使用痕量油的切削研磨系统用油组合物 【发明领域】
本发明涉及适合在油以极微小的量与压缩流体一起提供给金属件要切削研磨部位的极微量润滑体系中使用的切削研磨油组合物。发明背景
各种切削研磨油一般应用于金属加工过程,用来延长加工工具如钻床、铣床、机床和磨床的使用寿命、改进制品精加工表面的粗糙度和改进加工效率,使机械加工生产能力得到提高。
切削研磨油大致分为两类,一类是水溶性的,是用水将其中所包含的表面活性剂和润滑组分稀释后使用,另一类是非水溶性的,包含矿物油作为主要组分且直接即以原液形式使用。在传统的切削和研磨操作中,需要有较大量的切削研磨油提供给金属件要加工的部位。
切削研磨油的最基本和重要的功能是润滑和冷却性。总的说来,非水溶性切削研磨油在润滑性方面较优,而水溶性切削研磨油在冷却性方面较优。由于非水溶性切削研磨油的冷却性比水溶性的差,因而必须提供范围在几升到十升以上的大量非水溶性切削研磨油。
从另一个角度看,能有效改进加工效率的切削研磨油有一些不够理想的方面。这些不理想方面的典型实例是有关环境方面的问题。不管是水溶性油还是非水溶性油,在其使用过程中都会逐渐劣化,最终无法继续使用。例如,当水溶性油因微生物滋生稳定性遭破坏造成组分分离现象或者环境卫生劣化时,就不能再使用。当氧化过程产生的酸组分使金属件受到腐蚀或粘度发生显著改变时,非水溶性油就不能使用了。而且,油会因粘附金属碎片或切屑而消耗,成为废弃物。
在这种情况下,要对劣化的油处置,然后换成新鲜地油。作为废弃物处置的油必须经不同处理过程处理使其对环境没有负面影响。例如,所开发的一些在加工效率方面较先有技术有所改进的切削研磨油包含大量焚烧时可能会产生二噁英的含氯组分,因此必须除去这些组分。为此,已研究开发了一些无含氯组分的油。但是,即使油不含氯基组分,仍会存在处置大量废弃物所带来的环境问题。水溶性油可能会污染周围水域,因而必须采用高费用的先进处理方法进行处理。
为解决上述问题,曾考虑通过吹送冷空气的方法来替代使用切削或研磨油冷却金属件。在此情况下,不能获得切削研磨油的另一功能,即润滑性能。
为解决这一问题,已研究开发出一种将约为正常量1/100,000到1/1000,000范围的极微量油与压缩流体如压缩空气一起提供给金属件切削研磨部位的体系。此体系可用压缩空气获得冷却效果,因使用极微量油可减少废弃物的量,从而减少因大量废弃物的处置而对环境产生的影响。但未曾提出过具有采用极微量润滑体系的切削研磨过程所需性质的切削研磨油,更具体地说,是一种即使以极微量使用时,仍具有能获得表面光滑的加工产品、减少加工工具磨损和更高效地进行切削研磨的高性能切削研磨油。研究开发此种切削研磨油已是一项迫切工作。在极微量润滑体系中,所提供的油是雾状形式。因此,该体系涉及的问题是油容易粘附于加工机械内、金属件上和切屑收集器内等处。若粘附的油容易变粘的话,就会影响其处理能力,使加工效率降低。因此,希望用于极微量润滑体系的油很难变粘。
鉴于上述情况,本发明的目的是提供一种适合极微量润滑体系中使用的切削研磨油组合物,在该体系中油以极微小的量与压缩流体一起提供给金属件要切削和研磨部位,使得作为废弃物处置的油量显著减少。更具体地说,本发明的目的是提供一种很难变粘且具有极好润滑性从而使切削研磨操作更为有效的油组合物。发明内容
经深入研究,发现使用含有以酯为基础油的极微量润滑体系用切削研磨油组合物对切削研磨时的加工性和改进金属件精加工表面方面有效。并且,已发现使用具有某些特性的酯在改进油以雾状形式提供时发生的粘附加工工具的情况和油的润滑性方面有效。还发现除含酯作为基础油外还进一步包含油性改性剂和抗氧剂的油可在润滑性和粘附性方面得到改进。
