基、‑NO2、氨基、烷基氨基和二烷基氨基;且
    P独立地选自由氢或保护基团组成的群组;
    以形成产物:

    其中R1、R3、R4、R5、R7、P和n是如上文所述;
    R2是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORB;=O;‑C(=O)RB;‑CO2RB;‑CN;‑SCN;‑SRB;‑SORB;‑SO2RB;‑NO2;‑N(RB)2;‑NHC(O)RB;或‑C(RB)3;其中RB在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。所属技术领域的人应了解,在某些实施例中,甲苯甲酸酯可进一步经取代。此外,甲苯甲酸酯的苯环可经诸如吡啶环等芳香族杂环取代,如在图11和13中所示。甲苯甲酸酯(6)的碳环和杂环状类似物的其他实例包括:

    其他甲苯甲酸酯示于图21中。在某些实施例中,多环状甲苯甲酸酯可用于Michael‑Dieckmann反应序列以形成五环素六环素或更多环素。用于制备五环素的甲苯甲酸酯由下式例示:

    其中R1是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORA;=O;‑C(=O)RA;‑CO2RA;‑CN;‑SCN;‑SRA;‑SORA;‑SO2RA;‑NO2;‑N(RA)2;‑NHC(O)RA;或‑C(RA)3;其中RA在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    各R7独立地为氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORG;=O;‑C(=O)RG;‑CO2RG;‑CN;‑SCN;‑SRG;‑SORG;‑SO2RG;‑NO2;‑N(RG)2;‑NHC(O)RG;或‑C(RG)3;其中RG在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    表示经取代或未经取代芳基、杂芳基、碳环、或杂环部分,其中X在每次出现时选自由‑O‑、‑S‑、‑NR8‑、‑C(R8)2‑组成的群组;
    R8是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORH;=O;‑C(=O)RH;‑CO2RH;‑CN;‑SCN;‑SRH;‑SORH;‑SO2RH;‑NO2;‑N(RH)2;‑NHC(O)RH;或‑C(RH)3;其中RH在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    n是介于1至5之间且包含1和5的整数;且
    相邻X部分间的键结可为单键或双键;且R9选自由经取代或未经取代芳基或杂芳基组成的群组。
    在另一实施例中,烯酮(9)与阴离子反应,其通过金属化(例如,金属‑卤素交换、金属‑类金属交换、锂‑卤素交换、锂‑锡交换等,通过使甲苯甲酸酯与适当的金属试剂反应)具有下式的甲苯甲酸酯发生:

    其中R1是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORA;=O;‑C(=O)RA;‑CO2RA;‑CN;‑SCN;‑SRA;‑SORA;‑SO2RA;‑NO2;‑N(RA)2;‑NHC(O)RA;或‑C(RA)3;其中RA在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R7是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORG;=O;‑C(=O)RG;‑CO2RG;‑CN;‑SCN;‑SRG;‑SORG;‑SO2RG;‑NO2;‑N(RG)2;‑NHC(O)RG;或‑C(RG)3;其中RG在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    n是介于0至3之间且包含0和3的整数;
    R9选自由经取代或未经取代芳基或杂芳基组成的群组;且
    Y是卤素或Sn(RY)3,其中RY是烷基。所产生阴离子与具有下式的烯酮反应:

    其中R3是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORC;=O;‑C(=O)RC;‑CO2RC;‑CN;‑SCN;‑SRC;‑SORC;‑SO2RC;‑NO2;‑N(RC)2;‑NHC(O)RC;或‑C(RC)3;其中RC在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R4是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORD;=O;‑C(=O)RD;‑CO2RD;‑CN;‑SCN;‑SRD;‑SORD;‑SO2RD;‑NO2;‑N(RD)2;‑NHC(O)RD;或‑C(RD)3;其中RD在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R5是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORE;‑CN;‑SCN;‑SRE;或‑N(RE)2;其中RE在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R6选自由下列组成的群组:氢、卤素、经取代或未经取代脂肪族基团、经取代或未经取代杂脂肪族基团、经取代或未经取代烷氧基、‑OH、‑CN、‑SCN、‑SH、烷硫基、芳硫基、‑NO2、氨基、烷基氨基及二烷基氨基;
    P独立地选自由氢或保护基团组成的群组;以产生具有下式的产物:

    其中R1、R2、R3、R4、R5、R7、P和n是如上文所定义;且
    R2是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORB;=O;‑C(=O)RB;‑CO2RB;‑CN;‑SCN;‑SRB;‑SORB;‑SO2RB;‑NO2;‑N(RB)2;‑NHC(O)RB;或‑C(RB)3;其中RB在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。
    任何金属可用于金属化反应以生成可与烯酮反应的金属阴离子试剂。在某些实施例中,所述金属是元素周期表上的第I族元素。在其他实施例中,所述金属是元素周期表上的第II族元素。在其他实施例中,所述金属是过渡金属。用于金属化反应的例示性金属包括钠、锂、钙、铝、镉、铜、铍、砷、锑、锡、镁、钛、锌、锰、铁、钴、镍、锌、铂、钯、汞和钌。在某些较佳实施例中,所述金属选自锂、镁、钛、锌和铜。在又一些实施例中,所述金属为镁、锂、钠、铍、锌、汞、砷、锑或锡。在某些特定实施例中,使用锂‑卤素交换。所述锂‑卤素交换可在烯酮存在下就地进行。可使用包括(例如)下列在内的任何锂试剂进行锂‑卤素交换:烷基锂试剂、正‑丁基锂、叔‑丁基锂、苯基锂、2,4,6‑三甲苯基锂和甲基锂。在某些实施例中,可产生其他有机金属试剂且其可与烯酮反应。实例包括格氏试剂、0价金属络合物、酸根型络合物等。在某些实施例中,所述金属试剂是镁试剂,包括但不限于镁金属、镁蒽、经活化镁屑等。在某些实施例中,所述试剂是以锌为主。所述试剂可在烯酮存在下就地生成或者可独立的生成所述试剂且稍后使其与烯酮接触。在某些实施例中,环化反应使用温和的条件(例如,锌试剂)。如所属领域的技术人员所了解,在某些实施例中,甲苯甲酸酯可进一步经取代。此外,所述甲苯甲酸酯的苯基环可经诸如吡啶环等芳香族杂环或环系统取代。甲苯甲酸酯的碳环和杂环类似物的实例包括:

    在某些实施例中,卤素Y是溴。在其他实施例中,Y是碘。在又一些实施例中,Y是氯。在某些实施例中,Y是类金属(例如,锡、硒、碲等)。在某些实施例中,Y是‑SnR3,其中R在每次出现时独立地为烷基(例如,‑Sn(CH3)3)。在金属化反应之后,Y为诸如锂、镁、锌、铜、锑、钠等金属。在某些实施例中,R1是氢或低碳烷基(C1‑C6)。在某些特定实施例中,R1是氢。其他甲苯甲酸酯示于图21中。
    在其他实施例中,多环状甲苯甲酸酯可用于制备五环素、六环素或更多环素。用于制备这些环素的甲苯甲酸酯具有下式:

    其中R1是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORA;=O;‑C(=O)RA;‑CO2RA;‑CN;‑SCN;‑SRA;‑SORA;‑SO2RA;‑NO2;‑N(RA)2;‑NHC(O)RA;或‑C(RA)3;其中RA在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    各R7独立地为氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORG;=O;‑C(=O)RG;‑CO2RG;‑CN;‑SCN;‑SRG;‑SORG;‑SO2RG;‑NO2;‑N(RG)2;‑NHC(O)RG;或‑C(RG)3;其中RG在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    表示经取代或未经取代芳基、杂芳基、碳环、或杂环部分,其中X在每次出现时选自由‑O‑、‑S‑、‑NR8‑、‑C(R8)2‑组成的群组;
    R8是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORH;=O;‑C(=O)RH;‑CO2RH;‑CN;‑SCN;‑SRH;‑SORH;‑SO2RH;‑NO2;‑N(RH)2;‑NHC(O)RH;或‑C(RH)3;其中RH在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    n是介于1至5之间且包含1和5的整数;且相邻X部分间的键结是单键或双键;
    R9选自由经取代或未经取代芳基或杂芳基组成的群组;且
    Y是卤素或Sn(RY)3、其中RY是烷基。在某些实施例中,卤素Y是溴。在某些实施例中,卤素Y是溴。在其他实施例中,Y是碘。在又一些实施例中,Y是氯。在某些实施例中,Y是类金属(例如,锡、硒、碲等)。在某些实施例中,Y是‑SnR3,其中R在每次出现时独立地为烷基(例如,‑Sn(CH3)3)。在金属化反应之后,Y为诸如锂、镁、锌、铜、汞、锑等金属。在某些实施例中,R1是氢或低碳烷基(C1‑C6)。在某些特定实施例中,R1是氢。在某些实施例中,R9是苯基或经取代苯基。在某些实施例中,邻‑R7是诸如甲氧基等烷氧基。在其他实施例中,R7是氢。例示性多环状甲苯甲酸酯包括:

    具有杂环状C‑环的下式化合物:

    可通过衍生自相应酰替苯胺、苯酚或苯硫酚的D‑环前体的Michael‑Dieckmann闭合反应制备。使用邻氨基苯甲酸(即,酰替苯胺在Michael加成反应中作为亲核剂)的代表件实例展示如下:

    在另一实施例中,烯酮(9)与苯并环丁烯醇在邻‑醌二甲基化物Diels‑Alder反应中反应。具有下式的烯酮:

    其中R3是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORC;=O;‑C(=O)RC;‑CO2RC;‑CN;‑SCN;‑SRC;‑SORC;‑SO2RC;‑NO2;‑N(RC)2;‑NHC(O)RC;或‑C(RC)3;其中RC在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R4是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORD;=O;‑C(=O)RD;‑CO2RD;‑CN;‑SCN;‑SRD;‑SORD;‑SO2RD;‑NO2;‑N(RD)2;‑NHC(O)RD;或‑C(RD)3;其中RD在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R5是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORE;‑CN;‑SCN;‑SRE;或‑N(RE)2;其中RE在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R6选自由下列组成的群组:氢、卤素、经取代或未经取代脂肪族基团、经取代或未经取代杂脂肪族基团、经取代或未经取代烷氧基、‑OH、‑CN、‑SCN、‑SH、烷硫基、芳硫基、‑NO2、氨基、烷基氨基及二烷基氨基;
    P独立地选自由氢或保护基团组成的群组;
    与具有下式的苯并环丁烯醇在适宜条件(例如,加热)下反应:

    其中R1是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORA;=O;‑C(=O)RA;‑CO2RA;‑CN;‑SCN;‑SRA;‑SORA;‑SO2RA;‑NO2;‑N(RA)2;‑NHC(O)RA;或‑C(RA)3;其中RA在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R7是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORG;=O;‑C(=O)RG;‑CO2RG;‑CN;‑SCN;‑SRG;‑SORG;‑SO2RG;‑NO2;‑N(RG)2;‑NHC(O)RG;或‑C(RG)3;其中RG在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    P各自独立地选自由氢或保护基团组成的群组;且
    n是介于0至3之间且包含0和3的整数;
    以形成具有下式的产物:

    其中R1、R3、R4、R5、R6、R7和P是如上文所定义;且
    R2是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORB;=O;‑C(=O)RB;‑CO2RB;‑CN;‑SCN;‑SRB;‑SORB;‑SO2RB;‑NO2;‑N(RB)2;‑NHC(O)RB;或‑C(RB)3;其中RB在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。所属领域的技术人员应理解:所述反应物可进一步经取代且其仍属于本发明范围。例如,苯并环丁烯醇环的苯基环可进一步经取代。
    在另一实施例中,烯酮与二烯在Diels‑Alder反应中反应以生成三环素。具有下式的烯酮:

    其中R3是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORC;=O;‑C(=O)RC;‑CO2RC;‑CN;‑SCN;‑SRC;‑SORC;‑SO2RC;‑NO2;‑N(RC)2;‑NHC(O)RC;或‑C(RC)3;其中RC在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R4是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORD;=O;‑C(=O)RD;‑CO2RD;‑CN;‑SCN;‑SRD;‑SORD;‑SO2RD;‑NO2;‑N(RD)2;‑NHC(O)RD;或‑C(RD)3;其中RD在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R5是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORE;‑CN;‑SCN;‑SRE;或‑N(RE)2;其中RE在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R6选自由下列组成的群组:氢、卤素、经取代或未经取代脂肪族基团、经取代或未经取代杂脂肪族基团、经取代或未经取代烷氧基、‑OH、‑CN、‑SCN、‑SH、烷硫基、芳硫氧基、‑NO2、氨基、烷基氨基及二烷基氨基;且
    P独立地选自由氢或保护基团组成的群组;
    在适宜条件(例如,加热)下与具有下式的二烯反应:

    其中R1是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORA;=O;‑C(=O)RA;‑CO2RA;‑CN;‑SCN;‑SRA;‑SORA;‑SO2RA;‑NO2;‑N(RA)2;‑NHC(O)RA;或‑C(RA)3;其中RA在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;且
    P各自独立地选自由氢和保护基团组成的群组;
    以生成具有下式的经保护三环素:

    其中R2是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORB;=O;‑C(=O)RB;‑CO2RB;‑CN;‑SCN;‑SRB;‑SORB;‑SO2RB;‑NO2;‑N(RB)2;‑NHC(O)RB;或‑C(RB)3;其中RB在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。所属领域的技术人员应理解:烯酮与二烯可进一步经取代且此仍属于本发明范围。
    在又一实施例中,烯酮与酞或氰基‑酞的阴离子反应。具有下式的烯酮:

    其中R3是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORC;=O;‑C(=O)RC;‑CO2RC;‑CN;‑SCN;‑SRC;‑SORC;‑SO2RC;‑NO2;‑N(RC)2;‑NHC(O)RC;或‑C(RC)3;其中RC在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R4是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORD;=O;‑C(=O)RD;‑CO2RD;‑CN;‑SCN;‑SRD;‑SORD;‑SO2RD;‑NO2;‑N(RD)2;‑NHC(O)RD;或‑C(RD)3;其中RD在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R5是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORE;‑CN;‑SCN;‑SRE;或‑N(RE)2;其中RE在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R6选自由下列组成的群组:氢、卤素、经取代或未经取代脂肪族基团、经取代或未经取代杂脂肪族基团、经取代或未经取代烷氧基、‑OH、‑CN、‑SCN、‑SH、烷硫基、芳硫基、‑NO2、氨基、烷基氨基及二烷基氨基;且
    P独立地选自由氢或保护基团组成的群组;
    在适当条件(例如,LDA,Ph3CLi)下与具有下式的苯酞的阴离子反应:

    其中R1是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORA;=O;‑C(=O)RA;‑CO2RA;‑CN;‑SCN;‑SRA;‑SORA;‑SO2RA;‑NO2;‑N(RA)2;‑NHC(O)RA;或‑C(RA)3;其中RA在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    R7是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORG;=O;‑C(=O)RG;‑CO2RG;‑CN;‑SCN;‑SRG;‑SORG;‑SO2RG;‑NO2;‑N(RG)2;‑NHC(O)RG;或‑C(RG)3;其中RG在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分;
    P各自独立地选自由氢、低碳烷基、酰基或保护基团组成的群组;且
    n是介于0至3之间且包含0和3的整数;
    以生成具有下式的产物:

    R2是氢;卤素;环状或非环状、经取代或未经取代、有支链或无支链脂肪族基团;环状或非环状、经取代或未经取代、有支链或无支链杂脂肪族基团;经取代或未经取代、有支链或无支链酰基;经取代或未经取代、有支链或无支链芳基;经取代或未经取代、有支链或无支链杂芳基;‑ORB;=O;‑C(=O)RB;‑CO2RB;‑CN;‑SCN;‑SRB;‑SORB;‑SO2RB;‑NO2;‑N(RB)2;‑NHC(O)RB;或‑C(RB)3;其中RB在每次出现时独立地为氢、保护基团、脂肪族部分、杂脂肪族部分、酰基部分;芳基部分;杂芳基部分;烷氧基;芳氧基;烷硫基;芳硫基;氨基、烷基氨基、二烷基氨基、杂芳氧基;或杂芳硫基部分。
    以上反应的产物随后进一步经官能化、还原、氧化、重排、保护和去保护以生成最终期望产物。在本发明化合物的最终合成中所用各种例示性反应展示于图2、图3、图11、图12和图13中。所属领域的技术人员应理解:各种分离和纯化技术(包括快速层析、结晶、蒸馏、HPLC、薄层层析、萃取、过滤等)可用于合成本发明化合物的过程。这些技术可用于制备或纯化中间体、试剂、产物、起始材料或溶剂。
    医药组合物
    本发明还提供一种医药制剂,其包含至少一种上文和此处所述的化合物或其一医药上可接受的衍生物,所述化合物可杀死微生物或抑制其生长且在某些特别令人感兴趣的实施例中,其可杀死四环素抗性有机体或抑制其生长,所述四环素抗性有机体包括氯四环素‑抗性有机体、氧四环素‑抗性有机体、地美环素‑抗性有机体、强力霉素‑抗性有机体、米诺环素‑抗性有机体或任何可对在人类或兽类医学中所用四环素类抗生素产生抗性的有机体。在其他实施例中,所述化合物显示针对诸如癌细胞等赘生性细胞的抑制细胞生长或溶解细胞活性。在又一些实施例中,所述化合物可迅速杀死诸如受激炎症细胞等分裂细胞或抑制其生长。如上文所述,本发明提供具有抗微生物和抗增生活性的新颖化合物,因此,本发明化合物可用于治疗多种医学病况,包括传染病、癌症、自身免疫疾病、发炎疾病和糖尿病性视网膜病。因此,在本发明的另一方面中,提供医药组合物,其中这些组合物包括任何一种本文所述化合物且其视需要包含一医药上可接受的载剂。在某些实施例中,这些组合物视需要进一步包括一或多种额外治疗药剂,例如,另一种抗微生物剂或另一种抗增生剂。在其他实施例中,这些组合物进一步包含一抗炎剂(例如阿斯匹林、布洛芬、乙酰氨基酚等)、镇痛剂或解热剂。
    亦应了解,本发明的某些化合物可以游离治疗形式存在或适当时呈其医药上可接受的衍生物形式。根据本发明,一医药上可接受的衍生物包括但不限于医药上可接受的盐、酯、所述酯的盐、或任一投与有其需要的患者时能够直接或间接提供一本文所述化合物或其代谢物或残余物的任何其他加合物或衍生物,例如一前药。
    本文所用术语“医药上可接受的盐”指那些在合理的医学判断范围内适于接触人类及低级动物的组织而不会产生过度毒性、刺激、过敏反应及类似反应且具有合理效益/风险比的盐。医药上可接受的盐为此项技术所熟知。例如,S.M.Berge等人在J.Pharmaceutical Sciences(66:1‑19(1977),其以引用的方式并入本文)中详细地阐述了医药上可接受的盐。所述盐可在本发明化合物的最后分离及纯化期间就地制备,或通过游离碱官能团与适宜有机酸或无机酸反应来独立地制备。医药上可接受的无毒酸加成盐的实例为与无机酸(例如,氢氯酸、氢溴酸、磷酸、硫酸及高氯酸)或与有机酸(例如,乙酸、草酸、马来酸、酒石酸、柠檬酸、琥珀酸或丙二酸)或通过使用所述技术中所用其他方法(例如离子交换)形成的氨基盐。其他医药上可接受的盐包括己二酸盐、藻酸盐、抗坏血酸盐、天冬氨酸盐、苯磺酸盐、苯甲酸盐、硫酸氢盐、硼酸盐、丁酸盐、樟脑酸盐、樟脑磺酸盐、柠檬酸盐、环戊烷丙酸盐、二葡萄糖酸盐、十二烷基硫酸盐、乙磺酸盐、甲酸盐、富马酸盐、葡庚糖酸盐、甘油磷酸盐、葡萄糖酸盐、半硫酸盐、庚酸盐、已酸盐、氢碘酸盐、2‑羟基‑乙磺酸盐、乳糖酸盐、乳酸盐、月桂酸盐、月桂基硫酸盐、苹果酸盐、马来酸盐、丙二酸盐、甲磺酸盐、2‑萘磺酸盐、烟碱酸盐、硝酸盐、油酸盐、草酸盐、棕榈酸盐、双羟萘酸盐、果胶酸盐、过硫酸盐、3‑苯基丙酸盐、磷酸盐、苦味酸盐、新戊酸盐、丙酸盐、硬脂酸盐、琥珀酸盐、硫酸盐、酒石酸盐、硫氰酸盐、对‑甲苯磺酸盐、十一烷酸盐、戊酸盐及类似的盐。代表性碱金属或碱土金属盐包钠、锂、钾、钙、镁及类似物质。其他医药上可接受的盐包括(当适当时)使用诸如卤化物、氢氧化物、羧酸盐、硫酸盐、磷酸盐、硝酸盐、低碳烷基磺酸盐及芳基磺酸盐等平衡离子形成的无毒铵、季铵及胺阳离子。
    此外,本文所用术语“医药上可接受的酯”是指在体内水解的酯且包括那些在人体内易于分解获得母体化合物或其盐的酯。适宜的酯基包括(例如)那些衍生自医药上可接受的脂肪族羧酸的酯基,尤其是衍生自链烷酸、链烯酸、环烷酸及烷二酸,其中每一烷基或烯基部分较佳具有不超过6个碳原子。特定酯的实例包括甲酸酯、乙酸酯、丙酸酯、丁酸酯、丙烯酸酯及丁二酸乙酯。在某些实施例中,所述酯可借助诸如酯酶等酶切除。
    而且,本文所用术语“医药上可接受的前药”指本发明化合物的那些在合理的医学判断范围内适合用于接触人类及低等动物的组织而不具有过度毒性、刺激、过敏反应等、效益/风险比合理且对其预期用途有效的前药及本发明化合物可能的两性离子形式。术语“前药”指可(例如)通过在血液中水解在体内迅速转化产生上式母体化合物的化合物。全面的讨论提供于T.Higuchi及V Stella的Pro‑drugs as Novel Delivery Systems(A.C.S.Symposium Series的第14卷)及Edward B.Roche编辑的Bioreversible Carriers in Drug Design(American Pharmaceutical Association and Pergamon Press,1987)中,二者皆以引用的方式并入本文中。
    如上所述,本发明的医药组合物另外包含一医药上可接受的载剂,本文所用医药上可接受的载剂包括适于所期望特定剂型的任一及所有溶剂、稀释剂、或其他液体媒剂、分散或悬浮助剂、表面活性剂、等渗剂、增稠或乳化剂、防腐剂、固体粘结剂、润滑剂及类似物。Remington′s Pharmaceutical Sciences(第15版,E.W.Martin,Mack Publishing Co.,Easton,Pa.,1975)揭示各种用于调配医药组合物的载剂及用于制备其的熟知技术。任一常用载剂介质的使用皆涵盖于本发明范畴内,除非所述常用载剂介质因(例如)产生任何不期望的生物效应或以有害方式与所述医药组合物的任一其他组分互相作用而与本发明抗癌化合物不相容。可用作医药上可接受载剂的材料的某些实例包括但不限于糖类,例如乳糖、葡萄糖和蔗糖;淀粉类,例如玉米淀粉和马铃薯淀粉;纤维素及其衍生物,例如羧甲基纤维素钠、乙基纤维素和纤维素乙酸酯;粉状磺蓍胶;麦芽;明胶;滑石粉;Cremophor;Solutol;赋形剂,例如可可油和栓剂蜡;油类,例如花生油、棉籽油;红花油;芝麻油;橄榄油;玉米油和大豆油;二醇类,例如丙二醇;酯,例如,油酸乙酯和月桂酸乙酯;琼脂;缓冲剂,例如氢氧化镁和氢氧化铝;海藻酸;无致热源的水;等渗盐水;林格氏溶液(Ringer′s solution);乙醇和磷酸盐缓冲溶液;以及其他无毒性可兼容润滑剂,例如月桂基硫酸钠和硬脂酸镁;以及着色剂、离型剂、涂布剂、甜味剂、矫味剂和加香剂,按照调配者判断,组合物中还可存在防腐剂和抗氧化剂。
    化合物及医药组合物的用途
    本发明进一步提供一种治疗感染和抑制肿瘤生长的方法。所述方法涉及将一治疗有效量的所述化合物或其医药上可接受的衍生物投与一有其需要的患者(包括但不限于人类或动物)。
    本发明化合物和医药组合物可用于治疗或预防任何疾病或病况,包括感染(例如,皮肤感染、GI感染、泌尿管感染、生殖泌尿感染、全身感染)、增生疾病(例如,癌症)和自身免疫疾病(例如,类风湿性关节炎、狼疮)。所述化合物及医药组合物可投予动物,较佳为哺乳动物(例如,饲养动物、猫、狗、小鼠、大鼠),且更佳为人类。可使用任一投药方法将医药组合物的化合物投递给动物。在某些实施例中,所述化合物或医药组合物可经口投与。在其他实施例中,所述化合物或医药组合物可以非经肠方式投与。
    另一方面,根据本发明的治疗方法,通过用本发明化合物或组合物接触细菌可杀死细菌或抑制其生长,如本文所阐述。因此,本发明又一方面提供一种治疗感染的方法,所述方法包括以达成期望结果所需量及时间将一治疗有效量的本发明化合物或包含一本发明化合物的医药组合物投予有其需要的患者。在本发明的某些实施例中,本发明化合物或医药组合物的“治疗有效量”是指可有效杀死细菌或抑制其生长的量。根据本发明的方法,所述化合物及组合物可使用能有效杀死细菌或抑制其生长的任一量及任一投药途径来投与。所需确切数量会随受试者与受试者间的不同而变化,根据种族、年龄及所述受试者的大体状况、感染严重性、具体化合物、其投与方式、其产生活性的方式及类似因素而定。本发明化合物较佳以便于投与及均匀给药的单位剂型调配。然而,应理解:本发明化合物和组合物的总日剂量可由会诊医生在合理的医学判断范围内确定。任一具体患者或有机体的特定治疗有效剂量水平应根据各种因素而定,包括所治疗疾病及疾病严重程度;所用特定化合物的活性;所用特定组合物;患者的年龄、体重、一般健康状况、性别及饮食;所用特定化合物的投与时间、投与途径及排泄速度;治疗持续时间;与所用特定化合物组合或同时使用的药物;及医疗技术中熟知的类似因素。
    此外,以期望剂量与一适宜医药上可接受的载剂调配后,根据所治疗感染的严重程度,本发明的医药组合物可以下列方式投与人类及其他动物:经口、经直肠、非经肠、脑池内、阴道内、腹膜腔内、外敷(以粉剂、软膏或滴剂形式)、经口腔(以经口或鼻喷雾形式)或类似投与方式。在某些实施例中,本发明化合物可以足以递送下列的剂量水平以经口或非经肠方式每天一次或多次投与以获得期望治疗效果:约0.001mg/Kg至约100mg/Kg受试者体重,自约0.01mg/kg至约50mg/kg,较佳自约0.1mg/kg至约40mg/kg,较佳自约0.5mg/kg至约30mg/kg,自约0.01mg/kg至约10mg/kg,自约0.1mg/kg至约10mg/kg,且更佳自约1mg/kg至约25mg/kg。所期望剂量可为每日3次、每日2次、每日1次、两日1次、三日1次、每周1次、两周1次、三周1次或四周1次。在某些实施例中,所期望剂量可用多次投与(例如,2次、3次、4次、5次、6次、7次、8次、9次、10次、11次、12次、13次、14次或更多次投与)来递送。
    用于以口服和非经肠方式投与的液体剂型包括但不限于医药上可接受的乳液、微乳液、溶液、悬浮液、浆液及酏剂。除所述活性化合物之外,所述液体剂型可包含所述技术中常用的惰性稀释剂,例如水或其他溶剂、助溶剂及乳化剂,例如,乙醇、异丙醇、碳酸乙酯、乙酸乙酯、苯甲醇、苯甲酸苄酯、丙二醇、1,3‑丁二醇、二甲基甲酰胺、油(特别是棉籽油、花生油、玉米油、胚芽油、橄榄油、蓖麻油及芝麻油)、甘油、四氢糠醇、聚乙二醇及山梨糖醇酐脂肪酸酯及其混合物。除惰性稀释剂之外,所述口服组合物亦可包括佐剂,例如,润湿剂、乳化及悬浮剂、甜味剂、矫味剂及加香剂。在以非经肠方式投药的某些实施例中,本发明化合物与诸如Cremophor、醇类、油类、经改质油类、二醇类、聚山梨醇酯类、环状糊精、聚合物及其组合等助溶剂混合。
    可根据已知技术使用合适分散剂或增湿剂和悬浮剂来调配注射制剂,例如无菌注射水悬浮液或油悬浮液。所述无菌注射制剂还可为存于非肠道可接受的无毒稀释剂或溶剂中的无菌注射溶液、悬浮液或乳液,例如存于1,3‑丁二醇中的溶液。所述可使用的可接受媒剂及溶剂尤其为水、林格氏溶液、U.S.P.及等渗氯化钠溶液。此外,惯例上采用无菌不挥发油作为溶剂或悬浮介质。出于此目的,可采用包括合成单甘油酯或二甘油酯的任何温和的不挥发性油。此外,在可注射制剂中可使用诸如油酸等脂肪酸。所述可注射调配物可(例如)通过经由细菌截留过滤器过滤或通过纳入杀菌剂来灭菌,所述杀菌剂呈可在使用前溶于或分散于无菌水或其他无菌可注射媒介中的无菌固体组合物形式。
    为了延长药物的作用,通常自皮下或肌肉注射来减缓药物的吸收较为理想。此可借助具有弱水溶性的结晶或无定形材料的液体悬浮液来实现。因而药物吸收率视其溶解率而定,而溶解率可视晶体大小及结晶形式而定。或者,非经肠施用药物形式的延迟吸收可通过将所述药物溶解或悬浮于一油性赋形剂中来实现。可通过在生物可降解聚合物(例如,聚交酯‑聚乙醇酸交酯)中形成药物的微囊基质来制备可注射储积形式。根据药物与聚合物的比率及所用具体聚合物的特性可控制药物释放率。其他生物可降解聚合物的实例包括聚(原酸酯)或聚(酐)。注射用储积调配物还通过将药物包裹入与身体组织相容的脂质体或微乳化液中来制备。用于直肠或阴道投与的组合物较佳为栓剂,其可通过将本发明化合物与适宜无刺激性赋形剂或载剂(例如可可油、聚乙二醇或栓剂蜡)进行混合来制备,所述赋形剂或载剂在环境温度下为固体但在体温下为液体,因而其可在直肠或阴道腔内融化并释放所述活性化合物。
    用于口服投与的固体剂型包括胶囊、片剂、丸剂、粉末及颗粒。在所述固体剂型中,活性化合物与至少一种医药上可接受的惰性赋形剂或载剂(例如,柠檬酸钠或磷酸氢钙)及/或以下混合:a)填充剂或扩充剂,例如,淀粉、乳糖、蔗糖、葡萄糖、甘露醇及硅酸,b)粘结剂,例如,羧甲基酸纤维素、藻酸盐、明胶、聚乙烯吡咯烷酮、蔗糖及阿拉伯胶,c)保湿剂,例如甘油,d)崩解剂,例如,琼脂、碳酸钙、马铃薯或木薯淀粉、海藻酸、某些硅酸盐及碳酸钠,e)溶液阻滞剂,例如,石蜡,f)吸收促进剂,例如,季铵化合物,g)润湿剂,例如,鲸蜡醇及甘油单硬脂酸酯,h)吸收剂,例如,高岭土及膨润土,及i)润滑剂,例如,滑石粉、硬脂酸钙、硬脂酸镁、固体聚乙二醇、月桂基硫酸钠,及其混合物。在胶囊、片剂及丸剂情况下,所述剂型还可包含缓冲剂。
    在使用诸如乳糖(lactose或milk sugar)及高分子量聚乙二醇等赋形剂的软质及硬质填充明胶胶囊中,亦可使用类似类型的固体成份作为填充剂。可使用诸如肠溶包膜及医药调配技术中熟知的其他包膜等包膜和外包层制备片剂、糖衣丸、胶囊、丸剂和微粒的固体剂型。其视需要可含有遮光剂且其还可具有在肠道某一部分仅释放或优先释放且视情况以延迟方式释放活性成分的组成。可用于包埋组合物的实例包括聚合物质及蜡。在使用诸如乳糖(lactose或milk sugar)及高分子量聚乙二醇等赋形剂的软质及硬质填充明胶胶囊中,亦可使用类似类型的固体成份作为填充剂。
    所述活性化合物也可为含有一或多种上述赋形剂的微囊形式。可使用诸如肠溶包膜、控制释放包膜及医药调配技术中熟知的其他包膜等包膜和外包层制备片剂、糖衣丸、胶囊、丸剂和微粒的固体剂型。在这些固体剂型中,活性化合物可与至少一种惰性稀释剂(例如,蔗糖、乳糖或淀粉)混合。在通常实践中,这些剂型还可包括除惰性稀释剂外的额外物质,例如,压片润滑剂及其他压片助剂(例如,硬脂酸镁和微晶纤维素)。如果为胶囊、片剂和丸剂,则所述剂型还可包括缓冲剂。其视需要可含有遮光剂且其还可具有在肠道某一部分仅释放或优先释放且视情况以延迟方式释放活性成分的组成。可使用的包埋组合物的实例包括聚合物质及蜡。
    用于外敷或经皮投与本发明化合物的剂型包括软膏、膏剂、乳霜、乳液、凝胶、粉末、溶液、喷雾剂、吸入剂或贴片。所述活性组份可在无菌条件下与一医药上可接受载剂及任一所需防腐剂及所需缓冲剂混合。眼用调配物、滴耳剂和滴眼剂也属于本发明的范围。此外,本发明涵盖使用透皮贴片,其具有向活体控制递送化合物的额外优点。可通过将所述化合物溶于或悬浮于适宜介质中来制备这些剂型。还可使用吸收促进剂来促使所述化合物融化经过皮肤。可通过提供速率控制膜或通过将所述化合物分散于聚合物基质或凝胶中来控制所述速率。
    亦应了解,本发明化合物及医药组合物可用于组合治疗,换言之,所述化合物及医药组合物可与一或多种其他期望的疗法或医疗程序同时、先于其或在其之后实施。拟在组合方案中使用的特定治疗(治疗剂或程序)组合需考虑期望治疗及/或程序的相容性及待达成的期望治疗作用。亦应了解,所用疗法对于同一疾病可达成期望效果(例如,本发明化合物可与另一抗癌剂同时投与),或其可达成不同的效果(例如,控制任何副作用)。
    本发明另一方面还提供一药物封包或套组,其包括一或多个填充有本发明医药组合物的一或多种成份的容器,且在某些实施例中包括用作一组合疗法的额外经批准治疗剂。视需要,所述容器可附带有一监管医药产品制造、使用及销售的政府机构所规定形式的公告,所述公告反映出政府机构已批准所述药物的制造、使用及销售用于人类。
    参照下列实例可进一步理解本发明的这些及其它方面,所述实例欲阐明本发明的某些特定实施例而非欲限制其范围,本发明范围由随附权力要求书所界定。
    实例
    实例1‑(‑)‑四环素的合成
    一般程序.除非另有说明,否则所有反应在处于正氩气压力下并配备有橡胶隔板的烘干圆底或经改良Schlenk(Kjeldahl形)烧瓶中进行。通过注射器或不锈钢套管转移空气‑和潮湿‑敏感性液体及溶液。当需要时(当如此指明时),通过交替进行冻结(液体氮)/抽气/解冻循环(≥3次重复)对溶液实施脱氧。通过在约25Torr(室内真空)下实施旋转蒸发来浓缩有机溶剂。使用硅胶(60A,标准级别)实施快速管柱层析,如Still等人所述。(Still,W.C;Kahn,M.;Mitra,A.J.Org.Chem.1978,43、2923‑2925;以引用的方式并入本文中).使用经0.25毫米230‑400目硅胶(经荧光指示剂(254奈米)浸渍)预涂布的玻璃板实施分析薄层层析。通过使其暴露于紫外光及/或暴露于钼酸铈铵或一对‑茴香醛的酸性溶液继而在一热平板上加热之来显像薄层层析薄板。
    材料.市售试剂及溶剂可直接使用,下列除外。氯三甲基硅烷、三乙基胺、二异丙基胺、2,2,6,6‑四甲基哌啶、N,N,N′,N′‑四甲基亚乙基二胺、DMPU、HMPA和N,N‑二异丙基乙基胺在双氮气氛下自氢化钙蒸馏。借助Pangbom等人的方法纯化苯、二氯甲烷、乙醚、甲醇、吡啶、四氢呋喃、己烷、乙腈、N,N‑二甲基甲酰胺和甲苯(Pangbom,A.B.;Giardello,M.A.;Grubbs,R.H.;Rosen、R.K.;Timmers、F.J.Organometallics 1996,15,1518‑1520;以引用的方式并入本文中)。通过使用2‑丁醇的四氢呋喃溶液滴定(使用三苯基甲烷作为指示剂)来测定正‑丁基锂、仲‑丁基锂和叔‑丁基锂的体积摩尔浓度(Duhamel,L.;Palquevent,J.‑C.J.Org.Chem.1979,44,3404‑3405;以引用的方式并入本文中)。
    装备:使用Varian Unity/Inova600(600MHz)、Varian Unity/Inova500(500MHz/125MHz)或Varian Mercury400(400MHz/100MHz)NMR光谱计记录质子核磁共振(1H NMR)谱和碳核磁共振(13C NMR)。以ppm为单位(δ级别)在低磁场记录四甲基硅烷的质子化学位移并作为NMR溶剂中剩余氕的参照(CHCl3:δ7.26、C6D5H:δ7.15、D2HCOD:δ3.31、CDHCl2:δ5.32、(CD2H)CD3SO:δ2.49)。以ppm为单位(δ级别)在低磁场记录四甲基硅烷的碳化学位移并作为溶剂碳共振的参照(CDCl3:δ77.0、C6D6δ128.0、D3COD:δ44.9、CD2Cl2:δ53.8、(CD3)2SO:δ39.5)。数据表示如下:化学位移、多重性(s=单峰、d=双峰、t=三峰、q=四峰、m=多峰、br=宽峰)、积分、以Hz计的偶合常数和排布。使用Perkin‑Elmer 1600FT‑IR光谱仪参考聚苯乙烯标样获得红外(IR)谱。数据表示如下:吸收频率(厘米‑1)、吸收强度(s=强、sb=强宽、m=中等、w=弱、br=宽)和排布(适当时)。使用配备有钠灯源的JASCO DIP‑370数字旋光仪使用200‑μL或2‑mL细胞溶液测定旋光度。使用Harvard University Mass Spectrometry Facilities获得高解析质谱。
    微生物二羟基化产物DRS1:

    制备甘油储备溶液
    将真养产碱杆菌B9细胞(冻干粉末,20mg,由Prof.George D.Hegeman(Indiana University)慷慨提供;Reiner,A.M.;Hegeman,G.D.Biochemistry1971,10,2530.)悬浮于存于20‑mL无菌培养试管中的营养肉汤(5mL,通过将8g Difco营养肉汤溶于1L超纯水中、继而在高压釜中于125℃下灭菌制得)中。加入琥珀酸钠水溶液(16.7μL2.5M水溶液,5mM最终浓度),并在30℃下以250rpm振摇培养试管直至细胞生长变得清楚(3d)。随后将1等份(250μL)细胞悬浮液转移到存于20‑mL无菌培养试管中的含有琥珀酸钠(16.7μL2.5M水溶液,5mM最终浓度)的5mL Hutner′s矿物碱培养基(HMB,参见下段)中。在30℃下以250rpm将培养试管振摇2d,此时,在含有50mLHMB和琥珀酸钠水溶液(167μL2.5M溶液,5mM最终浓度)的无菌Erlenmeyer烧瓶中次培养出1等份(250μL)发酵溶液。在30℃下以250rpm将所述烧瓶振摇24h。所得溶液直接用于制备甘油储备溶液。因此,使用等体积无菌甘油稀释1份经次培养的细胞悬浮液(5mL)并将所得溶液等分成10份并将其置于2‑mL无菌Eppendorf试管中。随后在‑80℃下存储各储备溶液。
    Hutner′s矿物碱培养基
    Hutner′s矿物碱培养基(HMB)制备如下。在2‑L Erlenmeyer烧瓶中将固体氢氧化钾(400mg)溶于500mL超纯水中。依次加入次氮基三乙酸(200mg)、硫酸镁(283mg)、氯化钙二水合物(67mg)、钼酸铵(0.2mg)、硫酸亚铁(II)(2.0mg)、Hutner′s Metals44溶液(1mL,参见下段)、硫酸铵(1.0g)、磷酸二氢钾(2.72g)和磷酸氢二钠七水合物(5.36g)。将所述溶液稀释成总体积为1L并使用浓盐酸将pH值调整至6.8。通过过滤或在高压釜中加热灭菌所述培养基。
    Hutner’s Metals44溶液制备如下。在250‑mL Erlenmeyer烧瓶中向超纯水(50mL)中加入浓硫酸(100μL)。随后依次加入固体EDTA(0.50g)、硫酸锌七水合物(2.20g)、硫酸亚铁(II)七水合物(1.0g)、硫酸亚铜(I)(0.39g)、硝酸钴(II)六水合物(50mg)和四硼酸钠十水合物(36mg),继而加入50mL超纯水。
    苯甲酸钠的细胞二羟基化
    用无菌移液管尖端略过冷冻甘油储备溶液的表面划线以产生小碎片(约10mg)。将所述冷冻碎片加入含有HMB(25mL)和琥珀酸钠水溶液(140μL1.5M溶液,5mM最终浓度)的无菌125mL Erlenmeyer烧瓶中。在30℃下以250rpm将所述烧瓶振摇2天。使用无菌移液管将1等份(10mL)白色异质溶液转移到含有HMB(6L)和琥珀酸钠水溶液(20mL1.5M溶液,5mM最终浓度)的哺乳动物细胞生长瓶中。将所述瓶在热板上升温至内部温度为30℃;经棉花过滤的空气通过所述培养基喷射。在2天后,使用苯甲酸钠水溶液(18mL1.0M溶液)和琥珀酸钠水溶液(10mL1.5M溶液)处理(包括二羟基化)所述白色异质溶液。在内部温度为30℃下,使所得混合物保持强烈通风6小时。在诱导后,每小时加入足够苯甲酸钠水溶液(24至48mL1.0M溶液,根据消耗速率而定)以维持10‑20mM的浓度(通过225nm UV吸收测定)。每4个小时加入琥珀酸钠水溶液(10mL1.5M溶液)。这些添加持续进行18小时,随后使所述溶液在内部温度为30℃下通风过夜以确保完全转化。在6000rpm(Sorvall GS‑3转子,SLA‑3000型)下逐份离心所述发酵肉汤以去除细胞材料。使用旋转蒸发器(浴液温度<45℃)将上清液浓缩至400mL体积。使浓缩物冷却至0℃且随后使用浓盐酸水溶液酸化至pH3.0。使用乙酸乙酯(8×500mL,4×800mL,8×1L)重复萃取经酸化水溶液。在浓缩前使用旋转蒸发器(浴液温度<45℃)用硫酸钠干燥乙酸乙酯萃取物,获得浅黄色固体残留物。使用二氯甲烷(2×200mL)研磨残留物继而在真空中干燥获得白色粉末状纯净(1S,2R)‑1,2‑二羟基环己‑3,5‑二烯‑1‑甲酸(DRS1)mp95‑96℃dec(38g,74%,[α]D‑114.8(c0.5存于EtOH中),lit.,[α]D‑106(c0.5存于EtOH中)Jenkins,G.N.;Ribbons,D.W.;Widdowson,D.A.;Slawin,A.M.Z.;Williams,D.J.J.Chem.Soc.Perkin Trans.1 1995,2647.)。
    环氧化物DRS2:

    间‑氯过氧基苯甲酸(mCPBA)纯化如下:将50g77%mCPBA(Alrich)溶于苯(1L)中,随后使用pH7.4磷酸盐缓冲液(3×1L)洗涤苯溶液并用Na2SO4将其干燥3小时(<40℃,热爆震危险)以提供纯净白色固体mCPBA;在23℃下,向存于乙酸乙酯(400mL)的微生物二羟基化产物DRS1悬浮液(8.10g,51.9mmol,1.0equiv)中经30min分3等份加入(10.7g,62.3mmol,1.2equiv)。将所述异质溶液搅拌10h,随后用苯(80mL)稀释之并搅拌1h。倒出上清液并用苯(2×15mL)研磨固体残留物。将所得糊状固体在真空中干燥以提供无定形白色粉末状环氧化物DRS2(7.36g,83%).
    mp87‑91℃;1H NMR(400MHz,CD3OD)δ6.23(dd,1H,J=9.6,3.9Hz,=CHC(OCH)),5.92(dd,1H,J=9.6,1.9Hz,=CHC(CO2H)),4.40(d,1H,J=1.3Hz,CHOH),3.58(dd,1H,J=4.4,1.3Hz,CHCHOH),3.49(m,1H,=CCHO);13CNMR(100MHz,CD3OD)δ175.8,135.1,128.8,75.4,70.9,57.5,50.3;FTIR(纯净),cm‑13381(s,OH),1738(s,C=O),1608(m),1255(m),1230(m),1084(m,C‑O);HRMS(CI)m/z计算得(C7H8O5+NH4)+190.0715,实验值190.0707.
    环氧化物DJB1:

    在23℃下,向环氧化物DRS2(7.36g,42.8mmol,1.0equiv)的甲醇‑苯(1∶3,160mL)溶液中加入三甲基甲硅烷基重氮基甲烷的己烷(2.0M,25.5mL,51.0mmol,1.2equiv)溶液。添加时,观测到释放出大量气体。将所述黄色溶液搅拌5min,随后浓缩,获得浅黄色固体。通过用苯(2×25mL)进行共沸蒸馏来干燥所述固体并将经干燥固体悬浮于二氯甲烷(200mL)中。随后依次加入三乙胺(20.8ml,149mmol,3.5equiv)和三氟甲烷磺酸叔‑丁基二甲基甲硅烷基酯(29.4ml,128mmol,3.0equiv),获得匀质溶液。将所述反应溶液在23℃下搅拌30min。依次加入磷酸钾缓冲水溶液(pH7.0,0.2M,300mL)和二氯甲烷(100ml)。分离有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得棕色油状物。通过快速管柱层析(5∶95乙酸乙酯‑己烷)纯化产物,获得浅黄色油状环氧化物DJB1(12.4g,经过2个步骤的产率为70%)。
    Rf0.50(1∶4 乙酸乙酯‑己垸);1H NMR(400MHz,CDCl3)δ5.95(dd,1H,J=9.8,3.4Hz,=CHCOTBS),5.89(ddd,1H,J=9.8,2.9,1.5Hz,=CHCHOCCO2),4.63(d,1H,J=3.9Hz,O2CCCHOTBS),4.42(m,1H,=CCHOTBS),3.78(s,3H,OCH3),3.31(d,1H,J=2.0Hz,CHOCCO2),0.90(s,9H,C(CH3)3),0.89(s,9H,C(CH3)3),0.09(s,3H,SiCH3),0.08(s,6H,SiCH3),0.07(s,3H,SiCH3);13C NMR(100MHz,CDCl3)δ170.2,138.7,122.6,69.3,68.4,59.7,52.5,52.0,25.9,25.7,18.3,18.2,‑4.18,‑4.27,‑4.45,‑5.21;FTIR(纯净),cm‑1 1759(m,C=O),1736(s,C=O),1473(m),1256(w),1253(s),1150(s,C‑O),1111(m,C‑O),1057(s,C‑O),940(m);HRMS(ES)m/z计算得(C20H38O5Si2)+414.2258,实验值414.2239.
    异噁唑MGC2(方法A):

    在0℃下,向醇MGC1(自市售3‑羟基‑5‑异噁唑甲酸甲酯分两步制备,如先前由Reiss,R.;M.;Laschat,S.;V Eur,J.Org.Chem.1998,473‑479所报道)(48.0g,0.234mol,1.0equiv)的二氯甲烷(450mL)溶液中依次加入三乙胺(37.5mL,0.269mol,1.15equiv)、4‑(二甲基氨基)吡啶(289mg,2.34mmol,0.01equiv)和甲烷磺酰氯(20.8mL,0.269mol,1.15equiv)。将所述反应混合物在0℃下搅拌2.5h,随后浓缩,获得橙色油状物。在0℃下,向一上文制得橙色油状物和N,N‑二甲基甲酰胺(150mL)的混合物中加入冷冻二甲胺(借助指形冷冻机用干冰/丙酮冷凝,26.2mL,0.480mol,2.0equiv),获得匀质溶液。将所述溶液在0℃下搅拌2h,随后使其升温至23℃;在所述温度下持续搅拌24h。所述溶液在饱和碳酸氢钠水溶液‑盐水(2∶1,300mL)与乙酸乙酯‑己烷(1∶1,500mL)之间分配。分离有机相并用盐水(2×200mL)洗涤之,并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得棕色残留物。通过快速管柱层析(1∶4至1∶1乙酸乙酯‑己烷)纯化产物,获得浅黄色油状异噁唑MGC2(40.1g,74%)。
    Rf0.34(1∶1 乙酸乙酯‑己烷);1H NMR(500MHz,CDCl3)δ7.43‑7.31(m,5H,ArH),5.82(s,1H,=CH),5.23(s,2H,OCH2Ar),3.48(s,2H,CH2N(CH3)2),2.27(s,6H,N(CH3)2);13C NMR(125MHz,CDCl3)δ171.9,171.2,136.1,128.8,128.5,128.7,94.8,71.7,55.1,45.3;FTIR(纯净),cm‑12950(s,CH),1615(s),1494(s),1452(s),1136(m);HRMS(ES)m/z计算得(C13H16N2O2)+232.1212,实验值232.1220.
    异噁唑MGC4:

    在0℃下,借助套管向异噁唑MGC3(自乙醛酸分两步制备,如由Pevarello,P.;Varasi,M.Synth.Commun.1992,22,1939所报道)(174g,0.884mol,1.0equiv)的乙腈(2L)溶液中逐滴加入经冷冻二甲胺(借助指形冷冻机用干冰/丙酮冷凝入浸没于0℃浴液中的反应容器中,106mL,1.94mol,2.2equiv)。将所述反应混合物在0℃下搅拌2h,随后移除冷却浴。使所述反应混合物升温至23℃;在所述温度下持续搅拌8h。所述混合物在盐水‑饱和碳酸氢钠水溶液(1∶1,1.5L)与乙酸乙酯(1.5L)之间分配。分离有机相并用乙酸乙酯(3×400mL)进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液至500mL体积,导致形成白色沉淀物。过滤出浓缩物并浓缩滤液,获得橙色油状异噁唑MGC4(143g,79%)。借助快速管柱层析(1∶9至2∶8乙酸乙酯‑己烷)制备分析用样品,获得浅黄色油状异噁唑MGC4。
    Rf0.30(1∶4 乙酸乙酯‑己烷);1H NMR(300MHz,CDCl3)δ6.26(s,1H,vinyl),3.63(s,2H,CH2N(CH3)2),2.30(s,6H,N(CH3)2);13C NMR(100MHz,CDCl3)δ172.1,140.5,106.8,54.5,45.3;FTIR(纯净),cm‑13137(w),2945(m),2825(m),2778(m),1590(s),1455(m),1361(m),1338(s),1281(s),1041(m);HRMS(ES)m/z计算得(C6H9BrN2O+H)+204.9976,实验值204.9969.
    异噁唑MGC2(方法B):

    在23℃下,经8h向苄醇(1L)中逐份加入金属钠(32.63g,1.42mol,2.03equiv)。将所得混合物剧烈搅拌24h,随后在23℃下借助大孔径套管将其转移至纯净异噁唑MGC4(143g,0.700mol,1.0equiv)中。将所得浅棕色混合物置于预热至120℃的油浴中并将其在所述温度下搅拌20h。向冷却反应混合物中加入乙酸乙酯(2L)并持续搅拌15min。加入盐酸水溶液(1.0M、2L)并分离水性相。使用两份300‑mL1.0M盐酸水溶液进一步萃取有机相。合并水性相并通过缓慢加入氢氧化钠水溶液(6.0M,约350mL)将pH调整至9。使用二氯甲烷(3×500mL)萃取所得混合物。合并有机萃取物并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,生成黄色油状异噁唑MGC2(102g,63%)。借助快速管柱层析(3∶7 乙酸乙酯‑己烷,随后使用5∶95甲醇‑乙酸乙酯)制备分析用样品,获得浅黄色油状异噁唑MGC2(光谱数据与所获得的借助方法A所制备材料的光谱数据相同)。
    酮MGC5:

    在‑78℃下,向异噁唑MGC2(9.16g,39.5mmol,1.0equiv)的四氢呋喃(150mL)溶液中加入正‑丁基锂的己烷(2.47M,16.0mL,39.5mmol,1.0equiv)溶液。将所得锈色溶液在‑78℃下搅拌1h,此时借助套管逐滴加入甲基酯DJB1(9.82g,23.7mmol,0.6equiv)的四氢呋喃(6mL)溶液。使用2份1mL四氢呋喃对所述转移实施定量分析。将所得棕色溶液在‑78℃下搅拌1h,随后加入磷酸钾缓冲水溶液(pH7.0,0.2M,250mL)。使两相混合物升温至23℃,随后用二氯甲烷(2×300mL)萃取。合并有机萃取物并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得黄色油状物。通过快速管柱层析(1∶9至1∶3乙酸乙酯‑己烷)纯化产物,获得浅黄色固体状酮MGC5(10.6g,73%)。
    Rf0.59(1∶3 乙酸乙酯‑己烷);1H NMR(500MHz,CDCl3)δ7.44‑7.35(m,5H,ArH),5.90(ddd,1H,J=9.8,5.9,2.0Hz,=CHCHOSi),5.82(dd,1H,J=9.8,3.4Hz,=CHCHOCC),5.31(m,2H,OCH2Ar),4.58(d,1H,J=4.2Hz,(O)CCCHOSi),4.27(m,1H,=CHCHOSi),3.94(d,1H,J=15.6Hz,CHH′N),3.77(d,1H,J=15.6Hz,CHH′N),3.17(dd,1H,J=3.4,1.5Hz,HCOCC(O)),2.35(s,6H,N(CH3)2),0.89(s,9H,C(CH3)3),0.83(s,9H,C(CH3)3),0.06(s,3H,SiCH3),0.05(s,3H,SiCH3),0.04(s,3H,SiCH3),‑0.07(s,3H,SiCH3);13C NMR(125MHz,CDCl3)δ191.8,176.3,168.9,136.5,135.5,128.8,128.7,125.0,106.9,72.4,69.6,67.8,67.4,55.3,52.6,45.9,26.2,26.0,18.5,18.3,‑3.1,‑3.8,‑3.8,‑5.1;FTIR(纯净),cm‑12952(s,CH),1682(s,C=O),1594(s),1502(s),1456(m),1097(s,C‑O),774(s);HRMS(FAB)m/z计算得(C32H50N2O6Si2+Na)+637。3105,实验值637.3097.
    酮MGC6和MGC7L:

    在23℃下,向酮MGC5(6.02g,9.80mmol,1.0equiv)的甲苯(500mL)溶液中加入固体三氟甲烷磺酸锂(76.0mg,0.490mmol,0.05equiv)。将所得异质浅黄色混合物置于预热至65℃的油浴中并将其在所述温度下搅3h。使反应混合物冷却至23℃并过滤。用甲苯(50mL)洗涤固体并浓缩滤液,获得黄色油状物。用二氯甲烷‑三氟乙酸(10∶1,165mL)覆盖所述油并将所得混合物在23℃下搅拌18h。加入碳酸氢钠水溶液(300mL)且在添加时观测到释放出大量气体。用二乙醚(4×300mL)萃取两相混合物且合并有机萃取物并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得棕色油状物。通过快速管柱层析(1∶9至1∶5乙酸乙酯‑己烷)纯化产物,获得白色泡沫状酮MGC6(3.20g,62%)和黄色粘稠油状酮MGC7(1.68g,28%)。
    酮MGC6:
    Rf0.52(1∶3 乙酸乙酯‑己烷);1H NMR(500MHz,CDCl3)δ7.45(m,2H,ArH),7.36‑7.30(m,3H,ArH),5.96(bs,1H,=CH),5.45(bs,1H,=CH),5.32(m,2H,OCHH′Ar),5.33(bs,1H,CHOSi),4.15(d,1H,J=8.8Hz,CHOSi),3.59(d,1H,J=3.9Hz,CHN(CH3)2),3.34(bs,1H,C3CH),2.57(bs,1H,OH),2.39(s,6H,N(CH3)2),0.90(s,9H,C(CH3)3),0.16(s,3H,SiCH3),0.11(s,3H,SiCH3);13C NMR(100MHz,C6D6)δ189.2,178.3,168.6,135.3,128.5,128.4,128.3,125.4,106.4,79.8,72.3,72.2,67.1,63.6,42.9,26.1,18.5,‑4.0,‑4.8;FTIR(纯净),cm‑13549(bs,OH),3455(bs,OH),2942(s,CH),1698(s,C=O),1617(m),1508(s),1032(s,C‑O),906(s);HRMS(ES)m/z计算得(C26H36N2O6Si+H)+501.2421,实验值501.2422.
    酮MGC7:
    Rf0.64(1∶5 乙酸乙酯‑己烷);1H NMR(500MHz,CDCl3)δ7.50(d,2H,J=1.5Hz,ArH),7.40‑7.32(m,3H,ArH),5.94(dd,1H,J=9.7,6.4Hz,=CHCHCHOSi),5.76(d,1H,J=9.7Hz,=CHCOH),5.37(d,1H,J=12.2Hz,OCHH′Ph),5.32(d,1H,J=12.2Hz,OCHH′Ph),4.09(d,1H,J=2.9Hz,HOCCHOSi),4.03(s,1H,OH),3.88(m,1H,NCHCHCHOSi),3.74(d,1H,J=3.9Hz,(CH3)2NCH),2.46(s,6H,N(CH3)2),0.91(s,9H,C(CH3)3),0.87(s,9H,C(CH3)3),0.06(s,3H,SiCH3),0.05(s,3H,SiCH3),0.04(s,3H,SiCH3),0.03(s,3H,SiCH3);13CNMR(125MHz,CDCl3)δ194.9,173.9,170.5,135.8,132.6,128.8,128.5,128.3,127.9,106.2,81.6,74.8,72.0,71.7,69.5,44.6,43.2,26.1,25.9,18.7,18.2,‑3.6,‑4.1,‑4.3,‑4.3;FTIR(纯净),cm‑13461(bs,OH),2940(s,CH),1693(s,C=O),1663(s),1647(m),1503(m),1080(s,C‑O),774(s);HRMS(ES)m/z计算得(C32H50N2O6Si2+H)+615.3285,实验值615.3282.
    烯烃DRS3:

    在0℃下,向酮MGC6(500mg,1.00mmol,1.0equiv)和三苯基膦(789mg,3.00mmol,3.0equiv)的甲苯(6.0mL)溶液中加入偶氮二甲酸二乙酯(472μL,3.00mmol,3.0equiv)。将所述混合物在0℃下搅拌90min,此时借助套管逐滴加入2‑硝基苯磺酰基肼(651mg,3.00mmol,3.0equiv)的四氢呋喃(3mL)溶液。将所得混合物在0℃下搅拌10min,随后使其升温至23℃;在所述温度下持续搅拌23h。加入磷酸钾缓冲水溶液(pH7.0,0.2M,30mL)并用二氯甲烷(2×50mL)萃取所得两相混合物。合并有机萃取物并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得黄色泥渣。通过快速管柱层析(95∶5至1∶9乙酸乙酯‑己烷)纯化产物,获得白色固体状烯烃DRS3(356mg,74%)。
    Rf0.65(1∶3 乙酸乙酯‑己烷);1H NMR(500MHz,CDCl3)δ7.46(d,2H,J=6.8Hz,ArH),7.39‑7.34(m,3H,ArH),5.81(m,1H,=CHCH2),5.55(dd,1H,J=10.3,2.0Hz,=CHCOSi),5.39(d,1H,J=12.2Hz,OCHH′Ph),5.35(d,1H,J=12.2Hz,OCHH′Ph),4.15(s,1H,CHOSi),4.04(bs,1H,OH),3.76(d,1H,J=10.7Hz,CHN(CH3)2),2.58(dd,1H,J=10.7,3.9Hz,C3CH),2.47(m,8H,N(CH3)2,=CCH2),0.86(s,9H,C(CH3)3),‑0.05(s,3H,SiCH3),‑0.13(s,3H,SiCH3);13C NMR(125MHz,CDCl3)δ191.5,183.3,167.9,135.3,128.8,128.7,128.5,127.4,106.8,78.3,72.6,72.0,67.9,60.7,43.0,42.1,26.0,25.8,23.6,18.2,‑4.6,‑5.0;FTIR(纯净),cm‑13528(w,OH),2933(s,CH),1702(s,C=O),1600(m),1507(s),1092(s;C‑O),1061(s,C‑O);HRMS(ES).m/z计算得(C26H36N2O5Si+H)+485.2472,实验值485.2457.
    二醇DRS4:

    在0℃下,向烯烃DRS3(350mg,0.723mmol,1.0equiv)的四氢呋喃(7.0mL)溶液中依次加入乙酸(83.0μL,1.44mmol,2.0equiv)和四丁基氟化铵的四氢呋喃(1.0M、1.44mL、1.44mmol,2.0equiv)溶液。将所得浅灰色溶液在0℃下搅拌30min,随后使其升温至23℃;在所述温度下持续搅拌5h。浓缩所述反应混合物,获得棕色油状物。通过快速管柱层析(1∶4至1∶1乙酸乙酯‑己烷)纯化产物,获得蜡白色固体状二醇DRS4(202mg,76%)。
    Rf0.38(1∶1 乙酸乙酯‑己烷);1H NMR(500MHz,CDCl3)δ7.51‑7.48(m,2H,ArH),7.42‑7.36(m,3H,ArH),5.84(m,1H,=CHCH2),5.55(m,1H,=CHCOH),5.36(m,2H,OCH2Ph),4.15(d,1H,J=8.1Hz,CHOH),3.69(d,1H,J=8.8Hz,CHN(CH3)2),2.67(m,1H,C3CH),2.47(s,6H,N(CH3)2),2.43(dd,1H,J=7.7,1.5Hz,=CCHH′),2.36(m,1H,=CCHH′);FTIR(纯净),cm‑13492(w,OH),3272(s,OH),1703(s,C=O),1606(m),1509(s),1008(s,C‑O),732(s);HRMS(ES)m/z计算得(C20H22N2O5+H)+371.1607,实验值371.1601.
    环己烯酮DRS5:

    在23℃下,向二醇DRS4(246mg,0.665mmol,1.0equiv)的二甲基亚砜(5.0mL)溶液中加入固体邻‑碘氧基苯甲酸(558mg,1.99mmol,3.0equiv)。将所得异质混合物搅拌5min,此时,其变为匀质。将棕色反应混合物在23℃下搅拌36h。加入水(10mL),导致过量邻‑碘氧基苯甲酸沉淀。过滤所述混合物且滤液在饱和碳酸氢钠水溶液‑盐水(1∶1,20mL)与乙酸乙酯‑己烷(2∶1,45mL)之间分配。分离有机相并使用一份45mL乙酸乙酯‑己烷(2∶1)进一步萃取水性相。合并有机萃取物且用亚硫酸钠水溶液(2.0M,50mL)、盐水(50mL)洗涤之并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得浅棕色泡沫状环己烯酮DRS5(206mg,84%)。
    Rf0.15(1∶3 乙酸乙酯‑己烷);1H NMR(500MHz,CDCl3)δ7.48(d,2H,J=7.3Hz,ArH),7.40‑734(m,3H,ArH),δ.98(m,1H,=CHCH2),6.12(ddd,1H,J=12.2,2.0,2.0Hz,=CHC(O)),5.35(m,2H,OCH2Ar),4.75(bs,1H,OH),3.85(d,1H,J=9.8Hz,CHN(CH3)2),2.82(m,3H,C3CH,=CCH2),2.48(s,6H,N(CH3)2);13C NMR(125MHz,CDCl3)δ192.8,188.2,182.8,167.6,149.7,135.0,128.9,128.8,128.6,128.3,107.9,79.7,72.8,60.4,45.5,42.4,25.4;FTIR(纯净),cm‑13447(w,OH),1707(s,C=O),1673(s,C=O),1600(m),1512(s),1018(s,C‑O),730(s);HRMS(ES)m/z计算得(C20H20N2O5+H)+369.1450,实验值369.1454.
    甲硅烷基‑环己烯酮DRS6:

    在23℃下,向环己烯酮DRS5(47.0mg,0.130mmol,1.0equiv)的二氯甲烷(3mL)溶液中依次加入2,6‑二甲基吡啶(75.0μL,0.640mmol,5.0equiv)和三氟甲烷磺酸叔‑丁基二甲基甲硅烷基酯(88.0μL,0.380mmol,3.0equiv)。将所述混合物在23℃下搅拌3h,随后加入磷酸钾缓冲水溶液(pH7.0,0.2M,15mL)。使用二氯甲烷(2×20mL)萃取两相混合物且合并有机萃取物并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得白色结晶固体状甲硅烷基‑环己烯酮DRS6(56.0mg,91%)。
    Mp157‑158℃(dec);Rf0.54(1∶3 乙酸乙酯‑己烷);1HNMR(500MHz,CDCl3)δ7.51(d,2H,J=1.5Hz,ArH),7.50‑7.34(m,3H,ArH),6.94(m,1H,=CHCH2),6.10(ddd,1H,J=10.3,1.5,1.5Hz,=CHC(O)),5.36(m,2H,OCH2Ar),3.79(d,1H,J=10.7Hz,CHN(CH3)2),2.83(m,2H,=CCH2),2.78(m,1H,C3CH),2.46(s,6H,N(CH3)2),0.84(s,9H,C(CH3)3),0.27(s,3H,SiCH3),0.06(s,3H,SiCH3);13C NMR(125MHz,CDCl3)δ193.4,187.9,181.6,167.7,149.5,135.2,128.8,128.8,128.8,128.6,108.6,83.5,72.8,59.8,48.1,42.2,26.3,25.8,19.3,‑2.2,‑3.8;FTIR(纯净),cm‑12942(s),1719(s,C=O),1678(s,C=O),1602(m),1510(s),1053(s,C‑O),733(s);HRMS(ES)m/z计算得(C26H34N2O5Si+H)+483.2315,实验值483.2321.
    酮MGC9:

    在‑5℃(NaCl/冰浴)下,向醛MGC8(自市售3‑苄氧基苄醇分2步合成,如由Hollinshed,S.P.;Nichols,J.B.;Wilson,J.W.J.Org.Chem.1994,59,6703所报道)(10.0g,34.3mmol,1.0equiv)的四氢呋喃(90mL)溶液中加入甲基溴化镁的醚的(3.15M,11.6mL,36.7mmol,1.07equiv)溶液。将所述浅棕色溶液在‑5℃下搅拌60min,随后其在饱和氯化铵水溶液(400mL)与乙酸乙酯(400mL)之间分配。分离有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得浅黄色油状物(10.1g,95%粗制产物)。所述产物无需进一步纯化即可使用。
    在0℃下,向上文制得浅黄色油状物(10.1g,32.8mmol,1.0equiv)的四氢呋喃(30mL)溶液中依次加入溴化钠(846mg,8.22mmol,0.25equiv)和2,2,6,6‑四甲基‑1‑哌啶基氧基(51.0mg,0.329mmol,0.01equiv)。将新制备的碳酸氢钠(690mg,8.22mmol,0.25equiv)的市售Clorox漂白液(90mL)溶液冷却至0℃并在0℃下,将其一次性加入上文制得混合物中。将所得亮黄色混合物在0℃下剧烈搅拌1.5h,此时加入亚硫酸钠(1.0g)。将所得混合物在23℃下搅拌15min,随后其在水(400mL)与乙酸乙酯(400mL)之间分配。分离有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得浅黄色油状物。自乙醇结晶出产物,获得白色固体状酮MGC9(8.08g,经过2个步骤后的产率为80%)。
    Rf0.80(3∶7 乙酸乙酯‑己烷);1H NMR(400MHz,CDCl3)δ7.26‑7.48(m,6H,ArH),6.98(m,2H,ArH),5.19(s,2H,OCH2Ph),2.62(s,3H,C(=O)CH3);13C NMR(100MHz,CDCl3)δ202.4,155.5,144.4,136.3,128.9,128.7,128.3,127.2,120.3,115.2,109.1,71.3,30.9;FTIR(纯净),cm‑13065(w),3032(w),2918(m),1701(s,C=O),1565(m),1426(m),1300(s),1271(s),1028(m);HRMS(ES)m/z计算得(C15H13O2Br+H)+304.0099,实验值304.0105.
    环氧化物MGC10:

    在23℃下,借助注射器向固体三甲基碘化氧锍(694mg,3.15mmol,1.3equiv)和固体氢化钠(60%存于油中,126mg,3.15mmol,1.3equiv,用3份2‑mL正‑己烷洗涤)的混合物中逐滴加入二甲基亚砜(90mL)。添加时观测到剧烈释放气体。将所得浑浊灰色混合物在23℃下搅拌40min,随后借助套管逐滴加入酮MGC9(8.08g,26.5mmol,1.0equiv)的二甲基亚砜(30mL)溶液。使用1份2‑mL二甲基亚砜对所述转移实施定量分析。将所得橙色混合物在23℃下搅拌35h,随后其在盐水(1L)与醚(500mL)之间分配。分离有机相并用1份500‑mL醚进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得黄色油状物。通过快速管柱层析(5∶95乙酸乙酯‑己烷)纯化产物,获得澄清油状环氧化物MGC10(7.94g,94%)。
    Rf0.90(3∶7 乙酸乙酯‑己烷);1H NMR(300MHz,CDCl3)δ7.20‑7.52(m,6H,ArH),7.10(dd,1H,J=7.5,1.2Hz,o‑ArH),6.88(dd,1H,J=8.1,1.2Hz,o‑ArH),5.16(s,2H,OCH2Ph),3.03(d,1H,J=4.8Hz,CHH′OCCH3),2.87(d,1H,J=4.8Hz,CHH′OCCH3),1.67(s,3H,COCH3);13C NMR(100MHz,CDCl3)δ155.0,143.4,136.7,128.8,128.4,128.2,127.2,121.2,112.8,112.3,71.2,59.7,55.9,22.9;FTIR(纯净),cm‑13034(w),2981(w),2925(w),1595(w),1567(s),1469(s),1423(s),1354(s),1300(s),1266(s),1028(s);HRMS(ES)m/z计算得(C16H15O2Br+H)+318.0255,实验值318.0254.
    苯并环丁烯醇MGC11:

    在‑78℃下,借助注射器沿含有环氧化物MGC10(3.11g,9.74mmol,1.0equiv)四氢呋喃(90mL)溶液的反应容器的一侧逐滴加入正‑丁基锂的己烷(1.60M,8.25mL,13.6mmol,1.4equiv)溶液。将所得黄色溶液在‑78℃下搅拌20min,此时借助套管逐滴加入溴化镁(3.95g,21.4mmol,2.2equiv)的四氢呋喃(25mL)的悬浮液。使用2份2.5‑mL四氢呋喃对所述转移实施定量分析。将所得浑浊混合物在‑78℃下搅拌60min,随后移除冷却浴并使所述反应混合物升温至23℃。在升温时,所述混合物变澄清并将其在23℃下搅拌1h。将所述反应混合物注入Rochelle′s盐的水溶液(10%wt/wt,1L)中并用乙酸乙酯(2×400mL)萃取所得混合物。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得淡黄色固体。通过快速管柱层析(1∶9to2∶9乙酸乙酯‑己烷)纯化产物,获得白色固体状反式‑苯并环丁烯醇MGC11(1.57g,67%)。
    Rf0.50(3∶7 乙酸乙酯‑己垸);1H NMR(500MHz,CDC13)δ7.44(br d,2H,J=7.5Hz,ArH),7.38(br t,2H,J=7.5Hz,ArH),7.22‑7.34(m,2H,ArH),6.82(d,1H,J=8.5Hz,o‑ArH),6.75(d,1H,J=7.5Hz,o‑ArH),5.35(d,1H,J=12.0Hz,OCHH′Ph),5.25(d,1H,J=12.0Hz,OCHH′Ph),),4.71(br d,1H,J=5.5Hz,CHOH),3.31(br q,1H,J=7.0Hz,CHCH3),2.21(br d,1H,J=7.0Hz,OH),1.38(d,3H,J=7.0Hz,CHCH3);13C NMR(100MHz,CDCl3)δ154.0,148.9,137.4,131.5,128.5,128.4,127.8,127.3,115.2,114.6,77.6,71.2,50.6,16.5;FTIR(纯净),cm‑13249(m,OH),2958(w),1602(m),1580(s),1453(s),1261(s),1039(s);HRMS(ES)m/z计算得(C16H16O2+H)+240.1150,实验值240.1154.
    苯并环丁烯醇MGC12:

    在23℃下,向苯并环丁烯醇MGC11(500mg,1.72mmol,1.0equiv)的二氯甲烷(10mL)溶液中依次加入三乙胺(336μL,2.41mmol,1.4equiv)和三氟甲烷磺酸三乙基甲硅烷基酯(468μL,2.07mmol,1.2equiv)。将所述浅黄色溶液在23℃下搅拌15min,随后其在水(30mL)与二氯甲烷(30mL)之间分配。分离有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得黄色油状物。通过快速管柱层析(5∶95乙酸乙酯‑己烷)纯化产物,获得澄清油状苯并环丁烯醇MGC12(609mg,99%)。
    Rf0.85(1∶4 乙酸乙酯‑己烷);1HNMR(400MHz,CDCl3)δ7.48‑7.32(m,5H,ArH),7.24(m,2H,ArH),6.82(d,1H,J=8.4Hz,o‑ArH),6.74(d,1H,J=7.2Hz,o‑ArH),5.37(d,1H,J=11.2Hz,CHH′Ph),),5.20(d,1H,J=11.2Hz,CHH′Ph),),4.87(d,1H,J=1.6Hz,CHOTES),3.45(dq,1H,J=7.2,1.6Hz,CHCH3),1.42(d,3H,J=7.2Hz,CHCH3),0.98(t,9H,J=7.6Hz,TES),0.56(q,6H,J=7.6Hz,TES);13C NMR(100MHz,CDCl3)δ154.2,148.8,137.6,131.3,129.0,128.7,128.1,127.8,115.1,114.7,71.7,49.9,16.9,7.1,5.2,5.1;FTIR(纯净),cm‑12952(w),2923(w),2854(w),1606(w),1469(w),1371(m),1265(s),1086(s),1057(s),1048(s);HRMS(ES)m/z计算得(C22H30O2Si+H)+354.2015,实验值354.2006.
    二乙烯基硫MGC13:

    在23℃下,向环己烯酮DRS5(135mg,0.367mmol,1.0equiv)的二氯甲烷(4mL)溶液中加入固体氢溴酸吡啶季铵过溴酸酰胺(293mg,0.917mmol,2.5equiv)。将所述棕色溶液在23℃下剧烈搅拌17h,此时加入亚硫酸钠(150mg,1.19mmol,3.25equiv)。所得反应混合物在磷酸钾缓冲水溶液(pH7.0,0.2M,30mL)与二氯甲烷(30mL)之间分配。分离有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得浅棕色泡沫状固体。所述产物无需进一步纯化即可使用。
    Rf0.45(2∶3 乙酸乙酯‑己烷);1H NMR(500MHz,C6D6)δ7.24(d,2H,J=7.0Hz,o‑ArH),7.02(t,2H,J=7.0Hz,m‑ArH),6.99(d,1H,J=7.0Hz,p‑ArH),6.42(ddd,1H,J=6.0,3.5,2.0Hz,CH=CBr),5.12(d,1H,J=12.5Hz,CHH′Ph),),5.03(d,1H,J=12.5Hz,CHH′Ph),),4.00(br s,1H,OH),3.25(d,1H,J=11.0Hz,CHN(CH3)2),2.28‑2.22(m,2H,CH2CH,CH2CH),2.16(dd,1H,J=18.0,6.0Hz,CH2CH),1.83(s,6H,N(CH3)2);FTIR(纯净),cm‑13397(m,OH),3063(m),2943(m),1714(s,C=O),1606(s),1514(s),1477(s),1371(m),1022(m);HRMS(ES)m/z计算得(C20H19O5BrN2)+447.0555,实验值447.0545.
    在0℃下,向上文制得产物(164mg,0.367mmol,1.0equiv)的N,N‑二甲基甲酰胺(4mL)溶液中依次加入苯硫醇(39.0μL,0.378mmol,1.03equiv)和1,8‑二氮杂双环[5,4,0]十一‑7‑烯(56.0μL,0.378mmol,1.03equiv)。将所得深棕色混合物在0℃下剧烈搅拌25min,随后其在乙酸乙酯‑己烷(1∶1,30mL)与磷酸钾缓冲水溶液(pH7.0,0.2M,30mL)之间分配。分离有机相并用2份15‑mL乙酸乙酯‑己烷进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得棕色油状物。通过快速管柱层析(15∶85至1∶4乙酸乙酯‑己烷)纯化产物,获得白色泡沫状二乙烯基硫MGC13(116mg,经过2个步骤后的产率为66%)。
    Rf0.47(2∶3 乙酸乙酯‑己垸);1H NMR(500MHz,C6D6)δ7.34(dd,2H,J=7.0,1.0Hz,o‑ArH),7.23(d,2H,J=6.5Hz,o‑ArH),6.85‑7.04(m,6H,ArH),6.27(ddd,1H,J=6.0,3.0,1.0Hz,CH=CSPh),5.11(d,1H,J=12.0Hz,OCHH′Ph),5.02(d,1H,J=12.0Hz,OCHH′Ph),4.62(br s,1H,OH),3.42(d,1H,J=10.5Hz,CHN(CH3)2),2.44(ddd,1H,J=20.0,5.5,3.0Hz,CH2CH),2.27‑2.34(m,2H,CH2CH,CH2CH),1.87(s,6H,N(CH3)2);13C NMR(100MHz,CDCl3)δ188.9,187.4,182.5,167.6,145.4,135.3,135.2,132.8,132.6,129.5,128.6,128.4,128.3,128.0,127.8,108.1,80.3,72.5,59.8,45.7,41.4,25.9;FTIR(纯净),cm‑13445(w,OH),3056(w),2943(m),2800(w),1711(s,C=O),1682(s),1600(m),1507(s),1471(s),1451(m),1333(m),1020(m);HRMS(ES)m/z计算得(C26H24O5N2S+H)+477.1484,实验值4471465.
    Diel‑Alder加成反应产物MGC14和内酯MGC15:

    将一含有二乙烯基硫MGC13(131mg,0.275mmol,1.0equiv)和苯并环丁烯醇MGC12(750mg,2.11mmol,7.7equiv)的混合物的反应容器置于预热至85℃的油浴中。将所述浅黄色溶液在85℃下搅拌48h,随后使其冷却至23℃。通过快速管柱层析(1∶19至1∶4乙酸乙酯‑己烷)纯化经冷却混合物,获得白色泡沫固体状Diels‑Alder加成反应产物MGC14(145mg,64%),澄清油状内酯MGC15(20.0mg,9%)和澄清油状经回收苯并环丁烯醇MGC12(650mg)。
    Diels‑Alder加成反应产物MGC14:
    mp178‑179℃;Rf0.55(2∶3 乙酸乙酯‑己烷);1H NMR(600MHz,C6D6)δ7.27(d,2H,J=7.2Hz,o‑ArH),7.06‑7.22(m,8H,ArH),6.92‑6.96(m,3H,ArH),6.85(d,1H,J=7.2Hz,ArH),6.70‑6.75(m,3H,ArH),6.55(d,1H,J=8.4Hz,o‑ArH),5.75(s,1H,CHOTES),5.29(br s,1H,OH),5.16(d,1H,J=12.0Hz,OCHH′Ph),5.10(d,1H,J=12.0Hz,OCHH′Ph),4.66(d,1H,J=10.8Hz,OCHH′Ph′),4.63(d,1H,J=10.8Hz,OCHH′Ph′),4.36(d,1H,J=6.6Hz,CHN(CH3)2),3.02(dq,1H,J=7.8,6.0Hz,CH3CH),2.77(ddd,1H,J=6.6,6.0,4.2Hz,CHCHN(CH3)2),2.41‑2.52(m,2H,CHCHH′CH,CH3CHCHCH2),2.08(s,6H,N(CH3)2),1.83(ddd,1H,J=13.2,4.2,4.2Hz,CHCHH′CH),1.34(d,3H,J=7.8Hz,CH3CH),0.70(t,9H,J=7.8Hz,Si(CH2CH3)3),0.48(d,6H,J=7.8Hz,Si(CH2CH3)3);13C NMR(100MHz,CDCl3)δ196.3,186.1,181.4,168.3,156.3,143.9,137.6,136.6,135.4,130.6,129.8,129.3,128.6,128.5,128.4,128.2,128.0,127.8,125.4,121.1,109.3,108.4,80.6,72.4,70.2,66.0,62.5,61.7,43.2,42.0,38.1,37.2,27.4,20.5,6.9,4.9;FTIR(纯净),cm‑13490(w,OH),3063(w),3023(w),2951(m),2871(m),1715(s,C=O),1602(m),1589(m),1513(s),1457(s),1366(m),1260(s),1065(s),1012(s);HRMS(FAB)m/z计算得(C48H54O7N2SSi+Na)+853.3318,实验值853.3314.
    内酯MGC15:
    Rf0.55(3∶7 乙酸乙酯‑己烷);1H NMR(600MHz,C6D6)δ7.34(d,2H,J=7.2Hz,o‑ArH),7.02‑7.18(m,11H,ArH),6.72‑6.84(m,4H,ArH),6.54(d,1H,J=7.8Hz,o‑ArH),5.73(s,1H,CHOTES),5.49(d,1H,J=6.6Hz,(C=O)OCHC=O),5.20(s,2H,OCH2Ph),4.60(d,1H,J=11.4Hz,OCHH′Ph′),4.57(d,1H,J=11.4Hz,OCHH′Ph′),3.49(d,1H,J=11.4Hz,CHN(CH3)2),3.23(dq,1H,J=9.0,7.2Hz,CH3CH),2.49(m,1H,CH3CHCHCHH′),2.30‑2.40(m,2H,CHCHN(CH3)2,CH3CHCHCH2),2.16(dd,1H,J=12.0,0.6Hz,CH3CHCHCHH′),1.96(s,6H,N(CH3)2),1.33(d,3H,J=7.2Hz,CH3CH),0.73(t,9H,J=7.8Hz,Si(CH2CH3)3),0.46‑0.62(m,6H,Si(CH2CH3)3);13C NMR(100MHz,CDCl3)δ196.4,176.0,170.0,157.9,156.0,144.0,136.6,136.5,135.6,129.8,129.7,129.4,128.9,128.6,128.4,128.3,128.2,128.1,127.8,125.1,121.2,108.8,101.9,75.9,72.1,70.1,64.7,64.6,62.9,41.4,36.7,35.6,27.7,21.7,6.9,4.9;FTIR(纯净),cm‑13062(w),3033(w),2950(m),2874(m),1731(s,C=O),1599(m),1590(m),1514(s),1453(s),1365(m),1259(s),1120(s),1059(s),1010(s);HRMS(ES)m/z计算得(C48H54O7N2SSi+H)+831.3499,实验值831.3509.
    醇MGC16:

    在23℃下,向Diels‑Alder加成反应产物MGC14(120mg,0.144mmol,1.0equiv)的四氢呋喃(6mL)溶液中加入三乙胺三氢氟化物(200μL,1.23mmol,8.5equiv)。将所述混合物在23℃下剧烈搅拌12h,随后其在磷酸钾缓冲水溶液(pH7.0,0.2M,30mL)与乙酸乙酯(30mL)之间分配。分离有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得浅棕色固体。通过快速管柱层析(1∶4至1∶1乙酸乙酯‑己烷)纯化产物,获得无色油状醇MGC16(78.3mg,76%)。
    Rf0.20(2∶3 乙酸乙酯‑己烷);1H NMR(600MHz,C6D6)δ7.69(dd,2H,J=7.2,0.6Hz,o‑ArH),7.24(d,2H,J=7.2Hz,ArH),6.92‑7.06(m,12H,ArH),6.76(d,1H,J=7.8Hz,ArH),6.47(d,1H,J=8.4Hz,o‑ArH),5.44(br s,1H,CHOH),5.18(d,1H,J=12.0Hz,OCHH′Ph),5.16(d,1H,J=12.0Hz,OCHH′Ph),4.57(d,1H,J=12.6Hz,OCHH′Ph′),4.52(d,1H,J=12.6Hz,OCHH′Ph′),3.44(dq,1H,J=6.6,5.4Hz,CH3CH),2.98(d,1H,J=3.0Hz,CHN(CH3)2),2.90(m,1H,CHCHN(CH3)2),2.76(br s,1H,OH),2.32(m,1H,CH3CHCHCH2),1.94(m,1H,CH3CHCHCH2),1.79(s,6H,N(CH3)2),1.07(m,1H,CH3CHCHCH2),0.84(d,3H,J=6.6Hz,CH3CH);13C NMR(100MHz,CDCl3)δ202.5,185.6,179.2,168.9,156.9,139.4,139.1,137.1,136.5,135.3,130.5,129.6,128.8,128.7,128.6,128.5,128.4,128.3,127.8,126.9,124.7,119.3,110.0,106.8,82.3,72.5,69.9,66.4,64.2,59.3,43.0,39.1,37.8,32.6,25.3,16.8;FTIR(纯净),cm‑13435(w,OH),3066(w),2964(w),2933(w),2871(w),1738(s,C=O),1698(s,C=O),1614(m),1583(m),1513(s),1471(s),1453(s),1369(m),1263(m),1035(m),1014(m);HRMS(ES)m/z计算得(C42H40O7N2S+H)+717.2634,实验值717.2631.
    三酮MGC17:

    在23℃下,向醇MGC16(78.3mg,0.109mmol,1.0equiv)的二甲基亚砜(3.0mL)溶液中一次性加入固体邻‑碘氧基苯甲酸(459mg,1.64mmol,15.0equiv)。将所得异质混合物搅拌5min,此时其变为匀质。保护反应容器免受光照并将其置于预热至35℃的油浴中。将所述棕色溶液在35℃下剧烈搅拌18h,随后其在饱和碳酸氢钠水溶液‑盐水‑水(2∶1∶1,75mL)与乙酸乙酯‑醚(1∶2,35mL)之间分配。分离有机相并用2份25‑mL乙酸乙酯‑醚(1∶2)进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得黄色油状物。通过快速管柱层析(1∶2乙酸乙酯‑己烷)纯化产物,获得黄色油状酮MGC17(61.7mg,79%)。
    Rf0.45(2:3 乙酸乙酯‑己烷);1H NMR(600MHz,C6D6)δ7.57(d,2H,J=7.2Hz,o‑ArH),7.40(d,2H,J=7.2Hz,ArH),7.18‑7.23(m,3H,ArH),6.94‑7.06(m,6H,ArH),6.76‑6.84(m,3H,ArH),6.59(d,1H,J=7.8Hz,ArH),6.53(d,1H,J=8.4Hz,o‑ArH),5.09(d,1H,J=12.6Hz,OCHH′Ph),4.96(d,1H,J=12.6Hz,OCHH′Ph),4.77(d,1H,J=12.0Hz,OCHH′Ph′),4.72(d,1H,J=12.0Hz,0CHH′Ph′),4.48(br s,1H,OH),4.06(dq,1H,J=7.2,3.0Hz,CH3CH),3.15(d,1H,J=12.0Hz,CHN(CH3)2),2.20(ddd,1H,J=12.6,5.4,3.0Hz,CH3CHCHCH2),2.13(ddd,1H,J=12.0,3.0,0.6Hz,CHCHN(CH3)2),1.81‑1.88(m,7H,N(CH3)2,CH3CHCHCHH′),1.78(ddd,1H,J=13.8,5.4,0.6Hz,CH3CHCHCHH′),1.01(d,3H,J=7.2Hz,CH3CH);13C NMR(100MHz,CDCl3)δ200.3,187.5,183.1,167.8,160.6,146.4,138.2,137.1,135.3,134.3,131.7,129.6,128.9,128.6,128.5,128.4,128.3,127.7,126.7,121.3,118.0,112.8,108.3,82.9,77.5,72.4,70.3,58.1,47.0,44.1,32.4,18.7,18.0,16.3;FTIR(纯净),cm‑13457(w,OH),3063(w),2939(w),2878(w),2795(w),1727(s,C=O),1704(s,C=O),1667(m,C=O),1593(s),1513(s),1471(s),1453(s),1371(m),1276(m),1044(m);HRMS(ES)m/z计算得(C42H38O7N2S+H)+715.2478,实验值715.2483.
    过氧化物MGC18:

    在‑78℃下,向硫化物MGC17(54.2mg,0.0758mmol,1.0equiv)的二氯甲烷(4.0mL)溶液中依次加入三氟乙酸的二氯甲烷(1.0M,0.189mL,0.189mmol,2.5equiv)溶液和间‑氯过氧基苯甲酸的二氯甲烷(0.5M,0.228mL,0.114mmol,1.5equiv)溶液。将所得浑浊混合物在‑78℃下搅拌10分钟,随后用0℃浴液替代‑78℃浴液。升温时,所述混合物变均匀。在0℃下将所述溶液搅拌30分钟,随后,其在磷酸钾缓冲水溶液(pH7.0,0.2M,10mL)与二氯甲烷(10mL)之间分配。分离有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得亮黄色油状物。使所述油状物吸收于甲苯(1mL)中并通过在40℃,高真空下进行共沸蒸馏来干燥。将所得黄色油状物溶于氯仿(2mL)中并使反应容器暴露于大气氧中。使所述混合物静置直至氧化反应完成,如借助1H NMR光谱所证实。过滤所述混合物并浓缩滤液,获得棕色油状过氧化物MGC18。所述产物立即还原成四环素。
    所述过氧化物MGC18还可通过下列程序制备,如由Wasserman(J.Am.Chem.Soc.1986,108,4237‑4238.)所报道:
    在‑78℃下,向硫化物MGC17(7.00mg,0.00979mmol,1.0equiv)的二氯甲烷(0.5mL)溶液中依次加入三氟乙酸的二氯甲烷(0.0245M,24.5μL,0.0245mmol,2.5equiv)溶液和间‑氯过氧基苯甲酸的二氯甲烷(0.5M,29.4μL,0.0147mmol,1.5equiv)溶液。将所得浑浊混合物在‑78℃下搅拌10分钟,随后用0℃浴液替代‑78℃浴液。升温时,所述混合物变均匀。在0℃下将所述溶液搅拌30分钟,随后,其在磷酸钾缓冲水溶液(pH7.0,0.2M,8mL)与二氯甲烷(8mL)之间分配。分离有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得亮黄色油状物。使所述油状物吸收于甲苯(1mL)中并通过在40℃,高真空下实施共沸蒸馏来干燥。将所得黄色油状物溶于氯仿(2mL)中并加入一份内消旋‑四苯基卟吩(0.6mg,0.979μmol,0.10equiv)。在UV辐射(200W Hg灯)下,氧气经过所得混合物沸腾10分钟。将所述混合物浓缩至0.5mL并用甲醇(5mL)稀释之,导致内消旋‑四苯基卟吩沉淀。过滤所得混合物并浓缩滤液,获得浅黄色固体状过氧化物MGC18。
    Rf0.10(2∶3 乙酸乙酯‑己烷);1H NMR(500MHz,C6D6,所报告酮基互变异构体)δ8.95(br s,1H,OOH),7.48(d,2H,J=7.0Hz,o‑ArH),7.28(d,2H,J=7.0Hz,ArH),6.96‑7.16(m,8H,ArH),6.53(d,1H,J=8.0Hz,ArH),5.14(d,1H,J=12.0Hz,OCHH′Ph),5.03(d,1H,J=12.0Hz,OCHH′Ph),4.83(d,1H,J=12.5Hz,OCHH′Ph′),4.74(d,1H,J=12.5Hz,OCHH′Ph′),4.60(br s,1H,OH),3.54(d,1H,J=11.0Hz,CHCHN(CH3)2),3.12(dd,1H,J=18.0,0.5Hz,CHCHH′CH),2.82(dd,1H,J=18.0,4.5Hz,CHCHH′CH),2.44(ddd,1H,J=11.0,4.5,0.5Hz,CHCHN(CH3)2),1.86(s,6H,N(CH3)2),1.01(s,3H,CH3);13C NMR(100MHz,C6D6,所报告烯醇和酮基互变异构体)δ194.4,188.6,187.8,187.2,182.3,178.4,171.9,167.7,165.6,159.5,158.4,147.9,145.9,137.0,136.8,136.6,135.4,135.3,134.5,134.3,133.5,133.4,133.1,132.9,131.0,130.8,130.2,129.9,129.7,129.2,128.9,126.8,126.7,124.5,124.3,122.2,118.6,116.9,116.5,113.4,113.3,113.2,108.2,107.9,103.3,83.7,81.7,80.1,79.1,72.4,70.7,70.4,63.9,59.1,46.1,44.9,41.4,40.8,31.5,30.0,26.8,22.9,21.4;FTIR(纯净膜),cm‑13035(w),2946(w),1907(w),1731(s,C=O),1410(s),1379(m),1235(m),1170(m),1136(m);HRMS(ES)m/z计算得(C36H32O9N2+H)+637.2186,实验值637.2190.
    (‑)‑四环素(MGC29):

    在23℃下,将钯黑(14.1mg,0.133mmol,1.75equiv)一次性加入过氧化物MGC18(48.2mg,0.0758mmol,1.0equiv)的二氧杂环己烷(3mL)溶液中。通过简单地抽空烧瓶随后用纯净氢(1atm)充填之来导入氢气氛。Pd催化剂开始作为微细分散体存在,但在5min内会聚合成块状。在23℃下将所述黄色异质混合物搅拌2h,随后经由棉花塞过滤。浓缩滤液,获得黄色固体。借助制备型HPLC使用Phenomenex Polymerx DVB管柱(10μM,250×10mm,流速:4.0毫升/分钟,溶剂A:甲醇‑0.005N aqHCl,溶剂B:乙腈)纯化产物,使用含有草酸(10mg)的溶剂A注射体积(500μL)且使用5%B进行恒溶剂洗脱2min,随后使用5‑50%B进行梯度洗脱20min。收集在11‑16min的峰值洗脱物并浓缩,获得黄色粉末状盐酸(‑)‑四环素(16.0mg,44%来自三酮MGC17),其在各个方面与天然盐酸(‑)‑四环素相同。
    1H NMR(600MHz,CD3OD,盐酸)δ7.50(dd,1H,J=8.4,7.8Hz,ArH),7.13(d,1H,J=7.8Hz,ArH),6.91(d,1H,J=8.4Hz,ArH),4.03(s,1H,CHN(CH3)2),2.96‑3.04(m,7H,HOC(CH3)CH,N(CH3)2),2.91(br dd,1H,J=12.6,2.4Hz,(CH3)2NCHCH),2.18(ddd,1H,J=12.6,6.0,2.4Hz,CHCHH℃H),1.90(ddd,1H,J=12.6,12.6,12.0Hz,CHCHH′CH),1.60(s,3H,CH3);13C NMR(100MHz,CD3OD)δ195.4,174.5,163.8,148.3,137.8,118.7,116.4,116.0,107.5,96.5,74.7,71.2,70.1,43.5,43.0,35.9,27.8,22.9;UV最大值(0.1N HCl),nm217,269,356;[α]D=‑251°(c=0.12存于0.1M HCl中);文献(The Merck Index:An Encyclopedia of Chemicals,Drugs,and Biologicals,第12版Budavari,S.;O’Neal,M.J.;Smith,A.;Heckelman,P.E.;Kinneary,J.F.,Eds.;Merck & Co.:Whitehouse Station,NJ,1996;条目9337.)UV最大值(0.1N HCl),nm220,268,355;[α1D=‑257.9°(c=0.5存于0.1M HCl中);HRMS(ES)m/z计算得(C22H24O8N2+H)+445.1611,实验值445.1608.
    实例2‑(‑)强力霉素的合成
    烯丙基溴MGC19:

    在0℃下,向烯丙基醇MGC6(162mg,0.324mmol,1.0equiv)的乙腈(2.5mL)溶液中依次加入三苯基膦(297mg,1.13mmol,3.5equiv)和四溴化碳(376mg,1.13mmol,3.5equiv)。将所得棕色悬浮液在0℃下搅拌10min,随后移除冷却浴。使所述混合物升温至23℃并在所述温度下将其持续搅拌10min。所述混合物在乙酸乙酯(50mL)与饱和碳酸氢钠水溶液(40mL)之间分配。分离有机相并使用另一份50‑mL乙酸乙酯进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得棕色油状固体。通过快速管柱层析(1∶9至2∶8乙酸乙酯‑己烷)纯化产物,生成白色固体状烯丙基溴MGC19(164mg,90%)。
    Rf0.30(3∶7 乙酸乙酯‑己烷);1H NMR(500MHz,C6D6)δ7.30(d,2H,J=7.0,o‑ArH),7.06(dd,2H,J=7.0,6.0Hz,m‑ArH),7.01(d,1H,J=6.0,p‑ArH),5.75(dd,1H,J=10.5,2.5Hz,=CHCHBr),5.71(m,1H,CH=CHCHBr),5.17(d,1H,J=11.5Hz,OCHH′Ph),5.07(d,1H,J=11.5Hz,OCHH′Ph),4.69(m,1H,=CHCHBr),4.43(br s,1H,OH),4.24(d,1H,J=7.0Hz,CHOTBS),3.57(d,1H,J=10.0Hz,CHN(CH3)2),2.69(ddd,1H,J=10.0,4.5,0.5Hz,CHCHN(CH3)2),1.92(s,6H,N(CH3)2),0.99(s,9H,SiC(CH3)3),0.22(s,3H,SiCH3),‑0.02(s,3H,SiCH3);13CNMR(125MHz,C6D6)δ189.3,181.3,167.8,135.2,129.5,128.6,128.6,128.5,128.2,127.6,107.3,80.8,76.9,72.4,64.8,54.6,46.3,41.5,26.2,18.4,‑2.9,‑4.2;FTIR(纯净),cm‑13499(m,OH),2930(m),2856(m),2799(w),1704(s,C=O),1605(s),1514(s),1471(s),1362(s),1255(s),1144(s),1053(s);HRMS(ES)m/z计算得(C26H35BrN2O5Si+H)+563.1577,实验值563.1575.
    烯丙基硫MGC20:

    在0℃下,向烯丙基溴MGC19(712mg,1.26mmol,1.0equiv)的乙腈(17mL)溶液中依次加入三乙胺(0.229mL,1.64mmol,1.3equiv)和苯硫醇(0.150mL,1.45mmol,1.15equiv)。将所述混合物在0℃下搅拌20min,随后移除冷却浴。使所述反应混合物升温至23℃并在所述温度下将其持续搅拌10min。所述反应混合物在乙酸乙酯(100mL)与磷酸钾缓冲水溶液(pH7.0,0.2M,100mL)之间分配。分离有机相并使用另一份30mL乙酸乙酯进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得澄清油状物。通过快速管柱层析(0.01∶2∶8至0.013∶7三乙胺‑乙酸乙酯‑己烷)纯化产物,获得白色泡沫固体状烯丙基硫MGC20(728mg,97%)。
    Rf0.65(3∶7 乙酸乙酯‑己烷);1H NMR(400MHz,C6D6)87.35(d,2H,J=7.2Hz,o‑ArH),7.19(m,2H,o‑ArH),6.95(m,3H,p,m‑ArH),6.89(m,2H,p,m‑ArH),6.83(d,1H,J=7.2Hz,p‑ArH),5.51(m,1H,CH=CHCHSPh),5.12(m,2H,CHOTBS,OCHH′Ph),5.05(d,1H,J=12.4Hz,OCHH′Ph),4.73(dt,1H,J=10.0,2.0Hz,CH=CHCHSPh),4.38(m,1H,CH=CHCHSPh),3.47(m,1H,CHCHN(CH3)2),2.92(d,1H,J=2.0Hz,CHCHN(CH3)2),1.75(s,6H,N(CH3)2),1.14(s,9H,SiC(CH3)3),0.35(s,3H,SiCH3),0.31(s,3H,SiCH3);13C NMR(125MHz,C6D6)δ189.9,177.0,168.9,136.7,135.2,131.3,130.3,129.2,128.5,128.4,128.3,126.2,124.0,106.2,79.2,72.4,71.7,63.2,49.8,43.4,39.0,26.6,19.1,‑2.9,‑4.5;FTIR(纯净),cm‑13310(m,OH),2927(m),2854(m),2792(w),1697(s,C=O),1621(s),1505(s),1470(s),1365(s),1254(s),1145(s),1089(s);HRMS(ES)m/z计算得(C32H40N2O5SSi+H)+593.2505,实验值593.2509.
    具有较低Rf的硫化物MGC21:

    在23℃下,向烯丙基硫MGC20(156mg,0.263mmol,1.0equiv)的二氯甲烷(2mL)溶液中加入(‑)‑[(8,8)‑(二氯樟脑基)磺酰基]氧氮丙啶(118mg,0.395mmol,1.5equiv)。将所述混合物在23℃下搅拌20h,随后浓缩,获得浅棕色固体。通过快速管柱层析(0.001∶2∶8至0.001∶3∶7三乙胺‑乙酸乙酯‑己烷)纯化产物,获得具有较低Rf的白色固体状烯丙基硫MGC21(165mg,99%)。
    Rf0.18(3∶7 乙酸乙酯‑己烷);1H NMR(400MHz,C6D6)δ7.43(dd,2H,J=8.0,1.5Hz,o‑ArH),7.16(m,2H,o‑ArH),6.92(m,6H,p,m‑ArH),5.43(m,1H,CH=CHCHS(O)Ph),5.33(d,1H,J=5.0Hz,CHOTBS),5.09(d,1H,J=11.5Hz,OCHH′Ph),5.02(m,2H,CH=CHCHS(O)Ph,OCHH′Ph),3.73(m,1H,CH=CHCHS(O)Ph),3.41(m,1H,CHCHN(CH3)2),2.85(d,1H,J=2.5Hz,CHCHN(CH3)2),1.70(s,6H,N(CH3)2),1.12(s,9H,SiC(CH3)3),0.39(s,3H,SiCH3),0.36(s,3H,SiCH3);13C NMR(125MHz,C6D6)δ189.5,176.9,168.8,145.5,135.2,130.2,129.9,129.0,128.5,128.4,128.3,127.8,124.3,122.9,106.1,79.3,72.4,70.6,67.8,63.1,43.4,38.5,26.6,19.2,‑2.6,‑4.7;FTIR(纯净),cm‑13310(m,OH),2927(m),2854(m),2792(w),1697(s,C=O),1621(s),1505(s),1470(s),1365(s),1254(s),1145(s),1089(s);HRMS(ES)m/z计算得(C32H40N2O6SSi+H)+609.2455,实验值609.2452.
    重排烯丙基醇MGC22:

    在23℃下,向具有较低Rf的烯丙基亚砜MGC21(160mg,0.263mmol,1.0equiv)的甲醇(5mL)溶液中加入亚磷酸三甲基酯(0.620mL,5.26mmol,20.0equiv)。将所述溶液置于预热至65℃的油浴中并将其在此温度下搅拌36h。浓缩所述溶液,获得浅黄色油状物。通过快速管柱层析(0.001∶1∶9至0.001∶2∶8三乙胺‑乙酸乙酯‑己烷)纯化产物,获得白色固体状烯丙基醇MGC22(100mg,76%)。
    Rf0.40(3∶7 乙酸乙酯‑己烷);1H NMR(500MHz,C6D6)δ7.30(d,2H,J=7.0Hz,o‑ArH),7.06(dd,2H,J=7.5,7.0Hz,m‑ArH),7.00(d,1H,J=7.5Hz,p‑ArH),5.85(m,1H,=CHCHOH),5.42(br d,1H,J=10.5Hz,=CHCHOTBS),5.16(d,1H,J=12.5Hz,OCHH′Ph),5.06(d,1H,J=12.5Hz,OCHH′Ph),4.44(m,1H,=CHCHOH),4.31(br s,1H,OH),4.07(br s,1H,=CHCHOTBS),3.34(br s,1H,OH),3.33(d,1H,J=11.5Hz,CHCHN(CH3)2),2.75(br d,1H,J=11.5Hz,CHCHN(CH3)2),2.03(s,6H,N(CH3)2),0.89(s,9H,SiC(CH3)3),‑0.11(s,3H,SiCH3),‑0.13(s,3H,SiCH3);13C NMR(100MHz,C6D6)δ189.7,182.2,167.7,135.2,129.2,128.8,128.3,128.2,106.5,78.6,71.9,68.1,64.1,59.6,48.8,41.2,25.5,17.8,‑5.2,‑5.6;FTIR(纯净),cm‑13515(m,OH),2917(m),2852(m),1708(s,C=O),1601(s),1511(s),1471(m),1369(m),1254(m),1100(m),1022(m);HRMS(ES)m/z计算得(C26H36N2O6Si+H)+501.2421,实验值501.2424.
    碳酸苄基酯MGC23:

    在23℃下,向烯丙基醇MGC22(142mg,0.284mmol,1.0equiv)的二氯甲烷(3mL)溶液中依次加入氯甲酸苄基酯(120μL,0.841mmol,2.95equiv)和4‑(二甲基氨基)吡啶(104mg,0.852mmol,3.0equiv)。将所述反应混合物在23℃下搅拌2h,随后其在乙酸乙酯(50mL)与饱和碳酸氢钠水溶液(50mL)之间分配。分离有机相并使用另一份30‑mL乙酸乙酯进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得澄清油状物(180mg,99%)。产物无需进一步纯化即可用于下一步骤。借助通过快速管柱层析(0.001∶2∶8至0.001∶3∶7三乙胺‑乙酸乙酯‑己烷)纯化粗制反应混合物来制备分析用样品,获得白色固体状碳酸苄基酯MGC23。
    Rf0.60(3∶7 乙酸乙酯‑己烷);1H NMR(500MHz,C6D6)δ7.26(d,2H,J=7.0Hz,o‑ArH),7.02(m,8H,ArH),5.75(br dd,1H,J=10.5,3.0Hz,=CHCHOCO2Bn),5.70(br dd,1H,J=10.5,2.5Hz,=CHCHOTBS),5.37(m,1H,=CHCHOCO2Bn),5.10(d,1H,J=12.5Hz,OCHH′Ph),5.06(d,1H,J=12.5Hz,OCHH′Ph),4.91(d,1H,J=12.0Hz,OCHH′Ph′),4.88(d,1H,J=12.0Hz,OCHH′Ph′),4.41(m,1H,=CHCHOTBS),3.38(d,1H,J=7.5Hz,CHCHN(CH3)2),3.11(m,1H,CHCHN(CH3)2),1.92(s,6H,N(CH3)2),0.92(s,9H,SiC(CH3)3),0.02(s,3H,SiCH3),‑0.02(s,3H,SiCH3);13C NMR(100MHz,C6D6)δ188.9,179.9,168.3,155.2,135.6,135.4,133.2,128.6,128.5,128.4,128.3,127.7,124.9,107.0,77.3,72.2,71.6,69.6,66.6,60.3,44.4,42.2,25.9,18.2,‑4.8,‑4.8;FTIR(纯净),cm‑13532(w,OH),2948(m),2842(m),1738(s,C=O),1708(s,C=O),1608(s),1512(s),1471(m),1383(m),1258(s),1101(m);HRMS(Es)m/z计算得(C34H42N2O8Si+H)+635.2789,实验值635.2786.
    二醇MGC24:

    在23℃下,向碳酸苄基酯MGC23(180mg,0.284mmol,1.0equiv)的四氢呋喃(3mL)溶液中依次加入乙酸(40.0μL,0.709mmol,2.5equiv)和四丁基氟化铵的四氢呋喃(1.0M,0.709mL,0.709mmol,2.5equiv)溶液。将所得黄色溶液在23℃下搅拌4h,随后其在乙酸乙酯(50mL)与磷酸钾缓冲水溶液(pH7.0,0.2M,50mL)之间分配。分离有机相并用2份20‑mL乙酸乙酯进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得棕色油状物。通过快速管柱层析(2∶8至1∶1乙酸乙酯‑己烷)纯化产物,获得白色固体状二醇MGC24(135mg,经过2个步骤后的产率为92%)。
    Rf0.15(3∶7 乙酸乙酯‑己烷);1H NMR(500MHz,C6D6)δ7.24(d,2H,J=7.0Hz,o‑ArH),7.02(m,8H,ArH),5.68(br dd,1H,J=10.5,2.5Hz,=CHCHOCO2Bn),5.63(br dd,1H,J=10.5,3.0Hz,=CHCHOH),5.26(m,1H,=CHCHOCO2Bn),5.09(d,1H,J=12.0Hz,OCHH′Ph),5.05(d,1H,J=12.0Hz,OCHH′Ph),4.89(d,1H,J=12.0Hz,OCHH′Ph′),4.86(d,1H,J=12.0Hz,OCHH′Ph′),4.16(m,1H,=CHCHOH),3.24(d,1H,J=6.5Hz,CHCHN(CH3)2),2.94(m,1H,CHCHN(CH3)2),2.25(br s,1H,OH),1.82(s,6H,N(CH3)2);13C NMR(100MHz,CDCl3)δ168.1,154.8,135.1,134.9,132.2,128.9,128.9,128.8,128.7,128.6,126.4,106.7,76.6,72.9,71.3,70.3,64.9,60.3,44.4,43.3;FTIR(纯净),cm‑13468(m,OH),3034(w),2949(m),2798(m),1738(s,C=O),1705(s,C=O),1606(s),1513(s),1475(m),1379(m),1261(s),1022(m);HRMS(ES)m/z计算得(C28H28N2O8+H)+521.1929,实验值521.1926.
    环己烯酮MGC25:

    在23℃下,向二醇MGC24(22.5mg,0.0433mmol,1.0equiv)的二甲基亚砜(0.7mL)溶液中一次性加入固体邻‑碘氧基苯甲酸(79.0mg,0.281mmol,6.5equiv)。开始所述反应混合物为异质的,但在5min内变为匀质。保护所述棕色反应混合物免受光照并在23℃下将其剧烈搅拌12h。所得橙色反应混合物在醚(20mL)与水(20mL)之间分配。分离有机相并用2份10‑mL醚进一步萃取水性相。合并有机相并用饱和碳酸氢钠水溶液(8mL,含有30mg亚硫酸氢钠)和盐水(10mL)洗涤之。使用无水硫酸钠干燥经洗涤溶液并过滤。浓缩滤液,生成白色油性固体状环己烯酮MGC25(22.2mg,99%)。
    Rf0.33(2∶3 乙酸乙酯‑己烷);1H NMR(400MHz,C6D6)δ7.22(d,2H,J=6.8Hz,o‑ArH),6.99(m,8H,ArH),6.12(ddd,1H,J=10.4,4.0,1.2Hz,CH=CHCHOCO2Bn),5.74(dd,1H,J=10.4,1.2Hz,CH=CHCHOCO2Bn),5.41(ddd,1H,J=4.0,1.2,1.2Hz,CH=CHCHOCO2Bn),5.18(br s,1H,OH),5.08(d,1H,J=12.0Hz,OCHH′Ph),5.01(d,1H,J=12.0Hz,OCHH′Ph),4.89(d,1H,J=12.4Hz,OCHH′Ph′),4.83(d,1H,J=12.4Hz,OCHH′Ph′),3.28(d,1H,J=8.4Hz,CHCHN(CH3)2),2.85(ddd,1H,J=8.4,4.0,1.2Hz,CHCHN(CH3)2),1.92(s,6H,N(CH3)2);13C NMR(100MHz,C6D6)δ192.3,186.2,180.5,167.8,154.8,141.8,135.3,135.2,129.9,128.6,128.6,128.5,128.4,127.8,107.7,78.9,72.5,69.9,59.9,48.4,41.9;FTIR(纯净),cm‑13442(m,OH),3030(w),2948(m),2793(m),1742(s,C=O),1711(s,C=O),1608(s),1510(s),1448(m),1376(m),1258(s),1056(m);HRMS(ES)m/z计算得(C28H26N2O8+H)+519.1767,实验值519.1773.
    甲硅烷基‑环己烯酮MGC26:

    在0℃下,向环己烯酮MGC25(183mg,0.353mmol,1.0equiv)的四氢呋喃(8mL)溶液中依次加入三乙胺(172μL,1.24mmol,3.5equiv)和三氟甲烷磺酸叔‑丁基二甲基甲硅烷基酯(243μL,1.06mmol,3.0equiv)。将所述反应混合物在0℃下搅拌40min,随后其在乙酸乙酯(50mL)与磷酸钾缓冲水溶液(pH7.0,0.2M,50mL)之间分配。分离有机相并使用1份25‑mL乙酸乙酯进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得黄色油性固体。通过快速管柱层析(1∶9至2∶8乙酸乙酯‑己烷)纯化产物,获得澄清油状甲硅烷基‑环己烯酮MGC26(207mg,93%)。
    Rf0.50(3∶7 乙酸乙酯‑己垸);1H NMR(400MHz,C6D6)δ7.21(dd,2H,J=7.5,1.0Hz,o‑ArH),7.15(d,2H,J=8.0Hz,o‑ArH),7.05(t,2H,J=8.0Hz,m‑ArH),6.98(m,4H,m,p‑ArH),6.30(ddd,1H,J=10.5,5.0,2.0Hz,CH=CHCHOCO2Bn),5.68(dd,1H,J=10.5,1.0Hz,CH=CHCHOCO2Bn),5.65(br d,1H,J=5.0Hz,CH=CHCHOCO2Bn),5.10(d,1H,J=12.5Hz,OCHH′Ph),5.01(d,1H,J=12.5Hz,OCHH′Ph),4.95(d,1H,J=12.5Hz,OCHH′Ph′),4.82(d,1H,J=12.5Hz,OCHH′Ph′),3.11(d,1H,J=11.0Hz,CHCHN(CH3)2),2.94(br d,1H,J=11.0Hz,CHCHN(CH3)2),1.96(s,6H,N(CH3)2),1.08(s,9H,SiC(CH3)3),0.59(s,3H,SiCH3),0.29(s,3H,SiCH3);13C NMR(100MHz,C6D6)δ193.3,186.7,180.3,167.8,154.9,140.9,135.6,135.3,129.9,128.6,128.5,128.5,128.4,128.0,127.8,108.6,82.4,72.4,69.6,69.3,59.7,50.2,41.4,26.5,19.6,‑1.9,‑3.4;FTIR(纯净),cm‑12930(m),2855(m),1745(s,C=O),1722(s,C=O),1691(m),1613(m),1513(s),1473(m),1455(m),1378(m),1264(s),1231(s),1046(m);HRMS(ES)m/z计算得(C34H40N2O8+H)+633.2632,实验值633.2620.
    Michael‑Dieckmann加成反应产物MGC27:

    在‑78℃下,向N,N,N′,N′‑四甲基亚乙基二胺(39.0μL,0.261mmol,5.5equiv)和二异丙基胺(34.0μL,0.249mmol,5.25equiv)的四氢呋喃(1.mL)溶液中加入正‑丁基锂的己烷(1.55M,155μL,0.241mmol,5.1equiv)溶液。将所得混合物在‑78℃下剧烈搅拌30min,此时借助套管逐滴加入酯CDL‑I‑280(73.0mg,0.213mmol,4.5equiv)的四氢呋喃(1mL)溶液中。将所得深红色混合物在‑78℃下剧烈搅拌75min,随后借助套管逐滴加入甲硅烷基‑环己烯酮MGC26(30.0mg,0.0474mmol,1.0equiv)的四氢呋喃(1mL)溶液。经2h,使所得浅红色混合物缓慢升温至0℃,随后其在磷酸钾缓冲水溶液(pH7.0,0.2M,10mL)与二氯甲烷(10mL)之间分配。分离有机相并用2份10‑mL二氯甲烷进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得黄色油状物。借助制备型HPLC使用Coulter Ultrasphere ODS管柱(10μM,250×10mm,流速3.5mL/min,溶剂A:甲醇,溶剂B:水)纯化产物,使用400μL(甲醇)注射体积并用10%B进行恒溶剂洗脱75min。收集36‑42min的峰值洗脱物并浓缩,获得浅黄色固体状Michael‑Dieckmann加成反应产物MGC27(33.0mg,80%)。
    Rf0.35(1∶4 乙酸乙酯‑己烷);1H NMR(500MHz,C6D6)δ16.55(br s,1H,enol),7.26(d,2H,J=7.0Hz,o‑ArH),7.14(d,2H,J=7.5Hz,ArH),6.85‑7.05(m,6H,ArH),6.66‑6.74(m,2H,ArH),6.51(dd,1H,J=9.0,1.5Hz,ArH),5.73(br d,1H,J=4.0Hz,BnOCO2CH),5.17(d,1H,J=12.5Hz,OCHH′Ph),5.03(d,1H,J=12.5Hz,OCHH′Ph),4.99(d,1H,J=12.5Hz,OCHH′Ph′),4.93(d,1H,J=12.5Hz,OCHH′Ph′),3.58(d,1H,J=11.5Hz,CHCHN(CH3)2),3.35(dd,1H,J=12.5,4.0Hz,CH3CHCH),2.99(d,1H,J=11.5Hz,CHCHN(CH3)2),2.56(dq,1H,J=12.5,7.0Hz,CH3CH),2.18(s,6H,N(CH3)2),1.33(s,9H,C(CH3)3),1.16(d,3H,J=7.0Hz,CH3CH),1.11(s,9H,C(CH3)3),0.61(s,3H,CH3),0.36(s,3H,CH3);13C NMR(100MHz,CDCl3)δ189.7,186.3,180.9,178.4,167.9,154.7,152.1,150.8,145.9,136.1,135.5,133.9,128.7,128.6,128.5,127.3,123.8,122.7,122.6,108.9,105.5,83.0,82.9,74.8,72.4,69.2,60.8,52.7,43.2,38.4,27.5,26.6,19.5,16.3,‑1.8,‑2.7;FTIR(纯净膜),cm‑12974(w),2933(w),2851(w),1760(s,C=O),1748(s,C=O),1723(s,C=O),1606(m),1513(m),1471(m),1370(m).1260(s),1232(s),1148(s);HRMS(ES)m/z计算得(C48H56O12N2Si)+881.3681,实验值881.3684.
    Michael‑Dieckmann加成反应产物MGC28的初始去保护:

    在23℃下,向含有Michael‑Dieckmann加成反应产物MGC27(33.0mg,0.0375mmol,1.0equiv)的乙腈(7.0mL)溶液的聚丙二醇反应容器中加入氢氟酸(1.2mL,48%水溶液)。将所得混合物在23℃下剧烈搅拌60h,随后将其注入含有K2HPO4(7.0g)的水(50mL)中。使用乙酸乙酯(3×20mL)萃取所得混合物。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得黄色油状五环酚MGC28(25.0mg,99%)。产物无需进一步纯化即可用于下一步骤。
    Rf0.05(1∶4 乙酸乙酯‑己烷);1H NMR(600MHz,C6D6,crude)δ14.86(br s,1H,enol),11.95(s,1H,phenol),7.23(d,2H,J=7.8Hz,o‑ArH),7.14(d,2H,J=7.2Hz,o‑ArH),6.94‑7.02(m,6H,ArH),6.86(t,1H,J=8.4Hz,ArH),6.76(d,1H,J=8.4Hz,ArH),6.28(d,1H,J=7.8Hz,ArH),5.46(dd,1H,J=3.6,3.0Hz,BnOCO2CH),5.12(d,1H,J=12.0Hz,OCHH′Ph),5.04(d,1H,J=12.0Hz,OCHH′Ph),4.92(s,2H,OCH2Ph),3.41(d,1H,J=9.6Hz,CHCHN(CH3)2),2.82(dd,1H,J=9.6,3.0Hz,CHCHN(CH3)2),2.65(dd,1H,J=13.2,3.6Hz,CH3CHCH),2.78(dq,1H,J=13.2,7.2Hz,CH3CH),2.05(s,6H,N(CH3)2),1.04(d,3H,J=7.2Hz,CH3CH);13C NMR(100MHz,C6D6,crude)δ193.4,186.2,181.3,172.3,167.9,163.3,154.6,145.8,136.6,135.8,128.6,128.4,127.2,116.8,116.0,115.6,107.6,104.7,76.8,73.9,72.5,69.5,60.3,48.7,43.0,41.8,37.5,15.3;FTIR(纯净膜),cm‑13424(m,OH),3059,3030,2925,2857,1744(s,C=O),1713(s,C=O),1614(s),1582(s),1455(s),1252(s);HRMS(ES)m/z计算得(C37H34O10N2+H)+667.2292,实验值667.2300.
    (‑)‑强力霉素(MGC30):

    在23℃下,将钯黑(7.00mg,0.0657mmol,1.75equiv)一次性加入五环酚MGC28(25.0mg,0.0375mmol,1.0equiv)的四氢呋喃‑甲醇(1∶1,2.0mL)溶液中。通过简单地抽空烧瓶随后用纯净氢气(1atm)充填来导入氢气氛。Pd催化剂开始作为微细分散体存在,但在5分钟内会聚合成块状。将所述黄色异质混合物在23℃下搅拌2小时,随后经由棉花塞过滤。浓缩滤液,获得黄色油状物(>95%强力霉素,根据1H NMR分析)。借助制备型HPLC使用Phenomenex Polymerx DVB管柱(10μM,250×10mm,流速4.0mL/min,溶剂A:甲醇‑0.005N aq.HCl(1∶4),溶剂B:乙腈)纯化产物,使用含有草酸(10mg)的溶剂A注射体积(400μL)且使用5%B进行恒溶剂洗脱2min,随后使用5‑50%B进行梯度洗脱20min。收集12‑17min的峰值洗脱物并浓缩,获得黄色粉末状盐酸(‑)‑强力霉素(16.2mg,90%),其在各方面与天然盐酸(‑)‑强力霉素相同。
    1H NMR(600MHz,CD3OD,盐酸)δ7.47(t,1H,J=8.4Hz,ArH),6.93(d,1H,J=8.4Hz,ArH),6.83(d,1H,J=8.4Hz,ArH),4.40(s,1H,(CH3)2NCH),3.53(dd,1H,J=12.0,8.4Hz,CHOH),2.95(s,3H,N(CH3)CH3′),2.88(s,3H,N(CH3)CH3′),2.80(d,1H,J=12.0Hz,CHCHN(CH3)2),2.74(dq,1H,J=12.6,6.6Hz,CH3CH),2.58(dd,1H,J=12.6,8.4Hz,CH3CHCH),1.55(d,3H,J=6.6Hz,CH3CHCH);13C NMR(100MHz,CD3OD)δ195.3,188.2,173.8,172.1,163.2,149.0,137.7,117.1,116.9,116.6,108.4,96.0,74.5,69.8,66.9,47.5,43.4,43.0,41.9,40.0,16.3;UV最大值(0.01M甲醇HCl),nm218,267,350;[α]D=‑109°(c=0.16存于0.01M甲醇HCl中);文献);lit.(The Merck Index:An Encyclopedia of Chemicals,Drugs,and Biologicals,第12版Budavari,S.;O’Neal,M.J.;Smith,A.;Heckelman,P.E.;Kinneary,J.F.,Eds.;Merck & Co.:Whitehouse Station,NJ,1996;条目3496.)UV最大值(0.01M甲醇HCl),nm267,351;[α]D=‑110°(c=1存于0.01M甲醇HCl中);HRMS(ES)m/z计算得(C22H24O8N2+H)+445.1611,实验值445.1603.
    实例3‑6‑强力霉素的合成
    酯CDL‑I‑280:

    在‑78℃下,向N,N,N′,N′‑四甲基亚乙基二胺(4.9mL,33mmol,2.5equiv)的四氢呋喃(25mL)溶液中加入仲‑丁基锂的环己烷(1.40M,24.0mL,33.6mmol,2.6equiv)溶液。在液氮‑乙醇浴液中将所得黄色溶液冷却至‑90℃(内部温度)。借助套管经30min将邻‑茴香酸(2.00g,13.1mmol,1.0equiv)的四氢呋喃(10mL)溶液加入所述黄色溶液中。将所得橙色悬浮液在‑90℃下再搅拌30min,随后使其经15min升温至‑78℃,此时加入碘乙烷(4.2mL,52mmol,4.0equiv)。使所述混合物经15min升温至23℃,随后其在水(50mL)与醚(50mL)之间分配。分离水性层并用盐酸水溶液(1.0M,100mL)稀释之。使用乙酸乙酯(4×80mL)萃取所得混合物。合并有机层且随后用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得棕色油状物(1.8g)。1H NMR(500MHz,CDCl3)分析粗制产物显示甲酸CDL‑I‑279(δ3.89,OCH3)与未反应茴香酸(δ4.07,OCH3)的比例为8∶2。在23℃下,向残留物的二氯甲烷(20mL)溶液中依次加入草酰氯(1.0mL,11mmol,0.8equiv)和N,N‑二甲基甲酰胺(100μL)。在添加N,N‑二甲基甲酰胺时观测到剧烈释放气体。将所述反应混合物在23℃下搅拌2h,此时在23℃下依次加入苯酚(1.4g,15mmol,1.1equiv)、吡啶(2.4mL,30mmol,2.3equiv)和4‑(二甲基氨基)吡啶(10mg,0.081mmol,0.006equiv)。随后将所得棕色反应混合物在23℃下搅拌2h,加入盐酸水溶液(1M,50mL)并用乙酸乙酯(2×50mL)萃取所得混合物。合并有机层,随后依次用氢氧化钠水溶液(0.1M,50mL)、盐水(50mL)洗涤,然后用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得澄清油状物。通过快速管柱层析(5∶95乙酸乙酯‑己烷)纯化产物,获得无色油状CDL‑I‑280(1.7g,50%)。
    Rf0.28(5∶95 乙酸乙酯‑己垸);1H NMR(500MHz,CDCl3)δ7.56(t,2H,J=7.8Hz,ArH),7.37(t,1H,J=7.8Hz,ArH),7.31‑7.26(m,3H,ArH),6.93(d,1H,J=7.8Hz,ArH),6.85(d,1H,J=8.3Hz,ArH),3.91(s,3H,OCH3),2.79(q,2H,J=7.8Hz,CH2CH3),1.33(t,3H,J=7.8Hz,CH2CH3);13C NMR(125MHz,CDCl3)δ166.9,156.5,150.8,142.8,130.9,129.5,125.9,122.5,121.6,120.9,108.5,55.9,26.6,15.6;FTIR(纯净膜),cm‑12970(m),1740(s,C=O),1583(s),1488(s),1471(s),1438(m),1298(w),1270(s),1236(s),1186(s),1158(m),1091(m),1046(s),1001(w);HRMS(ES)m/z计算得(C16H16O3+H)+257.1178,实验值257.1183.
    苯酚CDL‑I‑298:

    在0℃下,向酯CDL‑I‑280(662mg,2.58mmol,1.0equiv)的二氯甲烷(10mL)溶液中加入三溴化硼的二氯甲烷(1.0M,5.2mL,5.2mmol,2.0equiv)溶液。将所得黄色溶液在0℃下搅拌70min,此时加入饱和碳酸氢钠水溶液(50mL)。将所得两相混合物在0℃下搅拌20min,加入二氯甲烷(50mL),分离各层并用二氯甲烷(50mL)进一步萃取水性相。合并有机层且随后用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得无色油状苯酚CDL‑I‑298(605mg,97%)。
    Rf0.47(5∶95 乙酸乙酯‑己烷);1H NMR(500MHz,CDCl3)δ10.94(s,1H,OH),7.49(t,2H,J=7.8Hz,ArH),7.41(t,1H,J=7.8Hz,ArH),7.35(t,1H,J=7.3Hz,ArH),7.24(d,2H,J=7.8Hz,ArH),6.93(d,1H,J=8.3Hz,ArH),6.85(d,1H,J=8.3Hz,ArH),3.13(q,2H,J=7.8Hz,CH2CH3),1.34(t,3H,J=7.8Hz,CH2CH3);13C NMR(125MHz,CDCl3)δ170.3,163.2,149.8,147.8,135.1,129.7,126.4,122.0,121.6,115.9,111.1,29.8,16.4;FTIR(纯净膜),cm‑12973(w),1670(s,C=O),1609(m),1588(m),1490(w),1444(m),1311(m),1295(m),1234(m),1187(s),1162(s),1105(m);HRMS(Es)m/z计算得(C15H14O3+H)+243.1021,实验值243.1014.
    酯CDL‑I‑299:

    在23℃下,向苯酚CDL‑I‑298(605mg,2.50mmol,0.1equiv)的二氯甲烷(10mL)溶液中依次加入N,N‑二异丙基乙基胺(520μL,2.99mmol,1.2equiv)、二碳酸二‑叔‑丁基酯(645mg,2.96mmol,1.2equiv)和4‑(二甲基氨基)吡啶(31mg,0.25mmol,1.5equiv)。将所述反应混合物在23℃下搅拌1h,此时加入饱和氯化铵水溶液(50mL)。加入二氯甲烷(50mL),分离各层并用二氯甲烷(50mL)萃取水性相。合并有机层且随后用硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得棕色油状物。通过快速管柱层析(1∶9醚‑己烷)纯化产物,获得无色油状酯CDL‑I‑299,其在‑14℃静置过夜后结晶(733mg,86%),mp58℃。
    Rf0.23(1∶9 醚‑己垸);1H NMR(500MHz,CDCl3)δ7.46‑7.42(m,3H,ArH),7.31‑7.26(m,3H,ArH),7.22(d,1H,J=7.3Hz,ArH),7.15(d,1H,J=7.3Hz,ArH),2.86(q,2H,J=7.3Hz,CH2CH3),1.46(s,9H,Boc),1.31(t,3H,J=7.3Hz,CH2CH3);13C NMR(125MHz,CDCl3)δ165.1,151.6,150.6,148.7,144.5,131.3,129.4,126.8,126.1,125.4,121.7,120.5,83.8,27.5,26.8,15.6;FTIR(纯净膜),cm‑12964(w),1754(s,C=O),1586(w),1491(w),1467(w),1457(w),1368(w),1278(s),1234(s),1190(s),1145(s),1051(m);HRMS(ES)m/z计算得(C20H22O5+NH4)+360.1811,实验值360.1808.
    Michael‑Dieckmann加成反应产物CDL‑I‑287:

    在‑78℃下,向二异丙基胺(10μL,0.071mmol,7.1equiv)和N,N,N′,N′‑四甲基亚乙基二胺(10μL,0.066mmol,6.6equiv)的四氢呋喃(300μL)溶液中加入正‑丁基锂的己烷(1.45M,47μL,0.068mmol,6.8equiv)溶液。将所得溶液在‑78℃下搅拌30min,此时加入酯CDL‑I‑299(17mg,0.050mmol,5.0equiv)的四氢呋喃(200μL)溶液,形成深红色溶液。将所述溶液在‑78℃下搅拌75min,随后在‑78℃下加入烯酮DRS6(5.0mg,0.010mmol,1.0equiv)的四氢呋喃(100μL)溶液。在所述添加后反应混合物的颜色保持深红色。使所述混合物经150min升温至0℃。在到达0℃时,加入磷酸钾缓冲水溶液(pH7.0,0.2M,15mL)。使用二氯甲烷(3×15mL)萃取所得黄色混合物。合并有机层且随后用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得黄色油状物。借助制备型HPLC使用Coulter Ultrasphere ODS管柱(5μm,250×10mm,流速3.5mL/min,溶剂A:水,溶剂B:甲醇,在350nm检测UV)纯化产物,使用500μL甲醇注射体积且使用89.5%B进行恒溶剂洗脱2min。收集31‑40min的峰值洗脱物并浓缩,获得浅黄色固体状Michael‑Dieckmann产物CDL‑I‑287(6.1mg,83%),mp114℃。
    Rf0.37(2∶8 四氢呋喃‑己烷);1H NMR(500MHz,CDCl3)δ(s,1H,16.24,enol‑OH),7.55‑7.50(m,3H,ArH),7.40‑7.35(m,4H,ArH),7.10(d,1H,J=7.8Hz,ArH),5.39‑5.34(m,2H,OCH2Ph),3.92(d,1H,J=10.7Hz,CHN(CH3)2),2.81‑2.71(m,2H,CH3CH,CH3CHCH),2.55(dd,1H,J=10.7,5.7Hz,CHCHN(CH3)2),2.48(s,6H,N(CH3)2),2.40(d,1H,J=14.7Hz,CHH′CHCHN(CH3)2),2.31(ddd,1H,J=14.7,9.3,5.7,CHH′CHCHN(CH3)2),1.56(s,3H,CH3),1.55(s,9H,Boc),0.84(s,9H,TBS),0.27(s,3H,TBS),0.13(s,3H,TBS);13C NMR(125MHz,CDCl3)δ187.4,183.1,182.8,181.6,167.6,151.7,150.2,147.4,135.0,134.0,128.5,128.5,123.4,123.0,122.4,108.3,107.4,94.8,83.9,81.5,72.5,61.5,46.4,41.9,39.5,34.9,27.7,26.0,20.7,19.0,16.0,‑2.6,‑3.7;FTIR(纯净膜),cm‑12923(m),2841(m),1759(s,C=O),1718(s,C=O),1605(s),1508(s),1467(m),1456(m),1369(m),1277(s),1262(m),1231(s),1144(s),1005(w);HRMS(ES)m/z计算得(C40H50N2O9Si+H)+731.3364,实验值731.3370.
    6‑强力霉素CDL‑I‑322

    在23℃下,向含有Michael‑Dieckmann加成反应产物CDL‑I‑287(15mg,0.021mmol,1.0equiv)的乙腈(3.5mL)溶液的聚丙二醇反应容器中加入氢氟酸(0.6mL,48%水溶液)。将所述反应混合物在23℃下搅拌55h,随后将其注入含有K2HPO4(4.0g)的水(20mL)中。使用乙酸乙酯(4×20mL)萃取所得混合物。合并有机相并随后用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得浅黄色油状物。将钯黑(7.6mg,0.071mmol,3.4equiv)一次性加入残留物的甲醇‑四氢呋喃(1∶1,2mL)溶液中。通过简单地抽空烧瓶,随后用纯净氢(1atm)充填之以引入氢气氛。将所述混合物在23℃下搅拌2h。在5min内,颜色由浅黄色变为深黄色。经由棉花塞过滤反应混合物。浓缩滤液,获得黄色油状物(10毫克)。借助制备型HPLC使用Phenomenex Polymerx DVB管柱(10μm,250×10mm,流速5mL/min,溶剂A:甲醇‑0.02N HCl(1∶4),溶剂B:乙腈,在365nm处检测UV)纯化产物,使用400μL含有草酸单水合物(10mg)的甲醇注射体积且使用18%B进行恒溶剂洗脱15min,随后用18‑60%B进行线性梯度洗脱15min。收集17.5‑22.5min的峰值洗脱物并浓缩以生成黄色粉末状盐酸6‑脱氧四环素(CDL‑I‑322‑HC1)(8.1mg,81%)。
    1H NMR(500MHz,CD3OD,盐酸)δ7.49(t,1H,J=7.8Hz,ArH),6.95(d,1H,J=7.8Hz,ArH),6.84(d,1H,J=7.8Hz,ArH),4.09(s,1H,CHN(CH3)2),3.03(br s,3H,N(CH3)),2.97(br s,3H,N(CH3)),2.90(br d,1H,J=12.7Hz,CHCHN(CH3)2),2.67(ddd,1H,J=12.7,12.7,5.2Hz,CH3CHCH),2.61‑2.56(m,1H,CH3CH),2.30(ddd,J=13.7,5.2,2.9Hz,CHH′CHCHN(CH3)2),1.54(ddd,J=13.7,12.7,12.7Hz,CHH′CHCHN(CH3)2),1.38(d,3H,J=6.8Hz,CH3CH).HRMS(ES)m/z计算得(C22H24N2O7+H)+429.1662,实验值429.1660.
    实例4‑吡啶酮山环素类似物的合成
    苯基酯CDL‑II‑464:

    在23℃下,向甲酸CDL‑II‑417(由A.N.Osman,M.M Ismail,M.A.Barakat,Revue Roumaine de Chime 1986,31,615‑624报道)(534mg,2.08mmol,1.0equiv)和三乙胺(320μL,2.28mmol,1.1equiv)的四氢呋喃(25mL)溶液中加入2,4,6‑三氯苯甲酰氯(356μL,2.28mmol,1.1equiv)。添加时形成白色沉淀。在0℃下,将所述反应混合物在23℃下搅拌30min。借助套管将苯酚(489mg,5.20mmol,2.5equiv)和4‑(二甲基氨基)吡啶(583mg,5.20mmol,2.5equiv)的四氢呋喃(10mL)溶液加入上文制得反应混合物中。使所得混合物经10min升温至23℃并在此温度下搅拌90min。随后加入磷酸钾缓冲水溶液(pH7.0,0.2M,30mL)并用二氯甲烷(3×30mL)萃取所得混合物。合并有机萃取物且随后用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得无色油状物。通过快速管柱层析(6∶94乙酸乙酯‑己烷)纯化产物,获得白色固体状苯基酯CDL‑II‑464(590mg,85%),mp65℃。
    Rf0.33(1∶9 乙酸乙酯‑己烷);1H NMR(500MHz,CDCl3)δ7.49(d,2H,J=7.3 Hz,ArH),7.40‑7.24(m,6H,ArH),7.14(d,2H,J=7.3Hz,ArH),6.69(s,1H,pyr‑H),5.49(s,2H,CH2Ph),2.47(s,3H,CH3),2.43(s,3H,CH3);13C NMR(125MHz,CDCl3)δ165.9,160.1,157.8,150.7,148.5,137.3,129.4,128.3,127.7,127.6,125.9,121.7,118.1,113.4,67.8,24.1,19.2;FTIR(纯净膜),cm‑11738(s,C=O),1600(s),1569(s),1492(m),1441(m),1400(m),1333(s),1272(s),1185(s),1159(m),1097(m),1051(s);HRMS(ES)m/z计算得(C21H19NO3+H)+334.1443,实验值334.1442.
    Michael‑Dieckmahn加成反应产物CDL‑II‑466:

    在‑78℃下,向二异丙基胺(20μL,0.14mmol,4.5equiv)的四氢呋喃(2.5mL)溶液中加入正‑丁基锂的己烷(1.67M,80μL,0.13mmol,4.2equiv)溶液。使所得溶液经15min升温至0℃。在0℃下,向上文制得混合物中加入N,N′‑二甲基亚丙基脲(17μL,0.14mmol,4.5equiv),此时将所述混合物冷却至‑78℃。随后在‑78℃下,加入酯CDL‑II‑464(31mg,0.093mmol,3.0equiv)的四氢呋喃(250μL)溶液。将所得黄色溶液在‑78℃下搅拌5min,然后在‑78℃下加入烯酮DRS6(15mg,0.031mmol,1.0equiv)的四氢呋喃(250μL)溶液。使所得深红色混合物经4h升温至0℃。在0℃下,向所述深红色混合物中加入乙酸(40μL),继而加入磷酸钾缓冲水溶液(pH7.0,3.2M,15mL)。使用二氯乙烷(3×15mL)萃取所得黄色混合物。合并有机萃取物且随后用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得黄色油状物。借助制备型HPLC使用Coulter Ultrasphere DDS管柱(5μm,250×10mm,流速3.5mL/min,溶剂A:水,溶剂B:甲醇,在350nm检测UV)纯化产物,使用500μL DMSO注射体积且用92‑100%B进行梯度洗脱30min。收集21‑29min的峰值洗脱物并浓缩以生成浅黄色固体状CDL‑II‑466(15.0mg,57%)。
    Rf0.55(3∶7 乙酸乙酯‑己垸);1H NMR(600MHz,CD2Cl2)δ6.05(s,1H,enol‑OH),7.52‑7.26(m,10H,ArH),6.66(s I,pyr‑H),5.57(d,1H,J=12.7Hz,OCHH′Ph),5.43(d,J=12.7Hz,1H,OCHH′Ph),5.33‑5.28(m,2H,OCH2ph),3.99(d,2H,J=10.5Hz,CHN(CH3)2),3.04‑3.00(m,1H,CHCH2CHCHN(CH3)2),2.84(dd,1H,J=16.1,4.9Hz,CHH′CHCH2CHCHN(CH3)2),2.74(dd,1H,J=16.1,16.1Hz,CHH′CHCH2CHCHN(CH3)2),2.53(dd,1H,J=10.5,3.9Hz,CHCHN(CH3)2),2.51‑2.43(m,10H,N(CH3)2,Ar‑CH3,CHH′CHCHN(CH3)2),2.07(d,1H,J=14.2Hz,CHH′CHCHN(CH3)2),0.82(s,9H,TBS),0.22(s,3H,TBS),0.10(s,3H,TBS);13C NMR(100MHz,CD2Cl2)δ187.9,185.2,182.5,178.8,167.9,161.9,161.8,154.8,137.9,135.6,129.1,129.0,129.0,128.7,127.9,127.9,116.4,111.6,108.6,107.5,82.0,73.0,68.1,61.7,46.9,42.0,39.2,28.6,26.1,24.6,23.0,19.3,‑2.4,‑3.5;FTIR(纯净膜),cm‑12939(m),2857(w),1720(s,C=O),1593(s),1510(s),1469(m),1449(m),1326(s),1254(m),1187(w),1157(m),1090(m),1064(m),1007(m);HRMS(ES)m/z计算得(C41H47N3O7Si+H)+722.3262,实验值722.3261.
    吡啶酮山环素类似物CDL‑II‑460:

    在23℃下,向Michael‑Dieckmann加成反应产物CDL‑II‑466(10mg,0.014mmol,1.0equiv)的二氧杂环己烷‑甲醇(1∶1,10mL)溶液中加入碳载氢氧化钯(20wt.%Pd,潮湿的,最大水浓度为50%,10mg,0.0094mmol,0.7equiv)。通过简单地抽空烧瓶,随后用纯净氢气(1atm)充填来导入氢气氛。将所得混合物在23℃下搅拌2h。颜色在5min后变为绿色且随后在反应时间内逐渐变黄。经由棉塞过滤所述混合物且随后浓缩成黄色油状物。在23℃下,向残留物的甲醇(10mL)溶液中加入盐酸水溶液(37%,100μL)。借助分析用HPLC使用Coulter Ultrasphere ODS管柱(5μm,250×4.6mm,流速1ml/min,溶剂A:0.1%TFA存于水中,溶剂B:0.1%TFA存于乙腈中,在395nm检测UV)监控反应,使用10‑100%B进行梯度洗脱15min。7.0min的峰值表示期望产物。在23℃下搅拌3h后,完成去保护并将所述混合物浓缩成黄色油状物。The crude mixture was purified借助制备型HPLC使用Phenomenex Polymerx DVB管柱(10μm,250×10mm,流速4ml/min,溶剂A:0.01N盐酸水溶液,溶剂B:乙腈,在365nm处检测UV)纯化粗制混合物,使用500μL含有草酸单水合物(30mg)的甲醇注射体积且用0‑20%B进行线性梯度洗脱40min。收集20‑29min的峰值洗脱物并浓缩以生成黄色粉末状CDL‑II‑460的盐酸盐(4.8mg,74%)。
    1H NMR(500MHz,CD3OD,盐酸)δ6.37(s,1H,ArH),4.06(s,1H,CHN(CH3)2),3.05‑2.95(m,8H,N(CH3)2,CHCHN(CH3)2,CHCH2CHCHN(CH3)2),2.79(dd,1H,J=16.1,3.9Hz,CHH′CHCH2CHCHN(CH3)2),2.55(dd,1H,J=16.1,16.1Hz,CHH′CHCH2CHCHN(CH3)2)),2.40(s,3H,Ar‑CH3),2.18(br.d,1H,J=12.7Hz,CHH′CHCHN(CH3)2),1.59(ddd,1H,J=12.7,12,7,12.7Hz,CHH′CHCHN(CH3)2);13C NMR(100MHz,(CD3)2SO)δ187.3,183.5,177.8,172.1,160.6,159.8,153.3,115.3,107.2,106.9,95.6,74.2,68.4,41.5,35.7,34.5,33.9,31.0,19.2;HRMS(ES)m/z计算得(C21H23N3O7+H)+430.1614,实验值430.1607.
    实例5‑吡啶山环素类似物(7‑氮杂‑10‑脱氧山环素)的合成

    将2‑甲基‑烟酸乙基酯JDB1‑67‑SM(0.589g,3.56mmol,1.0equiv)、水性氢氧化钠(1.0M,3.9mL,3.9mmol,1.1equiv)和乙醇(5mL)的溶液在回流下加热18h。使所述反应混合物冷却至23℃并浓缩,获得白色固体状甲酸盐(710mg)。在23℃下,向所述甲酸盐与二氯甲烷(20mL)的混合物中加入草酰氯(357μL,4.09mmol,1.15equiv)。添加时观测到剧烈释放气体。将所述反应混合物在23℃下搅拌30min,随后加入N,N‑二甲基甲酰胺(20μL)。在23℃下再搅拌30min后,依次加入苯酚(837mg,8.90mmol,2.5equiv)、吡啶(864μL,10.7mmol,3.0equiv)和二甲基氨基吡啶(3mg)。将所得溶液在23℃下搅拌90分钟,此时加入磷酸钾缓冲水溶液(pH7.05,0.2M,5.0mL)。所得混合物在水(30mL)与乙酸乙酯(50mL)之间分配。使用另一份50mL乙酸乙酯萃取水性相。合并有机层并用氢氧化钠水溶液(50mL,1M)、盐水(50mL)洗涤之且随后用无水硫酸钠干燥。倾析经干燥溶液并浓缩,获得无色油状物(900毫克)。通过快速管柱层析(25∶75乙酸乙酯‑己烷)纯化产物,获得无色油状酯JDB1‑67(500mg,66%)。
    Rf0.15(3∶7 乙酸乙酯‑己垸);1H NMR(300MHz,CDCl3)δ8.70(dd,1H,J=1.7,4.95Hz,pyr‑H),8.44(dd,1H,J=1.7,7.8Hz,pyr‑H),7.48‑7.43(m,2H,ArH),7.33‑7.20(m,4H,ArH,pyr‑H),2.93(s,1H,CH3);13C NMR(100MHz,CDCl3)δ164.8,160.8,152.4,150.5,138.9,129.5,126.1,124.5,121.6,121.0,25.0;FTIR(纯净膜),cm‑13406(m),1948(w),1747(s),1578(s),1487(s),1435(s),1273(s),1237(s),1191(s),1046(s),915(m),822(m),749(s),689(s);HRMS(ES)m/z计算得(C13H11NO2+H)+214.0868,实验值214.0866.

    在‑78℃下,向二异丙基胺(26.5μL,0.202mmol,8.05equiv)的四氢呋喃(0.750mL)溶液中加入正‑丁基锂的己烷(1.47M,136μL,0.200mmol,8.03equiv)溶液。将所述反应混合物简单地转移至冰浴(10min),同时搅拌,随后冷却至‑78℃。在‑78℃下,向上文制得混合物中加入六甲基磷酰胺(49.0μL,0.399mmol,16.0equiv)。将所得混合物搅拌5分钟,此时形成一无色溶液。在‑95℃下,借助套管将所得溶液逐滴加入酯JDB1‑67(36.0mg,0.169mmol,6.79equiv)和烯酮DRS6(12.2mg,0.0249mmol,1.00equiv)的四氢呋喃(1mL)溶液中。使浅红色混合物经50min升温至‑50℃且其随后在磷酸钾缓冲水溶液(pH7.0,0.2M,5.0mL)与二氯甲烷(25mL)之间分配。分离有机相,并再用二氯甲烷(3×50mL)萃取水相。合并有机相并用无水硫酸钠干燥。倾析经干燥溶液并浓缩,获得黄色固体。借助制备型HPLC使用Coulter Ultrasphere ODS管柱(10μm,250×10mm,3.5mL/min,溶剂A:水,溶剂B:甲醇,在350nm检测UV)纯化产物,使用500μL甲醇注射体积并用85‑100%B进行线性梯度洗脱30min。收集在21‑27min时出现峰值的洗脱物并浓缩以生成白色固体状烯醇JDB1‑87(11.0mg,72%)。
    Rf0.07(3∶7 乙酸乙酯‑己烷);1H NMR(500MHz,CD2Cl2)δ15.21(s,1H,enol),8.63(d,1H,J=4.5Hz,pyr‑H),8.19(d,1H,J=7.5Hz,pyr‑H),7.54‑7.43(m,5H,ArH),7.34(d,1H,J=4.5,7.5Hz,pyr‑H),5.36(d,1H,J=12.0Hz,OCHH’Ph),5.33(d,1H,J=12.0Hz,OCHH’Ph),4.03(d,1H,J=10.7Hz,CHN(CH3)2),3.36‑3.31(m,1H,CHCH2CHCHN(CH3)2),3.23(dd,1H,J=16.3,5.6Hz,CHH’CHCH2CHCHN(CH3)2),2.99(dd,1H,J=16.3,16.3Hz,CHH’CHCH2CHCHN(CH3)2),2.63(ddd,1H,J=1.6,4.4,10.7Hz,CHCHN(CH3)2),2.54‑2.48(m,7H,N(CH3)2,CHH’CHCHN(CH3)2),2.19(dd,1H,J=1.6,14.5Hz,CHH’CHCHN(CH3)2),0.87(s,9H,TBS),0.26(s,3H,TBS),0.13(s,3H,TBS);13CNMR(100MHz,CD2Cl2)δ187.7,183.5,182.6,182.2,167.9,161.2,153.4,137.6,134.1,129.2,129.1,129.1,126.8,123.0,108.7,106.9,82.2,73.0,61.8,47.0,42.1,41.4,30.1,28.4,26.1,23.2,19.3,‑2.4,‑3.5;HRMS(ES)m/z计算得(C33H39N3O6Si+H)+602.2686,实验值602.2686.

    在23℃下,向烯醇JDB1‑87(6.5mg,0.011mmol,1.0equiv)的二氧杂环己烷‑甲醇(7∶2,9.0mL)溶液中一次性加入钯黑(3.0mg,0.028mmol,2.6equiv)。通过简单地抽空烧瓶随后用纯净氢气(1atm)填充来导入氢气氛。将所述绿色溶液搅拌7hr且随后经由棉花塞过滤。浓缩滤液,获得黄色油状甲酰胺(7.0mg)。在23℃下,向含有甲酰胺的乙腈(4.5mL)溶液的聚丙烯反应容器中加入氢氟酸水溶液(48%,0.5mL)。将所述反应混合物加热至35℃并将其在此温度下搅拌27hr。用甲氧基三甲基硅烷(3.5mL,25mmol)淬灭过量氢氟酸。浓缩所述反应混合物,获得黄色固体。借助制备型HPLC使用Phenomenex Polymerx DVB管柱(10μn,250×10mm,4mL/min,溶剂A:0.5%三氟乙酸存于水中,溶剂B:0.5%三氟乙酸存于甲醇‑乙腈(1∶1)中,在350nm检测UV)纯化产物,使用500μL甲醇注射体积并用0‑20%B进行线性梯度洗脱40min。收集在35‑45min时出现峰值的洗脱物并浓缩以生成黄色油状物。将所述油溶于1mL甲醇中,用浓盐酸(20μL)处理之且随后浓缩以生成黄色粉末状JDB1‑109盐酸盐(3.7mg,86%)。
    1H NMR(500MHz,CD3OD,盐酸)δ8.79‑8.77(m,2H,pyr‑H)7.91(dd,1H,J=6.8,6.8Hz,pyr‑H),4.12(s,1H,CHN(CH3)2),3.41‑3.22(m,2H,CHH’CHCH2CHCHN(CH3)2,CHCH2CHCHN(CH3)2),3.11‑3.00(m,8H,CHH’CHCH2CHCHN(CH3)2,CHCHN(CH3)2,N(CH3)2),2.34(ddd,1H,J=12.9,4.4,2.4Hz,CHH’CHCHN(CH3)2),1.77(ddd,1H,J=12.9,12.9,12.9Hz,CHH’CHCHN(CH3)2);HRMS(ES)m/z计算得(C20H21N3O6+H)+400.1508,实验值400.1504
    实例6‑10‑脱氧山环素的合成

    在23℃下,向甲酸JDB1‑113‑SM(500mg,3.67mmol,1.0equiv)和草酰氯(367μL,4.22mmol,1.15equiv)的二氯甲烷(20mL)溶液中加入N,N‑二甲基甲酰胺(20μL)。观测到剧烈释放气体。在23℃下搅拌80min后,依次加入苯酚(863mg,9.18mmol,2.5equiv)、吡啶(890μL,11.0mmol,3.0equiv)和二甲基氨基吡啶(3mg)。将所得溶液在23℃下搅拌90分钟,此时加入磷酸钾缓冲水溶液(pH7.05,0.2M,5.0mL)。所得混合物在水(30mL)与乙酸乙酯(50mL)之间分配。使用另一份50mL乙酸乙酯萃取水性相。合并有机层并用氢氧化钠水溶液(50mL,1M),盐水(50mL)洗涤之且随后用无水硫酸钠干燥。倾析经干燥溶液并浓缩,获得无色油状物(850毫克)。通过快速管柱层析(25∶75乙酸乙酯‑己烷)纯化产物,获得无色油状酯JDB1‑113(774mg,99%)。
    Rf0.43(3∶7 乙酸乙酯‑己烷);1HNMR(300MHz,CDCl3)δ8.18(d,1H,J=8.1Hz,ArH),7.49‑7.20(m,8H,ArH,OArH),2.69(s,3H,ArCH3);13CNMR(100MHz,CDCl3)δ165.8,150.9,141.3,132.7,132.0,131.2,129.5,128.5,125.9,125.8,121.8,22.0;FTIR(纯净膜),cm‑13046(w),2923(w),1739(s),1594(m),1487(m),1287(m),1241(s),1189(s),1159(m),1041(s),733(s);HRMS(ES)m/z计算得(C14H12O2+NH4)+230.1181,实验值230.1187.

    在‑78℃下,向二异丙基胺(7.4μL,0.057mmol,8.3equiv)的四氢呋喃(0.50mL)溶液中加入正‑丁基锂的己烷(1.47M,38.0μL,0.0565mmol,8.26equiv)溶液。将所述反应混合物简单地转移至冰浴(10min),同时搅拌,随后使其冷却至‑78℃。在‑78℃下,向上文制得混合物中加入六甲基磷酰胺(13.9μL,0.113mmol,16.5equiv)。将所得混合物搅拌5分钟,此时形成一无色溶液。在‑95℃下,借助套管将所得溶液逐滴加入酯JDB1‑113(10.0mg,0.0471mmol,6.88equiv)和烯酮DRS6(3.3mg,0.00684mmol,1.00equiv)的四氢呋喃(0.50mL)溶液中。使所述浅红色混合物经30min升温至‑70℃且随后其在磷酸钾缓冲水溶液(pH7.0,0.2M,5.0mL)与二氯甲烷(20mL)之间分配。分离有机相并用另一份20‑mL二氯甲烷萃取水性相。合并有机相并用无水硫酸钠干燥。倾析经干燥溶液并浓缩,获得黄色固体。借助制备型HPLC使用Coulter Ultrasphere ODS管柱(10μm,250×10mm,3.5mL/min,溶剂A:水,溶剂B:甲醇,在350nm检测UV)纯化产物,使用500μL甲醇注射体积并用85‑100%B进行线性梯度洗脱30min。收集在25‑30min时出现峰值的洗脱物并浓缩以生成白色固体状烯醇JDB1‑87(3.5mg,85%)。
    Rf0.46(3∶7 乙酸乙酯‑己烷);1H NMR(500MHz,CD2Cl2)δ15.53(s,1H,烯醇),7.94(d,1H,J=7.9Hz,ArH),7.54‑7.28(m,8H,ArH,OCH2ArH),5.37‑5.34(m,2H,OCH2Ph),4.05(d,1H,J=10.7Hz,CHN(CH3)2),3.24‑3.18(m,1H,CHCH2CHCHN(CH3)2),2.99(dd,1H,J=15.5,5.6Hz,CHH’CHCH2CHCHN(CH3)2),2.88(dd,1H,J=15.5,15.5Hz,CHH’CHCH2CHCHN(CH3)2),2.61(dd,1H,J=4.4,10.7Hz,CHCHN(CH3)2),2.54‑2.44(m,7H,N(CH3)2,CHH’CHCHN(CH3)2),2.14(d,1H,J=14.3Hz,CHH’CHCHN(CH3)2),0.86(s,9H,TBS),0.25(s,3H,TBS),0.12(s,3H,TBS);13CNMR(100MHz,CD2Cl2)δ187.8,183.0,182.8,182.4,167.7,141.7,135.4,133.4,130.9,129.0,128.9,128.9,128.1,127.5,126.5,108.5,106.8,82.1,72.8,61.5,58.5,46.9,41.9,38.6,29.0,25.9,23.1,19.1,‑2.6,‑3.7;HRMS(ES)m/z计算得(C34H40N3O6Si+H)+601.2734,实验值601.2730.