按照本发明,提供一种含酯作为基础油的极微量润滑体系用切削或研磨油组合物。
本发明的详细内容如下所述。
本发明提供一种用于极微量润滑体系的切削研磨油组合物。本文所用术语“极微量润滑体系”的意思是指通过提供以常规切削研磨操作用油量1/00,000到1/10,000,000的极微量油与压缩流体一起进行切削研磨的加工操作体系。更具体地说,在极微量润滑体系中,油以从0.001ml/分钟到1ml/分钟范围的极微小量与压缩流体如压缩空气一起提供给金属件的切削研磨部位。除压缩空气外,还可使用其它一些压缩流体,如氮气、氢气、氦气、二氧化碳和水及混合流体。
极微量润滑体系中,压缩流体的压力应调节到使扩散开来的油不会污染大气,且使油和气体或液体的混合流体能到达金属件的切削研磨部位。压缩流体的温度调节到能处于室温(25℃)到-50℃范围。
下面描述作为极微量润滑体系用切削研磨油组合物(下文称作“油组合物”或“油”)基础油的酯。
用作基础油的酯可以是天然酯如含植物或动物脂或油的酯或合成酯。在本发明中,因由其得到的油组合物的稳定性和酯组分的均匀性的缘故,优选合成酯。
构成用作基础油的酯的醇可以是一元醇或多元醇。构成酯的酸可以是一元酸或多元酸。一元醇可以是有1到24,优选1到12且更优选1到8个碳原子,直链或支化的及饱和或不饱和的醇。有1到24个碳原子的醇的具体实例是甲醇、乙醇、直链或支化的丙醇、直链或支化的丁醇、直链或支化的戊醇、直链或支化的己醇、直链或支化的庚醇、直链或支化的辛醇、直链或支化的壬醇、直链或支化的癸醇、直链或支化的十一烷醇、直链或支化的十二烷醇、直链或支化的十三烷醇、直链或支化的十四烷醇、直链或支化的十五烷醇、直链或支化的十六烷醇、直链或支化的十七烷醇、直链或支化的十八烷醇、直链或支化的十九烷醇、直链或支化的二十烷醇、直链或支化的二十一烷醇、直链或支化的二十三烷醇、直链或支化的二十四烷醇及其混合物。
可用于本发明的多元醇的实例是从二元醇到十元醇,优选从二元醇到六元醇的醇。这些醇的实例是二元醇类如乙二醇、二乙二醇、聚乙二醇(乙二醇的三聚体到十五聚体),丙二醇、二丙二醇、聚丙二醇(丙二醇的三聚体到十五聚体)、1,3-丙二醇、1,2-丙二醇,1,3-丁二醇、1,4-丁二醇、2-甲基-1,2-丙二醇、2-甲基-1,3-丙二醇,1,2-戊二醇、1,3-戊二醇、1,4-戊二醇、1,5-戊二醇和新戊醇;多元醇类如甘油、聚甘油(甘油的二聚体到八聚体,如二聚甘油、三聚甘油和四聚甘油),三羟甲基链烷(三羟甲基乙烷、三羟甲基丙烷和三羟甲基丁烷)及它们的二聚体到四聚体,季戊四醇及其二聚体到四聚体,1,2,4-丁三醇、1,3,5-戊三醇、1,2,6-己三醇、1,2,3,4-丁四醇、山梨糖醇、脱水山梨糖醇、山梨糖醇与甘油的缩合产物,侧金盏花醇、阿糖醇、木糖醇、甘露糖醇;和糖类如木糖、阿糖、核糖、鼠李糖、葡萄糖、果糖、半乳糖、甘露糖、山梨糖、纤维二糖、麦芽糖、异麦芽糖、海藻糖、蔗糖;以及它们的混合物。
其中,优选二元醇到六元醇类如乙二醇、二乙二醇、聚乙二醇(乙二醇的三聚体到十聚体),丙二醇、二丙二醇、聚丙二醇(丙二醇的三聚体到十聚体)、1,3-丙二醇、2-甲基-1,2-丙二醇、2-甲基-1,3-丙二醇、新戊二醇、甘油、聚甘油、二聚甘油、三聚甘油、三羟甲基链烷(三羟甲基乙烷、三羟甲基丙烷和三羟甲基丁烷)及它们的二聚体到四聚体、季戊四醇、二聚季戊四醇、1,2,4-丁三醇、1,3,5-戊三醇、1,2,6-己三醇,1,2,3,4-丁四醇,山梨糖醇、脱水山梨糖醇、山梨糖醇与甘油的缩合产物,侧金盏花醇、阿糖醇、木糖醇和甘露糖醇以及它们的混合物。更优选是乙二醇、丙二醇、新戊二醇、甘油、三羟甲基乙烷、三羟甲基丙烷、季戊四醇、山梨聚糖以及它们的混合物。
如上所述,构成作为基础油的酯的醇可以是一元醇或多元醇,但优选多元醇,因为它们能为切削研磨操作提供极好的润滑性,改进精加工表面的精确度和防止加工工具的磨损,得到的油倾点低,且改进了油在冬季和寒冷地区的可处理性。
本发明所采用的一元酸有2到24个碳原子,可以是直链或支化的及饱和或不饱和的。一元酸的具体实例是饱和脂肪酸类,如乙酸、丙酸、直链或支化的丁酸、直链或支化的戊酸、直链或支化的己酸、直链或支化的庚酸、直链或支化的辛酸、直链或支化的壬酸、直链或支化的癸酸、直链或支化的十一烷酸、直链或支化的十二烷酸、直链或支化的十三烷酸、直链或支化的十四烷酸、直链或支化的十五烷酸、直链或支化的十六烷酸、直链或支化的十七烷酸、直链或支化的十八烷酸、直链或支化的羟基十八烷酸、直链或支化的十九烷酸、直链或支化的二十烷酸、直链或支化的二十一烷酸、直链或支化的二十二烷酸、直链或支化的二十三烷酸、直链或支化的二十四烷酸;不饱和脂肪酸类,如丙烯酸、直链或支化的丁烯酸、直链或支化的戊烯酸、直链或支化的己烯酸、直链或支化的庚烯酸、直链或支化的辛烯酸、直链或支化的壬烯酸、直链或支化的癸烯酸、直链或支化的十一烯酸、直链或支化的十二烯酸、直链或支化的十三烯酸、直链或支化的十四烯酸、直链或支化的十五烯酸、直链或支化的十六烯酸、直链或支化的十七烯酸、直链或支化的十八烯酸、直链或支化的羟基十八烯酸、直链或支化的十九烯酸、直链或支化的二十烯酸、直链或支化的二十一烯酸、直链或支化的二十二烯酸、直链或支化的二十三烯酸、直链或支化的二十四烯酸;以及它们的混合物。其中优选3到20个碳原子的饱和脂肪酸、3到20个碳原子的不饱和脂肪酸和它们的混合物,因为它们能提供极好的润滑性、提高精加工表面的精确度和有效防止加工工具的磨损。更优选是4到18个碳原子的饱和脂肪酸、4到18个碳原子的不饱和脂肪酸和它们的混合物。
可用于本发明的多元羧酸的实例是2到16个碳原子二元酸和偏苯三酸。2到16个碳原子二元酸可以是直链或支化的及饱和或不饱和的。二元酸的具体实例是乙二酸、丙二酸、直链或支化的丁二酸、直链或支化的戊二酸、直链或支化的己二酸、直链或支化的庚二酸、直链或支化的辛二酸、直链或支化的壬二酸、直链或支化的癸二酸、直链或支化的十一烷二酸、直链或支化的十二烷二酸、直链或支化的十三烷二酸、直链或支化的十四烷二酸、直链或支化的十五烷二酸、直链或支化的十六烷二酸、直链或支化的己烯二酸、直链或支化的庚烯二酸、直链或支化的辛烯二酸、直链或支化的壬烯二酸、直链或支化的癸烯二酸、直链或支化的十一烯二酸、直链或支化的十二烯二酸、直链或支化的十三烯二酸、直链或支化的十四烯二酸、直链或支化的十五烯二酸、直链或支化的十六烯二酸;和它们的混合物。
如上所述,构成作为基础油的酯的酸可以是一元酸或多元酸,但优选多元酸,因为所得的油组合物的粘度指数得到提高,易形成雾状,呈现极好的润滑性。
对于醇和酸如何组合形成用作本发明油组合物基础油的酯并不做特殊限定。组合方式的实例如下:
(1)一元醇与一元酸形成的酯;
(2)多元醇与一元酸形成的酯;
(3)一元醇与多元酸形成的酯;
(4)多元醇与多元酸形成的酯;
(5)一元醇和多元醇的混合物与多元酸形成的混合酯;
(6)多元醇与一元酸和多元酸的混合物形成的混合酯,
(7)一元醇和多元醇混合物与一元酸和多元酸混合物形成的混合酯。