    在23℃下,向含有烯醇JDB1‑114(15.1mg,0.0251mmol,1.0equiv)的乙腈(10mL)溶液的聚丙烯反应容器中加入氢氟酸(1.1mL,48%水溶液)。在23℃下,将所得混合物剧烈搅拌12hr,随后将其注入含有K2HPO4(4.7g)的水(50mL)中。使用乙酸乙酯(3×25mL)萃取所得混合物。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,获得黄色固体状中间体醇(12.2mg,99%)。向残留物的甲醇‑二氧杂环己烷(1∶1,3.0mL)溶液中加入钯黑。通过简单地抽空烧瓶随后用纯净氢气(1atm)填充来导入氢气氛。将所述混合物在23℃下搅拌20min。在5min内,颜色由浅黄色标为绿色。经由棉花塞过滤反应混合物。将滤液浓缩成黄色固体(13mg)。借助制备型HPLC使用Phenomenex Polvmerx DVB管柱(10μm,250×10mm,流速5mL/min,溶剂A:0.01NHCl,溶剂B:乙腈,在350nm检测UV)纯化产物,使用450μL含有草酸单水合物(10mg)的甲醇注射体积(分两次注射)且用5.‑50%%B进行线性梯度洗脱30min。收集在16‑22min时出现峰值的洗脱物并浓缩以生成白色粉末状盐酸10‑脱氧山环素(JDB1‑130HC1)(9.1mg,91%)。
    1H NMR(500MHz,CD3OD,盐酸)δ7.96(d,1H,J=7.3Hz,ArH)7.51(dd,1H,J=7.3,7.3Hz,ArH),7.39(dd,1H,J=7.3,7.3Hz,ArH),7.30(d,1H,J=7.3Hz,ArH),4.04(s,1H,CHN(CH3)2),3.31‑2.99(m,8H,CHCH2CHCHN(CH3)2,CHCHN(CH3)2,N(CH3)2),2.87(dd,1H,J=15.4,4.3Hz,CHH’CHCH2CHCHN(CH3)2),2.61(dd,1H,J=15.4,15.4Hz,CHH’CHCH2CHCHN(CH3)2),2,21(ddd,J=12.8,5.0,2.5Hz,CHH’CHCHN(CH3)2),1.66(ddd,1H,J=12.8,12.8,12.8Hz,CHH’CHCHN(CH3)2).
    实例7‑具有不同结构的6‑脱氧四环素抗生素的对映体选择性汇集合成途径
    在四环素类中,利用半合成方法发现了临床上最重要的药剂类别6‑脱氧四环素类强力霉素(图15A中的2)和米诺环素(图15中的3)。与其6‑羟基对应体相比,6‑脱氧四环素类呈现相当大的改良化学稳定性且其在抗菌试验中显示等效或更大效能(Stephens等人,J.Am.Chem.Soc.85,2643(1963);M.Nelson,W.Hillen,R.A.Greenwald,Eds.,Tetracyclines in Biology,Chemistry and Medicine(Birkhauser Verlag,Boston,2001);各自以引用的方式并入本文中)。显然,目前半合成或经改良生物合成都不能够获得化学家在寻找主体结构(如,四环素)中所希望探索的大部分新颖结构;例如,诸如图15A中的D‑环杂环类似物4和5等结构或诸如五环素6(图15A)等新颖环系统。由于缺乏切实可行的实验室合成路径,因此在寻找新颖抗生素的过程中必须放弃这些结构及其所代表的具有复杂化学立构的区域。在本文中,我们报道了用于自苯甲酸合成对映异构体纯的6‑脱氧四环素类成员的简短有效途径。我们所阐述的途径尤其能够通过AB前体7或8(图15B)与各种不同D‑环前体的后期偶合反应合成6‑脱氧四环素类(在C5位具有或不具有羟基),并已提供了诸如强力霉素(图15A中的2)、杂环类似物4和5(图15A)、五环素6(图15A)以及其它6‑脱氧四环素类似物等化合物。
    涉及后期C‑环构造(AB+D→ABCD,图15B)的合成方法的策略优点是已知在结合四环素与细菌核糖体中起作用的大部分极性官能团位于AB片段内(D.E.Brodersen等人,Cell 103,1143(2000);M.Pioletti等人,EMBO J.20,1829(2001);各自以引用的方式并入本文中),同时不仅允许在D‑环上或其附近实施较大的结构改变,而且已将此结构改变用作克服细菌抗性的手段。先进的临床候选药替加环素(P.‑E.Sum,P.Petersen,Bioorg.Med.Chem.Lett.9,1459(1999);以引用的方式并入本文中),即具有D‑环取代基的米诺环素衍生物是一实例,且据报道其在FDA评价下是一种最具潜力的抗生素(K.Bush,M.Macielag,M.Weidner‑Wells,Curr.Opin.Microbiol.7,466(2004);以引用的方式并入本文中)。传统上,通过逐步组合ABCD环系统来实施四环素抗生素的合成方法且其自D或CD前体开始,如下列所例示:(±)‑6‑脱氧‑6‑去甲基四环素(山环素,25个步骤,产率约为0.002%)的Woodward合成(J.J.Korst等人,J.Am.Chem.Soc.90,439(1968);以引用的方式并入本文中)、(±)‑12a‑脱氧‑5a,6‑脱水四环素的Shemyakin合成(A.I.Gurevich等人,Tetrahedron Lett.8,131(1967);以引用的方式并入本文中)和(±)‑5‑氧四环素(土霉素,22个步骤,产率为0.06%)的Muxfeldt合成(H.Muxfeldt等人,J.Am.Chem.Soc.101,689(1979);以引用的方式并入本文中)。仅出现过一种公开的(‑)‑四环素自身合成,其自D‑葡萄糖胺(A‑环前体,34个步骤,产率为0.002%)开始(K.Tatsuta等人,Chem.Lett.646(2000);以引用的方式并入本文中),而迄今为止最有效的四环素环系统构造无疑是Stork实验室的(±)‑12a‑脱氧四环素的合成(16个步骤,产率为18‑25%)(G.Stork等人,J.Am.Chem.Soc.118,5304(1996);以引用的方式并入本文中)。后者研究用于鉴定可能是四环素合成中最大挑战的C12a氧化(其无法用12a‑脱氧四环素作为基质达成),这是先前人们在合成方面努力的结果所证实的结论(J.J.Korst等人,J.Am.Chem.Soc.90,439(1968);A.I.Gurevich等人,Tetrahedron Lett.8,131(1967);H.Muxfeldt等人,J.Am.Chem.Soc.101,689(1979);各自以引用的方式并入本文中)。问题是明显的,因为C12a氧化似乎可大大增强抗微生物活性(W.Rogalski,in Handbook of Experimental Pharmacology,J.J.Hlavka,J.H.Boothe,Eds.(Springer‑Verlag,New York,1985),第78卷,第5章;以引用的方式并入本文中)。我们研究过的6‑脱氧四环素合成方法的主要特征是其在所述序列的第一步引入C12a羟基(图16)并使用在此步骤中所生成的立体中心制造目标分子中的所有其它立体中心。为了保护A‑环的含乙烯基的氨基甲酸官能团,我们使用了Stork和Haggedom为此目的研发的5‑苄氧基异噁唑基团(G.Stork,A.A.Hagedom,III,J.Am.Chem.Soc.100,3609(1978);以引用的方式并入本文中),这已被证实为在目前工作中具有重大作用的革新,同时A‑环的二甲基氨基无需修饰即可并入。
    我们的6‑脱氧四环素类合成自使用富氧产碱菌的突变菌株全细胞微生物二羟基化苯甲酸开始(A.M.Reiner,G.D.Hegeman,Biochemistry 10,2530(1971);A.G.Myers等人,Org.Lett.3,2923(2001);各自以引用的方式并入本文中),以79%的产率生成二醇9(图16),其中ee>95%(90‑g/批,约13g/L,图16)。微晶产物(9,m‑CPBA,EtOAc)的羟基‑引导的环氧化反应以83%的产率提供α‑取向环氧化物10(图16);酯化此产物(三甲基甲硅烷基重氮基甲烷)继而双‑甲硅烷基化同时在三氟甲磺酸叔‑丁基二甲基甲硅烷基酯(3当量.)存在下异构化环氧化物,以70%的产率提供环氧基酯11(图16)(A.G.Myers等人,Org.Lett.3,2923(2001);以引用的方式并入本文中)。另外,在C4位用正‑丁基锂对通过简单的4步序列以摩尔规模自乙醛酸制备的3‑苄氧基‑5‑二甲基氨基甲基异噁唑(D.M.Vyas,Y.Chiang,T.W.Doyle,Tetrahedron Lett.25,487(1984);P.Pevarello,M.Varasi,Synth.Commun.22,1939(1992);各自以引用的方式并入本文中)实施去质子化,且随后将所得有机锂试剂(图16中的12)加入环氧基酯11(图16)中,形成酮13(73%)(图16)。在一值得注意的转化及合成的关键步骤中,使酮13(图16)在60℃下暴露于三氟甲磺酸锂(5mol%),继而选择性地去除重排产物(TFA)的烯丙基甲硅烷基醚,以62%的产率(借助快速管柱层析纯化后)提供三环状AB前体14(图16)。据信,13至14的转化(图16)包括首先通过N,N‑二甲基氨基实施烯丙基环氧化物的SN‑引发开环、并随后形成内鎓盐并进行[2,3]‑σ重排即一个类似于Sommelet‑Hauser重排的过程(S.H.Pine,Organic Reactions,18,403(1970);以引用的方式并入本文中)。化合物14(图16)具有需要的AB稠合顺式立体化学以及α‑取向N,N‑二甲基氨基取代基(通过X‑射线结晶分析衍生物证实)且可用作用于合成AB前体烯酮7(4个步骤,产率为49%,图16)及5‑α‑羟基‑6‑脱氧四环素的AB前体烯酮8(8个步骤,产率为56%,图16)二者的常见中间体,如下文依次详述。
    为了合成AB前体烯酮7(图15),在三苯基膦、偶氮二甲酸二乙基酯和邻‑硝基苯磺酰基肼(最后添加,一程序变量)存在下对中间体14进行还原移位(A.G.Myers,B.Zheng,Tetrahedron Lett.37,4841(1996);以引用的方式并入本文中),以74%的产率提供经移位环烯烃15。水解(HCl,甲醇)15中的甲硅烷基醚基团,氧化(IBX,DMSO)所得烯丙基醇(M.Frigerio,M.Santagostino,Tetrahedron Lett.35,8019(1994);以引用的方式并入本文中)并保护(TBSOTf,2,6‑二甲基吡啶)剩余(叔)甲醇(carbinol)(E.J.Corey等人,Tetrahedron Lett.22,3455(1981);以引用的方式并入本文中),则以66%的产率(在快速管柱层析后)提供烯酮7(图15)(3个步骤)。通过稍微更长但更有效的序列,中间体14(图15)还可转化成烯酮8(图15),即5‑α‑羟基‑6‑脱氧四环素的AB前体。此序列包括14(图15)至苯基硫醚16的转化(保留骨架)、使用手性氧化剂进行非对映体选择性磺化氧化反应(F.A.Davis等人,J.Org.Chem.57,7274(1992);以引用的方式并入本文中)(99∶1选择性)和Mislow‑Evans重排(E.N.Prilezhaeva,Russ.Chem.Rev.70,897(2001);以引用的方式并入本文中),以66%的产率生成烯丙基醇17(4个步骤)。磺化氧化反应步骤中的高非对映体选择性对于仅使一种非对映异构体(在指定条件下的主要同分异构体)进行有效热重排是十分重要的。在使用氯甲酸苄基酯保护烯丙基醇17(图15)后,采用近似等同7(图15)合成的最后3个步骤的序列来将所得碳酸苄基酯以85%的产率转化成烯酮8(图15)(产率为56%且自14经历8个步骤)。
    借助所需全部官能团及立体化学以单一作业方式组合6‑脱氧四环素。在此过程中,AB前体7或8(图15)与各种不同的碳负离子D‑环前体在Michael‑Dieckmann反应序列中偶合(T.‑L.Ho,Tandem OrganicReactions(Wiley,NewYork,1992);以引用的方式并入本文中)形成2个碳‑碳键和6‑脱氧四环素的C‑环(图15B、17和18)。所述过程最佳可借助自AB前体8开始的(‑)‑强力霉素3步合成(图17)来详细地阐明。对自茴香酸开始经5个步骤(产率为42%)合成的D‑环前体18(4.5当量,LDA,TMEDA,THF,‑78℃)去保护,继而加入烯酮8(1当量,‑78→0℃),以79%的产率(在借助rp‑HPLC纯化后)提供呈非对映异构体纯形式的四环素偶合产物19(图17)。去除保护基团(2个步骤,产率为90%)并纯化(rp‑HPLC)生成盐酸(‑)‑强力霉素(18个步骤,自苯甲酸开始产率为8.3%)。生成四环素产物19(图17)的汇集偶合反应的显著特征是其立体选择性。尽管在理论上可形式4种非对映异构体产物,但主要生成一种其构型(5aR,6R)对应于已知生物活性6‑脱氧四环素类的产物。据称6‑epi‑19(图17)的少量非对映异构体杂质也可在单独的rp‑HPLC部分中分离(产率为<7%)。Michael‑Dieckmann环化反应序列(T.‑L.Ho,Tandem Organic Reactions(Wiley,New York,1992);以引用的方式并入本文中)且尤其是邻‑甲苯甲酸酯阴离子的缩合(F.J.Leeper,J.Staunton,J.C.S.Chem.Comm.,406(1978);F.M.Hauser,R.P.Rhee,J.Org.Chem.43,178,(1978);J.H.Dodd,S.M.Weinreb,Tetrahedron Lett.20,3593(1979);各自以引用的方式并入本文中)在合成中有广泛的先例可援,但我们没有发现任意实例具有本案的高度非对映体选择性。在甲苯甲酸酯缩合中活化苯基酯也有先例,但需在一可形成完全芳香化环化产物的系统中进行(White等人,J.Org.Chem.51,1150(1986);以引用的方式并入本文中)。我们观测到:D‑环前体18(图17)的苯基酯基团的存在对于成功的进行环化反应十分重要的;衍生自简单的烷基酯的阴离子和酞‑衍生的阴离子经历Michael加成反应,但所得加合物未经环化。或许,与缩合反应相比,生成19(图17)的更有效方法是使用烯酮7(图18,条目1)平行转化18,其经rp‑HPLC纯化后以81%的产率形成呈受保护形式的(‑)‑6‑脱氧四环素,其中非对映体选择性>20∶1(非对映异构体纯;同时单独分离出在C6位出现差向异构的少量非对映异构体。测试表明,通过对各烯酮的“顶部”表面进行加成(如图所示)几乎可专一性地进行7和8的加成,生成对应天然四环素的C5a‑立体化学体,但出现此情况的原因并不明了。
    如条目2‑5(图18)实例所示,有效的立体选择性缩合反应并不限于衍生自D‑环底物18(图17)的邻‑甲苯甲酸酯阴离子;通过自具有不同结构的邻‑甲苯甲酸酯阴离子开始的相关序列可合成新颖D‑环杂环类似物4和5(图18),如五环素衍生物6(图18)。在每种情形中,需要优化生成和捕集邻‑甲苯甲酸酯阴离子的具体条件。对于条目3‑5(图18),最佳在烯酮7存在下通过选择性去质子化(条目3)或通过锂‑卤素交换(条目4和5)就地实施阴离子生成。在就地阴离子生成期间可能发生许多潜在的竞争性非生产反应序列(例如,7的烯醇化);在此方面所观测的转化效率令人感到吃惊。还需注意的是:就地生成阴离子允许使用缺少邻‑烷氧基取代基的邻‑甲苯甲酸酯(条目3和4),
    在先前研究中已知存在问题的底物(F.M.Hauser等人,Synthesis72(1980);以引用的方式并入本文中)。最后,通过就地或逐步进行卤素‑金属交换来形成邻‑甲苯甲酸酯阴离子(条目4和5)是未有先例的。
    所述合成序列的效率容许借助标准系列稀释技术制备足量的用于抗菌测试的各四环素类似物(数量为5‑20mg)。在全细胞抗微生物试验中使用5种革兰氏阳性有机体和5种革兰氏阴性有机体(图18)报告每一类似物的最小抑制浓度(MIC)。迄今为止,五环素衍生物6(图18)已显示最具潜力的抗菌性,其在所测定每株革兰氏阳性菌株(包括对四环素、甲氧苯青霉素和万古霉素具有抗性的菌株)中与四环素具有等同或更大活性。
    实验
    一般程序。除非另有说明,否则所有反应在处于正氩气压力下并配备有橡胶隔片的烘干圆底烧瓶或经改良Schlenk(Kjeldahl形)烧瓶中进行。通过注射器或不锈钢套管转移空气敏感性或潮湿敏感性液体及溶液。通过在约25Torr(室内真空)下进行旋转蒸发来浓缩有机溶剂。使用硅胶(60A,标准级别)实施快速管柱层析,如Still等人所述(Still,W.C.;Kahn,M;Mitra,A.J.Org.Chem.1978,43,2923‑2925;以引用的方式并入本文中)。使用经0.25毫米230‑400目硅胶(经荧光指示剂(254奈米)浸渍)预涂布的玻璃板实施分析薄层层析。通过使其暴露于紫外光及/或暴露于钼酸铈铵或一对‑茴香醛的酸性溶液继而在一热平板上加热之来显像薄层层析薄板。
    材料。市售试剂及溶剂可直接使用,下列除外。三乙胺、二异丙基胺、N,N,N′,N′‑四甲基亚乙基二胺、DMPU、HMPA和N,N‑二异丙基乙基胺在双氮气氛下自氢化钙蒸馏。借助Pangbom等人的方法纯化二氯甲烷、甲醇、四氢呋喃、乙腈和甲苯(Pangborn,A.B.;Giardello,M.A.;Grubbs,R.H.;Rosen,R.K.;Timmers,F.J.Organometallics 1996,75,1518‑1520;以引用的方式并入本文中)。
    装备。使用Varian Unity/Inova 600(600MHz)、Varian Unity/Inova500(500MHz/125MHz)或Varian Mercury400(400MHz/100MHz)NMR光谱计记录质子核磁共振(1H NMR)谱和碳核磁共振(13C NMR)。以ppm为单位(δ级别)记录质子化学位移并作为NMR溶剂中剩余氕的参照(CHCl3:δ7.26、C6D5H:δ7.15、D2HCOD:δ3.31、CDHCl2:δ5.32、(CD2H)CD3SO:δ2.49)。以ppm为单位(δ级别)记录碳化学位移并作为溶剂碳共振的参照(CDCl3:δ77.0、C6D6δ128.0、D3COD:δ44.9、CD2Cl2:δ53.8、(CD3)2SO:δ39.5)。数据表示如下:化学位移、多重性(s=单峰、d=双峰、t=三峰、q=四峰、m=多峰、br=宽峰)、积分、以Hz计的偶合常数和排布。使用Perkin‑Elmer1600FT‑IR光谱仪参考聚苯乙烯标样获得红外(IR)谱。数据表示如下:吸收频率(cm‑1)、吸收强度(s=强、m=中等、w=弱、br=宽)和排布(适当时)。使用配备有钠灯源的JASCODIP‑370数字旋光仪测定旋光度。使用Harvard University Mass Spectrometry Facilities获得高解析质谱。
    (‑)‑强力霉素的合成
    环化步骤:

    在‑78℃下,向N,N,N′,N‑′四甲基亚乙基二胺(39μL,0.26mmol,5.5当量)和二异丙基胺(34μL,0.25mmol,5.1当量)存于四氢呋喃(1mL)的溶液中加入正‑丁基锂的己烷(1.55M,155μL,0.240mmol,5.1当量)溶液。将所得混合物在‑78℃下剧烈搅拌30min,此时借助套管逐滴加入一碳酸2‑(苯氧基羰基)‑3‑乙基苯基酯叔‑丁基酯(73.0mg,0.213mmol,4.5当量)的四氢呋喃(1mL)溶液。将所得深红色混合物在‑78℃下剧烈搅拌75min,随后借助套管逐滴加入烯酮8(30.0mg,0.0474mmol,1当量)的四氢呋喃(1mL)溶液。使所得浅红色混合物经2h缓慢升温至0℃。随后所述冰冷产物溶液在磷酸钾缓冲水溶液(pH7.0,0.2M,10mL)与二氯甲烷(10mL)之间分配。分离有机相并用2份10mL二氯甲烷进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,提供黄色油状物。借助制备型HPLC使用Coulter Ultrasphere ODS管柱[10μm,250×10mm,在350nm检测UV,注射体积:400μL(甲醇),使用甲醇‑水(9∶1)进行恒溶剂洗脱,流速:3.5mL/min]纯化产物。收集在36‑42min期间洗脱出的部分并浓缩,提供呈非对映异构体纯形式的五环加成产物(33.0mg,79%,浅黄色固体)。
    Rf0.35(1∶4 乙酸乙酯‑己垸);1H NMR(500MHz,C6D6)δ16.55(br s,1H,烯醇),7.26(d,2H,J=7.0Hz,o‑ArH),7.14(d,2H,J=7.5Hz,ArH),6.85‑7.05(m,6H,ArH),6.66‑6.74(m,2H,ArH),6.51(dd,1H,J=9.0,1.5Hz,ArH),5.73(br d,1H,J=4.0Hz,BnOCO2CH),5.17(d,1H,J=12.5Hz,OCHH′Ph),5.03(d,1H,J=12.5Hz,OCHH′Ph),4.99(d,1H,J=12.5Hz,OCHH′Ph′),4.93(d,1H,J=12.5Hz,OCHH′Ph′),3.58(d,1H,J=11.5Hz,CHCHN(CH3)2),3.35(dd,1H,J=12.5,4.0Hz,CH3CHCH),2.99(d,1H,J=11.5Hz,CHCHN(CH3)2),2.56(dq,1H,J=12.5,7.0Hz,CH3CH),2.18(s,6H,N(CH3)2),1.33(s,9H,C(CH3)3),1.16(d,3H,J=7.0Hz,CH3CH),1.11(s,9H,C(CH3)3),0.61(s,3H,CH3),0.36(s,3H,CH3);13C NMR(100MHz,CDCl3)δ189.7,186.3,180.9,178.4,167.9,154.7,152.1,150.8,145.9,136.1,135.5,133.9,128.7,128.6,128.5,127.3,123.8,122.7,122.6,108.9,105.5,83.0,82.9,74.8,72.4,69.2,60.8,52.7,43.2,38.4,27.5,26.6,19.5,16.3,‑1.8,‑2.7;FTIR(纯净膜),cm‑12974(w),2933(w),2851(w),1760(s,C=O),1748(s,C=O),1723(s,C=O),1606(m),1513(m),1471(m),1370(m).1260(s),1232(s),1148(s);HRMS(ES)m/z计算得(C48H56N2O12Si)+881.3681,实验值881.3684.
    去保护步骤1:

    在23℃下,向含有来自上述实验的五环加成产物(33.0mg,0.0375,1当量)的乙腈(7.0mL)溶液的聚丙烯反应容器中加入浓氢氟酸水溶液(48wt%,1.2mL)。将所得混合物在23℃下剧烈搅拌60h,随后注入含有磷酸氢二钾(7.0g)的水(50mL)中。使用乙酸乙酯(3×20mL)萃取所得混合物。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,提供描述为黄色油状的产物(25.0mg,100%)。此产物无需进一步纯化即可用于下一步骤。
    Rf0.05(1∶4 乙酸乙酯‑己烷);1H NMR(600MHz,C6D6,crude)δ14.86(br s,1H,enol),11.95(s,1H,苯酚),7.23(d,2H,J=7.8Hz,o‑ArH),7.14(d,2H,J=7.2Hz,o‑ArH),6.94‑7.02(m,6H,ArH),6.86(t,1H,J=8.4Hz,ArH),6.76(d,1H,J=8.4Hz,ArH),6.28(d,1H,J=7.8Hz,ArH),5.46(dd,1H,J=3.6,3.0Hz,BnOCO2CH),5.12(d,1H,J=12.0Hz,OCHH′Ph),5.04(d,1H,J=12.0Hz,OCHH′Ph),4.92(s,2H,OCH2Ph),3.41(d,1H,J=9.6Hz,CHCHN(CH3)2),2.82(dd,1H,J=9.6,3.0Hz,CHCHN(CH3)2),2.65(dd,1H,J=13.2,3.6Hz,CH3CHCH),2.78(dq,1H,J=13.2,7.2Hz,CH3CH),2.05(s,6H,N(CH3)2),1.04(d,3H,J=7.2Hz,CH3CH);13C NMR(100MHz,C6D6,粗制)δ193.4,186.2,181.3,172.3,167.9,163.3,154.6,145.8,136.6,135.8,128.6,128.4,127.2,116.8,116.0,115.6,107.6,104.7,76.8,73.9,72.5,69.5,60.3,48.7,43.0,41.8,37.5,15.3;FTIR(纯净膜),cm‑13424(m,OH),3059,3030,2925,2857,1744(s,C=O),1713(s,C=O),1614(s),1582(s),1455(s),1252(s);HRMS(ES)m/z计算得(C37H34N2O10+H)+667.2292,实验值667.2300.
    去保护步骤2:

    在23℃下,将钯黑(7.00mg,0.0657mmol,1.75当量)一次性加入来自上述程序的产物(25.0mg,0.0375mmol,1当量)存于四氢呋喃‑甲醇(1∶1,2.0mL)的溶液中。通过简单地抽空烧瓶随后用纯净氢气(1atm)填充来导入氢气氛。开始观测到钯催化剂作为微细分散体存在,但在5min内会聚集成块状。在23℃下将所述黄色异质混合物搅拌2h,随后经由棉花塞过滤。浓缩滤液,提供黄色油状物。借助制备型HPLC使用Phenomenex Polymerx DVB管柱(10μm,250×10mm,在350nm检测UV,溶剂A:甲醇‑0.005N aq.HCl(1∶4),溶剂B:乙腈,注射体积:400μL(含有10mg草酸的溶剂A),使用5%B进行恒溶剂洗脱2min,随后使用5→50%B进行梯度洗脱20min,流速:4.0mL/min]纯化产物。收集在12‑17min期间洗脱出的部分并浓缩,提供黄色粉末状盐酸(‑)‑强力霉素(16.2mg,90%),其与天然盐酸(‑)‑强力霉素相同[反相HPLC(共‑注射),1H NMR(涉及合成与天然强力霉素的混合物的量测),13C NMR,[α]D,UV).
    1HNMR(600MHz,CD3OD,盐酸)δ7.47(t,1H,J=8.4Hz,ArH),6.93(d,1H,J=8.4Hz,ArH),6.83(d,1H,J=8.4Hz,ArH),4.40(s,1H,(CH3)2NCH),3.53(dd,1H,J=12.0,8.4Hz,CHOH),2.95(s,3H,N(CH3)CH3′),2.88(s,3H,N(CH3)CH3′),2.80(d,1H,J=12.0Hz,CHCHN(CH3)2),2.74(dq,1H,J=12.6,6.6Hz,CH3CH),2.58(dd,1H,J=12.6,8.4Hz,CH3CHCH),1.55(d,3H,J=6.6Hz,CH3CHCH);13C NMR(100MHz,CD3OD)δ195.3,188.2,173.8,172.1,163.2,149.0,137.7,117.1,116.9,116.6,108.4,96.0,74.5,69.8,66.9,47.5,43.4,43.0,41.9,40.0,16.3;UV最大值(0.01M甲醇HCl),nm218,267,350;[α]D=‑109°(c=0.16存于0.01M甲醇HCl中);HRMS(ES)m/z计算得(C22H24N2O8+H)+445.1611,实验值445.1603.
    文献数值(The Merck Index:An Encyclopedia of Chemicals,Drugs,and Biologicals,第12版,Budavari,S.;O′Neal,M.J.;Smith,A.;Heckelman,P.E.;Kinneary,J.F.,Eds.;Merck & Co.:Whitehouse Station,NJ,1996;条目3496.):UV最大值(0.01M甲醇HCl),nm267,351;[α]D=‑110°(c=1存于0.01M甲醇HCl中)。
    (‑)‑6‑脱氧四环素的合成
    环化步骤:

    在‑78℃下,向二异丙基胺(17μL,0.12mmol,3.9当量)和N,N,N′,N′‑四甲基亚乙基二胺(19μL,0.13mmol,4.1当量)存于四氢呋喃(1mL)的溶液中加入正‑丁基锂存于己烷(1.65M,75μL,0.12mmol,3.9当量)的溶液。将所得溶液在‑78℃下搅拌30min,此时借助注射器逐滴加入一碳酸2‑(苯氧基羰基)‑3‑乙基苯基酯正‑丁基酯(31.8mg,0.093mmol,3.0当量)的四氢呋喃(250μL)溶液。将所得深红色混合物在‑78℃下搅拌90min,随后借助注射器逐滴加入烯酮7(15.0mg,0.031mmol,1当量)存于四氢呋喃(250μL)的溶液。使所得深红色混合物经3h缓慢升温至0℃。随后冰冷产物溶液在磷酸钾缓冲水溶液(pH7.0,0.2M,15mL)与二氯甲烷(15mL)之间分配。分离有机相并用2份15mL二氯甲烷进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,提供黄色油状物。借助制备型HPLC使用Coulter Ultrasphere ODS管柱[5μm,250×10mm,在350nm检测UV,注射体积:500μL(甲醇),使用甲醇‑水(89∶11)进行恒溶剂洗脱,流速:3.5mL/min]纯化产物。收集在39‑60min期间洗脱出的部分并浓缩,提供呈现为非对映异构体纯形式的五环加成产物(18.5mg,81%,浅黄色泡沫)。
    Rf0.37(2∶8 四氢呋喃‑己烷);1H NMR(500MHz,CDCl3)δ(s,1H,16.24,烯醇‑OH),7.55‑7.50(m,3H,ArH),7.40‑7.35(m,4H,ArH),7.10(d,1H,J=7.8Hz,ArH),5.39‑5.34(m,2H,OCH2Ph),3.92(d,1H,J=10.7Hz,CHN(CH3)2),2.81‑2.71(m,2H,CH3CH,CH3CHCH),2.55(dd,1H,J=10.7,5.7Hz,CHCHN(CH3)2),2.48(s,6H,N(CH3)2),2.40(d,1H,J=14.7Hz,CHH′CHCHN(CH3)2),2.31(ddd,1H,J=14.7,9.3,5.7,CHH′CHCHN(CH3)2),1.56(s,3H,CH3),1.55(s,9H,Boc),0.84(s,9H,TBS),0.27(s,3H,TBS),0.13(s,3H,TBS);13C NMR(125MHz,CDCl3)δ187.4,183.1,182.8,181.6,167.6,151.7,150.2,147.4,135.0,134.0,128.5,128.5,123.4,123.0,122.4,108.3,107.4,94.8,83.9,81.5,72.5,61.5,46.4,41.9,39.5,34.9,27.7,26.0,20.7,19.0,16.0,‑2.6,‑3.7;FTIR(纯净膜),cm‑12923(m),2841(m),1759(s,C=O),1718(s,C=O),1605(s),1508(s),1467(m),1456(m),1369(m),1277(s),1262(m),1231(s),1144(s),1005(w);HRMS(ES)m/z计算得(C40H50N2O9Si+H)+731.3364,实验值731.3370.
    去保护:

    在23℃下,向含有来自上述实验的五环加成产物(15.0mg,0.0205mg,1当量)的乙腈(3.5mL)溶液的聚丙烯反应容器中加入经浓缩氢氟酸水溶液(48wt%,0.6mL)。将所述反应混合物在23℃下搅拌55h,随后注入含有磷酸氢二钾(4.0克)的水(20mg)中。使用乙酸乙酯(4×20mL)萃取所得混合物。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,提供浅黄色油状物。将残留物溶于甲醇‑四氢呋喃(1∶1,2mL)中并向所得溶液中加入一份钯黑(7.6mg,0.071mmol,3.5当量)。通过简单地抽真空烧瓶,随后用纯净氢(1atm)填充来导入氢气氛。将所述黄色混合物在23℃下搅拌2h,随后经由棉花塞过滤。浓缩滤液,提供黄色油状物(10毫克)。借助制备型HPLC使用Phenomenex Polymerx DVB管柱[10μm,250×21.2毫米,在365奈米处检测UV,溶剂A:甲醇‑0.02N HCl(1∶4),溶剂B:乙腈,注射体积:400μL(含有10毫克草酸的甲醇),使用18%B进行恒溶剂洗脱15min,随后使用18→60%B进行梯度洗脱15min,流速:5mL/分钟]纯化产物。收集在17.5‑22.5min期间洗脱出的部分并浓缩,提供黄色粉末状盐酸6‑脱氧四环素(8.1mg,85%)。
    1H NMR(500MHz,CD3OD,盐酸)δ7.49(t,1H,J=7.8Hz,ArH),6.95(d,1H,J=7.8Hz,ArH),6.84(d,1H,J=7.8Hz,ArH),4.09(s,1H,CHN(CH3)2),3.03(br s,3H,N(CH3)),2.97(brs,3H,N(CH3)),2.90(br d,1H,J=12.7Hz,CHCHN(CH3)2),2.67(ddd,1H,J=12.7,12.7,5.2Hz,CH3CHCH),2.61‑2.56(m,1H,CH3CH),2.30(ddd,1H,J=13.7,5.2,2.9Hz,CHH′CHCHN(CH3)2),1.54(ddd,1H,J=13.7,12.7,12.7Hz,CHH′CHCHN(CH3)2),1.38(d,3H,J=6.8Hz,CH3CH);UV最大值(0.01M甲醇,nm269,353;[α]D=‑142°(c=0.20存于0.01M甲醇HCl中);HRMS(ES)m/z计算得(C22H24N2O7+H)+429.1662,实验值429.1660.
    四环素的(‑)‑D‑环吡啶酮类似物的合成
    环化步骤:

    在‑78℃下,向二异丙基胺(20μL,0.14mmol,4.6当量)的四氢呋喃(2.5mL)溶液中加入正‑丁基锂的己烷(1.67M,80μL,0.13mmol,4.3当量)溶液。使所得溶液经15min升温至0℃。加入N,N′‑二甲基亚丙基脲(17μL,0.14mmol,4.5当量)并使所得溶液冷却至‑78℃。随后借助注射器向经冷却反应溶液中加入2‑(苄氧基)‑4,6‑二甲基吡啶‑3‑甲酸苯基酯(31.0mg,0.0930mmol,2.99当量)的四氢呋喃(250μL)溶液。将所得黄色溶液在‑78℃下搅拌5min,随后借助注射器加入烯酮7(15.0mg,0.0311mmol,1当量)的四氢呋喃(250μL)溶液。使所得深红色混合物经4h升温至0℃。在0℃下,向所述深红色混合物中加入乙酸(40μL)。随后冰冷产物溶液在磷酸钾缓冲水溶液(pH7.0,0.2M,15mL)与二氯甲烷(15mL)之间分配。分离有机相并用2份15mL二氯甲烷进一步萃取水性相。合并有机萃取物且随后用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,提供黄色油状物。借助制备型HPLC使用Coulter Ultrasphere ODS管柱[5μm,250×10mm,在350nm检测UV,溶剂A:水,溶剂B:甲醇,注射体积:500μLDMSO,使用92→100%B经30min进行梯度洗脱,流速:3.5mL/min]纯化产物。收集在21‑29min期间洗脱出的部分并浓缩,提供呈现为非对映异构体纯形式的五环加成产物(15.0mg,67%,浅黄色固体)。
    Rf0.55(3∶7 乙酸乙酯‑己烷);1H NMR(600MHz,CD2Cl2)δ16.05(s,1H,烯醇‑OH),7.52‑7.26(m,10H,ArH),6.66(s,1H,pyr‑H),5.57(d,1H,J=12.7Hz,OCHH′Ph),5.43(d,J=12.7Hz,1H,OCHH′Ph),5.33‑5.28(m,2H,OCH2Ph),3.99(d,2H,J=10.5Hz,CHN(CH3)2),3.04‑3.00(m,1H,CHCH2CHCHN(CH3)2),2.84(dd,1H,J=16.1,4.9Hz,CHH′CHCH2CHCHN(CH3)2),2.74(dd,1H,J=16.1,16.1Hz,CHH′CHCH2CHCHN(CH3)2),2.53(dd,1H,J=10.5,3.9Hz,CHCHN(CH3)2),2.51‑2.43(m,10H,N(CH3)2,Ar‑CH3,CHH′CHCHN(CH3)2),2.07(d,1H,J=14.2Hz,CHH′CHCHN(CH3)2),0.82(s,9H,TBS),0.22(s,3H,TBS),0.10(s,3H,TBS);13C NMR(100MHz,CD2Cl2)δ187.9,185.2,182.5,178.8,167.9,161.9,161.8,154.8,137.9,135.6,129.1,129.0,129.0,128.7,127.9,127.9,116.4,111.6,108.6,107.5,82.0,73.0,68.1,61.7,46.9,42.0,39.2,28.6,26.1,24.6,23.0,19.3,‑2.4,‑3.5;FTIR(纯净膜),cm‑12939(m),2857(w),1720(s,C=O),1593(s),1510(s),1469(m),1449(m),1326(s),1254(m),1187(w),1157(m),1090(m),1064(m),1007(m);HRMS(ES)m/z计算得(C41H47N3O7Si+H)+722.3262,实验值722.3261.
    去保护:

    在23℃下,将Pearlman′s催化剂(10mg,0.0094mmol,0.68当量)加入一来自上述实验的经纯化五环加成反应产物(10mg,0.014mmol,1当量)存于二氧杂环己烷‑甲醇(1∶1,10mL)的溶液中。通过简单地抽空烧瓶随后用纯净氢气(1atm)填充来导入氢气氛。观测到所述反应混合物在10min内变成绿色。在23℃下搅拌2h后,经由棉花塞过滤反应混合物并浓缩滤液。将黄色油性残留物溶于甲醇(10mL)中并在23℃下向所得溶液中加入浓盐酸水溶液溶液(37wt%,100μL)。将所述反应混合物在23℃下搅拌3h,随后浓缩。借助制备型HPLC使用Phenomenex Polymerx DVB管柱[10μm,250×10mm,在365奈米处检测UV,溶剂A:0.01N HCl,溶剂B:乙腈,注射体积:500μL(含有30mg草酸的甲醇),使用0→20%B经40分钟进行线性梯度洗脱,流速:4mL/分钟]纯化产物。收集在20‑29min期间洗脱出的部分并浓缩,提供黄色粉末状盐酸D‑环吡啶酮(4.8mg,74%)。
    1H NMR(500MHz,CD3OD,盐酸)δ6.37(s,1H,ArH),4.06(s,1H,CHN(CH3)2),3.05‑2.95(m,8H,N(CH3)2,CHCHN(CH3)2,CHCH2CHCHN(CH3)2),2.79(dd,1H,J=16.1,3.9Hz,CHH′CHCH2CHCHN(CH3)2),2.55(dd,1H,J=16.1,16.1Hz,CHH′CHCH2CHCHN(CH3)2)),2.40(s,3H,Ar‑CH3),2.18(br.D,1H,J=12.7Hz,CHH′CHCHN(CH3)2),1.59(ddd,1H,J=12.7,12,7,12.7Hz,CHH℃HCHN(CH3)2);13C NMR(100MHz,(CD3)2SO)δ187.3,183.5,177.8,172.1,160.6,159.8,153.3,115.3,107.2,106.9,95.6,74.2,68.4,41.5,35.7,34.5,33.9,31.0,19.2;UV最大值(0.01M甲醇HCl),nm267,370;[α]D=‑146°(c=0.43存于0.01M甲醇HCl中);HRMS(ES)m/z计算得(C21H23N3O7+H)+430.1614,实验值430.1607.
    (‑)‑五环素的合成
    环化步骤:

    在‑100℃下,向3‑(溴甲基)‑1‑甲氧基萘‑2‑甲酸苯基酯(105mg,0.283mmol,4.02当量)及烯酮7(34.0mg,0.0705mmol,1当量)存于四氢呋喃(2.80mL)的溶液中加入正‑丁基锂存于己烷(2.65M,107μL,0.284mmol,4.03当量)的溶液。使所得浅红色反应混合物经70min升温至0℃。随后使冰冷产物溶液在磷酸钾缓冲水溶液(pH7.0,0.2M,15mL)与二氯甲烷(15mL)之间分配。分离有机相并用2份15mL二氯甲烷进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,提供黄色固体。借助制备型HPLC使用Coulter Ultrasphere ODS管柱[10μm,250×10mm,在350奈米处检测UV,溶剂A:水,溶剂B:甲醇,2次独立注射(每次为750μL,乙腈),用94%B进行恒溶剂洗脱20min,继而使用94→100%B经20分钟进行线性梯度洗脱,流速:3.5mL/分钟]纯化产物。收集在24‑38min期间洗脱出的部分并浓缩,提供呈非对映异构体纯形式的六环加成产物(36.1mg,75%,白色固体)。
    Rf0.37(3∶7 乙酸乙酯‑己烷);1H NMR(500MHz,CDCl3)δ16.25(s,1H,烯醇‑OH),8.30(d,1H,J=8.3Hz,ArH),7.75(d,1H,J=7.8Hz,ArH),7.59‑7.34(m,7H,ArH),7.26(s,1H,ArH),5.38(s,2H,OCH2Ph),4.02(s,3H,OCH3),3.99(d,1H,J=10.7Hz,CHN(CH3)2),3.08‑3.05(m,2H,CHCH2CHCHN(CH3)2,CHH′CHCH2CHCHN(CH3)2),2.95‑2.90(m,1H,CHH′CHCH2CHCHN(CH3)2),2.58(dd,1H,J=10.7,5.9Hz,CHCHN(CH3)2),2.51(s,6H,N(CH3)2),2.50‑2.48(m,1H,CHH′CHCHN(CH3)2),2.20‑2.14(m,1H,CHH′CHCHN(CH3)2),0.82(s,9H,TBS),0.29(s,3H,TBS),0.13(s,3H,TBS);13C NMR(125MHz,CDCl3)δ187.9,184.1,183.0,182.0,167.8,159.2,137.5,136.7,135.3,129.5,128.8,128.7,128.5,127.5,126.4,124.2,121.8,119.5,108.7,108.7,82.4,72.8,63.8,61.6,46.8,42.1,40.7,29.3,26.2,23.1,19.3,‑2.2,‑3.5;FTIR(纯净膜),cm‑12934(m),2852(m),1718(s,C=O),1610(s),1513(s),1472(m),1452(m),1369(m),1339(w),1293(m),1252(m),1190(w),1159(m),1067(m),1026(w),1011(w);HRMS(ES)m/z计算得(C39H44N2O7Si+H)+681.2996,实验值681.2985.
    去保护:

    在23℃下,向含有来自上述实验的经纯化六环加成产物(24.0mg,0.035,1当量)的乙腈(9.0mL)溶液的聚丙烯反应容器中加入浓氢氟酸水溶液(48wt%,1.0mL)。将所述反应混合物在23℃下搅拌22h,随后注入含有磷酸氢二钾(12.0g)的水(50mL)中。使用乙酸乙酯(3×50mL)萃取所得混合物。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,提供黄色油状物。将残留物溶于甲醇‑二氧六环(1∶1,5mL)中并向所得溶液中加入一份钯黑(10.0mg,0.0940mmol,2.67当量)。通过简单地抽空烧瓶,随后用纯净氢(1atm)填充来导入氢气氛。将所述黄色混合物在23℃下搅拌4小时,随后经由棉花塞过滤。浓缩滤液,提供黄色油状物。将所述残留物溶于二氯甲烷(4.5mL)中并在‑78℃下,向所得溶液中加入三溴化硼(1.0M)存于二氯甲烷(0.5mL,14当量)的溶液。将所述深红色混合物在‑78℃下搅拌15min,随后在23℃下搅拌3.5h。加入甲醇(20mL)并将所得黄色溶液在23℃下搅拌1h。浓缩所述溶液,提供黄色油状物。借助制备型HPLC使用Phenomenex Polymerx DVB管柱[7μm,150×21.2mm,在350奈米检测UV,溶剂A:0.01N HCl,溶剂B:乙腈,注射体积:500μL(含有10mg草酸的甲醇),使用25→50%B经60分钟进行梯度洗脱,流速:6mL/min]纯化产物。收集在30‑35min期间洗脱出的部分并浓缩,提供黄色粉末状盐酸五环素(13.1mg,74%)。
    1H NMR(600MHz,CD3OD,盐酸)δ8.36(d,1H,J=7.7Hz,ArH),7.74(d,1H,J=7.7Hz,ArH),7.64(dd,1H,J=7.7,7.7Hz,ArH),7.50(dd,1H,J=7.7,7.7Hz,ArH),7.1(s,1H,ArH),4.10(s,1H,CHN(CH3)2),3.13‑2.97(m,9H,N(CH3)2,CHCHN(CH3)2,CHCH2CHCHN(CH3)2,CHH′CHCH2CHCHN(CH3)2),2.67(dd,1H,J=14.3,14.3Hz,CHH′CHCH2CHCHN(CH3)2),2.22(ddd,1H,J=13.6,4.9,2.9Hz,CHH′CHCHN(CH3)2),1.64(ddd,1H,J=13.6,13.6,13.6Hz,CHH′CHCHN(CH3)2);UV最大值(0.01M甲醇HCl),nm268,345,402;[α]D=‑113°(c=0.18存于0.01M甲醇HCl中);HRMS(ES)m/z计算得(C25H24N2O7+H)+465.1662,实验值465.1656.
    (‑)‑7‑氮杂‑10‑脱氧山环素的合成
    环化步骤‑

    在‑78℃下,向二异丙基胺(13.2μL,0.0945mmol,5.00当量)存于四氢呋喃(0.750mL)的溶液中加入正‑丁基锂存于己烷(2.65M,33.0μL,0.0945mmol,5.00当量)的溶液。使所得溶液在冰浴中短暂升温(10min),随后冷却至‑78℃。加入六甲基磷酰胺(33.0μL,0.189mmol,10.0当量),生成无色溶液且随后在‑95℃下借助套管将此溶液逐滴转移(冷)至含有2‑甲基吡啶‑3‑甲酸苯基酯(16.0mg,0.0755mmol,4.00当量)和烯酮7(9.1mg,0.019mmol,1当量)的四氢呋喃(0.750mL)溶液中,形成前红色混合物。使所述反应溶液经50min升温至‑50℃。产物溶液随后在磷酸钾缓冲水溶液(pH7.0,0.2M,10mL)与二氯甲烷(25mL)之间分配。分离有机相并用3份15‑mL二氯甲烷进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,提供黄色固体。借助制备型HPLC使用Phenomenex Polymerx DVB管柱[10μm,250×10mm,在350奈米检测UV,溶剂A:水,溶剂B:甲醇,注射体积:500μL(甲醇),使用85→100%B经30分钟进行梯度洗脱,流速:3.5mL/分钟]纯化产物。收集在21‑27min期间洗脱出的部分并浓缩,提供呈非对映异构体纯形式的五环加成产物(8.6mg,76%,白色固体)。
    Rf0.07(3∶7 乙酸乙酯‑己烷);1H NMR(500MHz,CD2Cl2)δ15.21(s,1H,烯醇),8.63(d,1H,J=4.5Hz,pyr‑H),8.19(d,1H,J=7.5Hz,pyr‑H),7.54‑7.43(m,5H,ArH),7.34(d,1H,J=4.5,7.5Hz,pyr‑H),5.36(d,1H,J=12.0Hz,OCHH’Ph),5.33(d,1H,J=12.0Hz,OCHH’Ph),4.03(d,1H,J=10.7Hz,CHN(CH3)2),3.36‑3.31(m,1H,CHCH2CHCHN(CH3)2),3.23(dd,1H,J=16.3,5.6Hz,CHH’CHCH2CHCHN(CH3)2),2.99(dd,1H,J=16.3,16.3Hz,CHH’CHCH2CHCHN(CH3)2),2.63(ddd,1H,J=1.6,4.4,10.7Hz,CHCHN(CH3)2),2.54‑2.48(m,7H,N(CH3)2,CHH’CHCHN(CH3)2),2.19(dd,1H,J=1.6,14.5Hz,CHH’CHCHN(CH3)2),0.87(s,9H,TBS),0.26(s,3H,TBS),0.13(s,3H,TBS);13CNMR(100MHz,CD2Cl2)δ187.7,183.5,182.6,182.2,167.9,161.2,153.4,137.6,134.1,129.2,129.1,129.1,126.8,123.0,108.7,106.9,82.2,73.0,61.8,47.0,42.1,41.4,30.1,28.4,26.1,23.2,19.3,‑2.4,‑3.5;HRMS(ES)m/z计算得(C33H39N3O6Si+H)+602.2686,实验值602.2686.
    去保护:

    在23℃下,将一份钯黑(3.0mg,0.028mmol,2.6当量)加入来自上述实验的经纯化五环加成反应产物(6.5mg,0.011mmol,1当量)存于二氧杂环己烷‑甲醇(7∶2,9.0mL)的溶液中。通过简单地抽空烧瓶随后用纯净氢气(1atm)填充来导入氢气氛。将所得绿色混合物在23℃下搅拌7h,随后经由棉花塞过滤。浓缩滤液,提供黄色油状物(7.0毫克)。将所述残留物溶于乙腈(4.5mL)中,转移至聚丙烯反应容器中并在23℃下向所得溶液中加入浓氢氟酸水溶液(48wt%,0.5mL)。将所述反应混合物加热至35℃,27hr。通过添加甲氧基三甲基硅烷(3.5mL,25mmol)淬灭过量氢氟酸。浓缩所述反应混合物,提供黄色固体。借助制备型HPLC使用Phenomenex Polymerx DVB管柱[10μm,250×10mm,在350奈米检测UV,溶剂A:0.5%存于水中的三氟乙酸,溶剂B:0.5%存于甲醇‑乙腈(1∶1)中的三氟乙酸,注射体积:500μL(甲醇),使用0→20%B经40分钟进行梯度洗脱,流速:4mL/分钟]纯化产物。收集在35‑45min期间洗脱出的部分并浓缩以形成黄色油状物。将所述油溶于甲醇HCl(1.0mL,0.10M)中并浓缩,提供黄色粉末状盐酸7‑氮杂‑10‑脱氧山环素(3.7mg,79%)。1HNMR(500MHz,CD3OD,盐酸)δ8.79‑8.77(m,2H,pyr‑H)7.91(dd,1H,J=6.8,6.8Hz,pyr‑H),4.12(s,1H,CHN(CH3)2),3.41‑3.22(m,2H,CHH′CHCH2CHCHN(CH3)2,CHCH2CHCHN(CH3)2),3.11‑3.00(m,8H,CHH′CHCH2CHCHN(CH3)2,CHCHN(CH3)2,N(CH3)2),2.34(ddd,1H,J=12.9,4.4,2.4Hz,CHH′CHCHN(CH3)2),1.77(ddd,1H,J=12.9,12.9,12.9Hz,CHH′CHCHN(CH3)2);UV最大值(0.01M甲醇HCl),nm264,345;[α]D=‑154°(c=0.15存于0.01M甲醇HCl中);HRMS(ES)m/z计算得(C20H21N3O6+H)+400.1508,实验值400.1504。
    (‑)‑10‑脱氧山环素的合成
    环化步骤:

    在‑100℃下,向2‑(溴甲基)‑1‑苯甲酸苯基酯(45.6mg,0.157mmol,3.97当量)及烯酮7(19.0mg,0.0394mmol,1当量)存于四氢呋喃(1.57mL)的溶液中加入正‑丁基锂存于己烷(2.65M,59μL,0.16mmol,4.0当量)的溶液。使所得浅红色溶液经30分钟升温至0℃。随后使冰冷产物溶液在磷酸钾缓冲水溶液(pH7.0,0.2M,5mL)与二氯甲烷(25mL)之间分配。分离有机相并用另一份15‑mL二氯甲烷进一步萃取水性相。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,提供黄色固体。借助制备型HPLC使用Coulter Ultrasphere ODS管柱[10μm,250×10mm,溶剂A:水,溶剂B:甲醇,注射体积:1.0mL(甲醇),使用85→100%B经30min进行梯度洗脱,在350nm检测UV,流速:3.5mL/min]纯化产物。收集在25‑30min期间洗脱出的部分并浓缩,提供呈非对映异构体纯形式的五环加成产物(19.2mg,81%,白色固体)。
    Rf0.46(3∶7 乙酸乙酯‑己烷);1H NMR(500MHz,CD2Cl2)δ15.53(s,1H,烯醇),7.94(d,1H,J=7.9Hz,ArH),7.54‑7.28(m,8H,ArH,OCH2ArH),5.37‑5.34(m,2H,OCH2Ph),4.05(d,1H,J=10.7Hz,CHN(CH3)2),3.24‑3.18(m,1H,CHCH2CHCHN(CH3)2),2.99(dd,1H,J=15.5,5.6Hz,CHH’CHCH2CHCHN(CH3)2),2.88(dd,1H,J=15.5,15.5Hz,CHH’CHCH2CHCHN(CH3)2),2.61(dd,1H,J=4.4,10.7Hz,CHCHN(CH3)2),2.54‑2.44(m,7H,N(CH3)2,CHH’CHCHN(CH3)2),2.14(d,1H,J=14.3Hz,CHH’CHCHN(CH3)2),0.86(s,9H,TBS),0.25(s,3H,TBS),0.12(s,3H,TBS);13CNMR(100MHz,CD2Cl2)δ187.8,183.0,182.8,182.4,167.7,141.7,135.4,133.4,130.9,129.0,128.9,128.9,128.1,127.5,126.5,108.5,106.8,82.1,72.8,61.5,58.5,46.9,41.9,38.6,29.0,25.9,23.1,19.1,‑2.6,‑3.7;HRMS(ES)m/z计算得(C34H40N3O6Si+H)+601.2734,实验值601.2730.
    去保护:

    在23℃下,向含有来自上文实验的五环加成产物(15.1mg,0.0251,1当量)的乙腈(10mL)溶液的聚丙烯反应容器中加入浓氢氟酸水溶液(48wt%,1.1mL)。将所得溶在23℃下剧烈搅拌12小时,随后将其注入含有磷酸氢二钾(4.7克)的水(50mg)中并用乙酸乙酯(3×25mL)萃取所述产物。合并有机相并用无水硫酸钠干燥。过滤经干燥溶液并浓缩滤液,提供黄色固体(12.2mg,99%)。将残留物溶于甲醇‑二氧杂环己环(1∶1,3.0mL)中并向所得溶液中加入一份钯黑(6.5mg,0.061mmol,2.4当量)。通过简单地抽空烧瓶随后用纯净氢气(1atm)填充来导入氢气氛。将所得浅黄色混合物在23℃下搅拌20min,随后经由棉花塞过滤。浓缩滤液,提供黄色固体。借助制备型HPLC使用Phenomenex Polymerx DVB管柱[10μm,250×10毫米,在350奈米检测UV,溶剂A:0.01N HCl,溶剂B:乙腈,注射体积:1.0μL(含有10毫克草酸的甲醇),使用5→50%B经30分钟进行梯度洗脱,流速:5mL/min]纯化产物。收集在16‑22min期间洗脱出的部分并浓缩,提供白色粉末状盐酸10‑脱氧山环素(9.1mg,83%)。
    1H NMR(500MHz,CD3OD,盐酸)δ7.96(d,1H,J=7.3Hz,ArH)7.51(dd,1H,J=7.3,7.3Hz,ArH),7.39(dd,1H,J=7.3,7.3Hz,ArH),7.30(d,1H,J=7.3Hz,ArH),4.04(s,1H,CHN(CH3)2),3.31‑2.99(m,8H,CHCH2CHCHN(CH3)2,CHCHN(CH3)2,N(CH3)2),2.87(dd,1H,J=15.4,4.3Hz,CHH’CHCH2CHCHN(CH3)2),2.61(dd,1H,J=15.4,15.4Hz,CHH’CHCH2CHCHN(CH3)2),2.21(ddd,J=12.8,5.0,2.5Hz,CHH’CHCHN(CH3)2),1.66(ddd,1H,J=12.8,12.8,12.8Hz,CHH’CHCHN(CH3)2);UV最大值(0.01甲醇HCl),nm264,348;[α]D=‑147°(c=0.15存于0.01M甲醇HCl中);HRMS(ES)m/z计算得(C21H22N2O6+H)+399.1556,实验值399.1554.
    生物测试
    根据由NCCLS推荐的方法测定全细胞抗菌活性(National Committee for Clinical Laboratory Standards.2002.Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.:approved standard‑fifth edition.NCCLS文件M100‑S12.National Committee for Clinical Laboratory Standards.Wayne,PA.;以引用的方式并入本文中)。将测试化合物溶于二甲亚砜(DMSO)中并在水中稀释(1∶10)所得溶液以生成具有256μg四环素类似物/mL最终浓度的储备溶液。在96‑孔微量滴定板中,将若干50‑μL等份储备溶液系列稀释成阳离子经调整的Mueller‑Hinton肉汤(MHB;Becton‑Dickinson,Cockeysville,MD)。随后将测试有机体(50μL等份溶液,约5×10‑5CFU/mL)加入微量滴定板的适当孔中。在35℃,有氧条件下将经接种平板培育18‑24h。MIC是所测得可抑制可见生长的化合物的最低浓度。在最小抑制浓度(MIC)试验中测试5株革兰氏阳性菌株和5株革兰氏阴性菌株。所述革兰氏阳性菌株是金黄色葡萄球菌ATCC29213、表皮葡萄球菌ACH‑0016、出血性葡萄球菌ACH‑0013、粪肠球菌(Enterococcus faecalis)ATCC700802(一VRE或万古霉素‑抗性肠球菌株)和金黄色葡萄球菌ATCC700699(携带tetM抗性基因)。所述革兰氏阴性菌株是绿脓杆菌ATCC27853、肺炎克雷伯氏菌ATCC13883、大肠杆菌ATCC25922、大肠杆菌ACH‑0095(多种抗生素抗性)和大肠杆菌ATCC53868::pBR322(含有编码四环素抗性的质粒)。这些菌株与其来源及已知对抗生素的抗性等其它详情一起再次示于下文中。
    菌株
    革兰氏阳性有机体:
    金黄色葡萄球菌ATCC29213    用于MIC测试的QC菌株
    金黄色葡萄球菌ATCC700699   其中间体对万古霉素具有抗性的甲氧苯青霉素‑
                               及四环素‑抗性临床分离物
    表皮葡萄球菌ACH‑0018       临床分离物(Achillion菌株收集)
    出血性葡萄球菌ACH‑0013     临床分离物(Achillion菌株收集)
    粪肠球菌ATCC700802         具有万古霉素抗性的临床分离物
    革兰氏阳性有机体:
    大肠杆菌ATCC25922          用于MIC测试的QC菌株
    大肠杆菌ATCC53868::pBR322  携带具有四环素‑抗性标记的质粒的实验室菌株
    大肠杆菌ACH‑0095           多重抗性临床分离物
    (Achillion菌株收集)
    肺炎克雷伯氏菌ATCC13883    用于MIC测试的QC菌株
    绿脓杆菌ATCC27853          用于MIC测试的QC菌株
    ATCC=美国典型菌种保藏中心(American Type Culture Collection),Manassas,VA
    实例8‑四环素类似物的替代途径
    上述许多研究显示通过金属化邻‑甲苯甲酸酯衍生物的苯基酯可生成碳负离子D‑环前体。这些自身缩合反应时常需要使用多达4‑5当量的给定D‑环前体。在α‑碳上存在一吸电子取代基可大大地改良如实例7和本文其它地方所述金属化和偶合反应的效率。人们已发现:在AB亲电子试剂存在下就地实施苄基溴的锂‑卤素交换提供其中苄基未经金属化的偶合产物(参见实例7)。这些苄基溴可以惊人的效率(接近定量产率)制备且其令人惊奇地稳定。所述研究使得人们可以数千克规模实施偶合反应。许多不同的苯基酯取代基(参见下文)可用于优化偶合反应。

    然而,用于苄基金属化的最佳基团可能与用于锂‑卤素交换的最佳基团不同。另外,对于锂‑卤素交换反应,除酯修饰外,还可使用其它金属试剂,包括但不限于其它烷基锂试剂(例如,苯基锂、三甲苯基锂)、格氏试剂(例如,异‑丙基氯化镁)和以锌为主的体系。使用用于偶合的各种0价金属可探测Barbie型偶合。
    AB‑环前体还可通过替代途径制备。用于合成大多数6‑脱氧四环素类似物的步骤总计是14步(自苯甲酸开始)。这14个步骤中的11步是用于合成AB‑环前体。这些AB‑环前体合成途径的长度或效率的任意改变都会对整个合成造成实质性的影响。AB‑环前体的替代合成示于图22和23中。用于A‑环闭合替代程序的策略尤其是分子内Michael加成反应,由钯介导的反应和亚铵离子引导的闭合反应。在AB‑环前体合成中,还可使用高价碘试剂代替微生物二羟基化,如图23所示。
    其它实施例
    上文已阐述了本发明的某些非限定性较佳实施例。那些所属领域的一般人员应理解:在不背离本发明的精神或范围的前提下可对本发明进行各种改变和修饰,本发明范围如上文权利要求书所定义。

    关 键  词:
    四环素 及其 类似物 合成
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:四环素及其类似物的合成.pdf
    链接地址:https://www.zhuanlichaxun.net/p-1529252.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1