这些组合方式中,优选是(2)方式,即多元醇与一元酸形成的酯,因为使用这类酯能有助于改进切削研磨的润滑性、所加工金属件的精加工表面精确度、防止加工工具磨损的性能、冬季和寒冷地区的可处理性和形成雾状的能力,有助于降低倾点并提高粘度指数。
可用于本发明的天然脂肪或油是植物油类如棕榈油、棕榈仁油、菜油、豆油、高油酸的菜油和高油酸的葵花子油;和动物油类,如猪油。
在使用多元醇的情况下,得到的酯可以是羟基全部被酯化的全酯,或部分羟基未被酯化的偏酯。在使用多元酸的情况下,得到的酯可以是羧基全部被酯化的全酯,或部分羧基未被酯化的偏酯。
尽管可以通过使用上述酯作为基础油的方法获得润滑性得到改进的油组合物,但为进一步提高润滑性,优选使用羟值在0.01到300mgKOH/g的酯。为获得润滑性得到进一步改善的油,羟值的上限优选为200mgKOH/g,最优选为150mgKOH/g,而羟值的低限为0.1mgKOH/g,优选0.5mgKOH/g,更优选1mgKOH/g,进一步优选3mgKOH/g,且最优选5mgKOH/g。本文所用术语“羟值”的意思是指采用JIS K 0070“测定酸值、皂化值、酯值、碘值、羟值和化学产物的未皂化物的方法”所规定的指示剂滴定法测定的值。
对于制备本发明的羟值在0.01到300mgKOH/g范围内的酯的方法不做特殊限定。例如可通过在酯制备过程中调节原料的选择性和反应条件,或是将两种或多种不同羟值的酯混合的方法来制备这类酯。在采用后一种方法的情况下,较低羟值的酯与较高羟值的酯组合使用。更具体地说,将羟值为0到150mgKOH/g,优选0到100mgKOH/g,更优选0到50mgKOH/g且最优选0到20mgKOH/g的酯与羟值150mgKOH/g以上到500mgKOH/g以下,优选从200到400mgKOH/g且最优选250到350mgKOH/g的酯组合使用。前一种酯的用量为总质量的50到99.9%(质量),优选为70到99.5%(质量)且最优选为80到99%(质量),而后一种酯的用量为总质量的0.1到50%(质量),优选为0.5到30%(质量)且最优选为1到20%(质量)。在油组合物是由两种或多种酯组成的情况下,羟值较低的酯起基础油的作用,羟值较高的酯作为添加剂。但是,在本发明中,这些组合形式的酯是用作基础油。
为达到进一步提高油组合物润滑性的目的,其皂化值优选在100到500mgKOH/g范围内。皂化值的上限优选为400mgKOH/g,下限为200mgKOH/g。本文所用术语“皂化值”的意思是指采用JIS K 2503“飞机润滑油的试验方法“所规定的指示剂滴定法测得的值。
润滑性能优异的油组合物优选是难于粘附的。因此,优选使用碘值为0到80和/或溴值为0到50g BR2/100g。
酯的碘值在0到60范围内,优选为0到40,更优选为0到20且最优选为0到10。
酯的溴值优选在0到30g BR2/100g范围内,且最优选为0到10gBR2/100g。本文所用术语“碘值”的意思是指采用JIS K 0070“测定酸值、皂化值、酯值、碘值、羟值和化学产物的未皂化物的方法”所规定的指示剂滴定法测定的值。本文所用术语“溴值”的意思是指按照JIS K2605“石油馏分和商品脂族烯烃-溴指数的测定-电测量法”测定的值。
尽管不做限定,但为能更容易地将酯提供给金属件要切削研磨的部位,用作基础油的酯40℃下运动粘度的上限为200mm2/秒,优选为100mm2/秒,更优选为75mm2/秒且最优选为50mm2/秒。40℃下运动粘度的下限优选为1mm2/秒,更优选是3mm2/秒,且最优选是5mm2/秒。
尽管不做限定,酯的倾点优选为-20℃以下,更优选-45℃以下。酯的粘度指数优选为100以上200以下。
对于本发明油组合物中所含的作为基础油的酯含量不做特殊限定,但为达到能够生物降解的目的,即油组分易于被微生物如细菌分解从而能保护周围环境的目的,酯含量一般是组合物总质量的10%(质量)以上,优选是20%(质量)以上,更优选是30%(质量)以上且最优选是50%(质量)以上。
除上述酯外,按本发明的油组合物优选包含油性改进剂。添加油性改进剂能提高油的润滑性。油性改进剂的实例是(A)醇、(B)羧酸、(C)不饱和羧酸的硫化物、(D)下式(1)所表示的化合物、 (E)下式(2)所表示的化合物、(F)聚氧化烯化合物和(G)酯。这些油性改进剂将在下文分别陈述。
醇(A)可以是一元醇或多元醇,优选的醇是1到40个碳原子,优选1到25个碳原子且最优选8到18个碳原子的一元醇,因为这样得到的油组合物在润滑性方面有所提高且具有极好的工作性能。这类一元醇的实例是在描述能形成作为基础油的酯的醇时所例举的醇。这些醇可以是直链或支化的及饱和或不饱和的。但是,为达到低粘性的目的,优选使用饱和醇。
羧酸(B)可以是一元酸或多元酸,优选的醇是1到40个碳原子,优选5到25个碳原子且最优选5到20个碳原子的一元酸,因为这样得到的油组合物在润滑性方面有所提高且具有极好的工作性能。这类一元羧酸的具体实例是在描述能形成作为基础油的酯的羧酸时所例举的羧酸。这些羧酸可以是直链或支化的及饱和或不饱和的。但是,为达到低粘性的目的,优选使用饱和羧酸。
不饱和羧酸的硫化物(c)是选自羧酸(B)的不饱和羧酸的硫化物。具体实例的油酸的硫化物。
化合物(D)如下式所示:式中R1是1到30个碳原子的烃基,m1是从1到6的整数,且n1是从0到5的整数。
1到30个碳原子的烃基的实例是1到30个碳原子的直链或支化链烷基、5到7个碳原子的环烷基、6到30个碳原子的烷基环烷基、2到30个碳原子的直链或支化链烯基、6到10个碳原子的芳基、7到30个碳原子的烷芳基和7到30个碳原子的芳烷基。其中,R5优选是1到30个碳原子的直链或支化链烷基,更优选是1到20个碳原子的直链或支化链烷基,进一步优选是1到10个碳原子的直链或支化链烷基且最优选是1到4个碳原子的直链或支化链烷基。1到4个碳原子的直链或支化链烷基的实例是甲基、乙基、直链或支化丙基和直链或支化丁基。
对羟基的位置不做特殊限定。但在化合物有两个或多个羟基时,优选在相邻碳原子取代。m1优选是从1到3的整数,更优选是2。n1优选是从0到3的整数,更优选是1或2。式(1)化合物的实例是对叔丁基邻苯二酚。
化合物(E)如下式所示:
式中R2是1到30个碳原子的烃基,m2是从1到6的整数,且n2是从0到5的整数。
1到30个碳原子的烃基R2的实例是在描述式(1)的R1时所例举的烃基,因此优选的实例是与R1相同的烃基。对羟基的位置不做特殊限定。但在化合物有两个或多个羟基时,优选在相邻碳原子取代。m2优选是从1到3的整数,更优选是2。n2优选是从0到3的整数,更优选是1或2。式(2)化合物的实例是2,2-二羟基萘和2,3-二羟基萘。
聚氧化烯化合物(F)例如是下式所表示的化合物
R3O-(R4O)m3-R5 (3)式中R3和R5各自独立为氢或1到30个碳原子的烃基,R4是2到4个碳原子的亚烷基,m3选自一个能使平均分子量达到100到3500的整数;和
A-[(R6O)n4-R7]m4 (4)式中A是3到10个羟基的多元醇中羟基氢原子被全部或部分除去后得到的残基,R6是2到4个碳原子的亚烷基,R7为氢或1到30个碳原子的烃基,n4选自一个能使平均分子量达到100到3500的整数,m4表示一个与除去的氢原子数相同的数。
下面进一步解释式(3)。
优选R3和R5至少一个是氢。R3和R5为1到30个碳原子的烃基的实例是在描述R1时已例举的烃基,因而优选实例也与R1相同。R4为2到4个碳原子的亚烷基的具体实例是亚乙基、亚丙基(甲基亚乙基)和亚丁基(乙基亚乙基)。
m3选自一个能使平均分子量达到300到2000,优选500到1500的整数。
下面进一步解释式(4)。
能形成残基A的有3到10个羟基的多元醇的具体实例是多元醇类如甘油、聚甘油(甘油的二聚体到四聚体,如二甘油、三甘油和四甘油)、三羟甲基链烷(三羟甲基乙烷、三羟甲基丙烷、三羟甲基丁烷)及其二聚体到四聚体、季戊四醇、季戊四醇二聚体、1,2,4-丁三醇、1,3,5-戊三醇、1,2,6-己三醇、1,2,3,4-丁四醇、山梨糖醇、脱水山梨糖醇、山梨糖醇与甘油的缩合产物,侧金盏花醇、阿糖醇、木糖醇、甘露糖醇、艾杜糖醇、塔圉糖醇、卫矛醇及蒜糖醇,和糖类如木糖、阿糖、核糖、鼠李糖、葡萄糖、果糖、半乳糖、甘露糖、山梨糖、纤维二糖、麦芽糖、异麦芽糖、海藻糖及蔗糖。其中优选甘油、聚甘油、三羟甲基链烷及其二聚体到四聚体、季戊四醇、二聚季戊四醇、山梨糖醇和脱水山梨糖醇。
R6为2到4个碳原子的亚烷基的具体实例是描述R4所例举的亚烷基。R7为1到30个碳原子的烃基的实例是在描述R1时已例举的烃基,因而优选实例也与R1相同。m4个R7中至少一个为氢,且更优选所有R7都是氢。n4选自一个能使平均分子量达到300到2000,更优选500到1500的整数。
酯(G)可以是任何由一种一元醇或多元醇的醇与一种一元酸或多元酸的酸制成的酯。
一元醇或多元醇的实例是在描述用作基础油的酯时所例举的醇。因此,优选的实例也与描述用作基础油的酯时所例举优选醇相同。一元酸或多元酸的实例是在描述用作基础油的酯时所例举的酸。因此,优选的实例也与描述用作基础油的酯时所例举优选酸相同。
对于醇和羧酸如何组合并不做特殊限定。例如组合方式如下:
(1)一元醇与一元酸形成的酯;
(2)多元醇与一元酸形成的酯;
(3)一元醇与多元酸形成的酯;
(4)多元醇与多元酸形成的酯;
(5)一元醇和多元醇的混合物与多元酸形成的混合酯;
(6)多元醇与一元酸和多元酸的混合物形成的混合酯,
(7)一元醇和多元醇混合物与一元酸和多元酸混合物形成的混合酯。
在使用多元醇的情况下,得到的酯可以是羟基全部被酯化的全酯,或部分羟基未被酯化的偏酯。在在使用多元酸的情况下,得到的酯可以是羧基全部被酯化的全酯,或部分羧基未被酯化的偏酯。
对油性改进剂所含酯的总碳原子数不做特殊限定,但为提高润滑性和加工性,优选酯的碳原子数为7个以上,更优选9个以上且最优选11个以上。为抑制生锈和发生腐蚀现象,酯的碳原子数优选26个以下,更优选24个以下且最优选22个以下。
可以只使用一种上述油性改进剂,或者两种或多种组合使用。
对油组合物中所含油性改进剂的量不做特殊限定。但为提高润滑性和加工性,油性改进剂的总含量优选为油组合物总质量的0.1%(质量)或以上,更优选0.2%(质量)或以上,且最优选5%(质量)或以上。为抑制生锈和发生腐蚀现象,油性改进剂含量的上限为50%(质量)或以下,更优选30%(质量)或以下,且最优选20%(质量)或以下。
按照本发明,油组合物优选含抗氧剂。添加抗氧剂能够抑制由于油变质造成的发粘现象。符合条件的抗氧剂是已用于润滑油和食品添加剂的抗氧剂,如2,6-二叔丁基对甲酚(DBPC)、4,4’-亚甲基双(2,6-二-叔丁基苯酚)、4,4’-双(2,6-二叔丁基苯酚)、4,4’-硫代双(2,6-二叔丁基苯酚)、L-抗坏血酸(维生素C)、L-抗坏血酸的脂肪酸酯、生育酚(维生素E)、3,5-二叔丁基-4-羟基苯甲醚、2-叔丁基-4-羟基苯甲醚、3-叔丁基-4-羟基苯甲醚、1,2-二羟基-6-乙氧基-2,2,4-三甲基喹啉(促长啉)、2-(1,1-二甲基)-1,4-benzendiole(TBHQ)和2,4,5-三羟基丁酰苯(THBP)。
其中优选L-抗坏血酸(维生素C)、L-抗坏血酸的脂肪酸酯、生育酚(维生素E)、2,6-二叔丁基对甲酚(DBPC)、3,5-二叔丁基-4-羟基苯甲醚、2-叔丁基-4-羟基苯甲醚、3-叔丁基-4-羟基苯甲醚、1,2-二羟基-6-乙氧基-2,2,4-三甲基喹啉(促长啉)、2-(1,1-二甲基)-1,4-benzendio1e(TBHQ)和2,4,5-三羟基丁酰苯(THBP)。更优选为L-抗坏血酸(维生素C)、L-抗坏血酸的脂肪酸酯、生育酚(维生素E)、2,6-二叔丁基对甲酚(DBPC)和3,5-二叔丁基-4-羟基苯甲醚。
对抗氧剂的含量不做特殊限定。但为能使得到的油组合物避免发粘能力维持最佳,抗氧剂的含量优选为组合物总质量的0.01%(质量)以上,更优选为0.05%(质量)以上,且最优选为0.1%(质量)以上。由于不可能期望得到更好的效果,因而抗氧剂含量优选为组合物总质量的10%以下。更优选5%以下且最优选在3%以下。
按本发明的油组合物含酯作为基础油,但可进一步包含上述油性改进剂和/或抗氧剂。若需要的话,油组合物可进一步包含上面未提及但常用于切削研磨油的其它基础油和添加剂。
这类基础油可以是除酯外的矿物油或合成油。矿物油可以是将原油常压或减压蒸馏得到的润滑剂馏分经各种精炼过程如溶剂脱沥青、溶剂萃取、加氢裂化、溶剂脱蜡、催化脱蜡、加氢脱蜡、加氢精练、硫酸洗涤和白土精炼等过程的综合处理得到的石蜡油或石脑油。符合要求的合成油是聚α-烯烃类如聚丁烯、1-辛烯低聚物和1-癸烯低聚物,烷基苯类,烷基萘类,聚亚氧烷基乙二醇类和聚苯基醚类。对这类基础油的含量不做特殊限定。但是基础油含量优选为组合物总质量的90%(质量)或以下,更优选70%(质量)或以下,且最优选50%(质量)或以下。为达到可生物降解的目的,优选本发明的油组合物含仅由酯制得的基础油。
可加入油组合物中的常用添加剂的实例是含氯、硫、磷和有机金属的极压添加剂;润滑剂,如二甘醇单烷基醚;成膜剂,如丙烯酸类聚合物、石蜡、微晶蜡、含油蜡和聚烯烃蜡;水置换剂,如脂肪酸胺盐;固体润滑剂,如石墨、石墨氟化物、二硫化钼、氮化硼和聚乙烯粉末;防腐剂,如胺、链烷醇胺、酰胺、羧酸、羧酸盐、硫酸盐、磷酸和磷酸盐;金属钝化剂,如苯并三唑和噻二唑;消泡剂,如甲基硅氧烷、氟硅氧烷和聚丙烯酸酯;和无灰分散剂如链烯基丁二酰亚胺、苄胺和多链烯基胺氨基酰胺。对这些已知添加剂的含量不做特殊限定,但一般来说,所加各种添加剂的量应使添加剂总量为油组合物总质量的0.1到10%(质量)。
对本发明油组合物的运动粘度不做特殊限定。由于得到的油要易于提供给金属加工部分,故40℃下运动粘度的上限优选为200mm2/秒,更优选为100mm2/秒,进一步优选75mm2/秒,且最优选50mm2/秒,运动粘度的低限则为1mm2/秒,更优选为3mm2/秒,且最优选为5mm2/秒。实施本发明的最佳模式
参照以下的实施例和比较实施例对本发明做进一步详细说明。但是本发明并不受这些实施例的限制。本发明实施例1和比较实施例1-3
按下文所述制备本发明实施例1的油组合物和比较实施例1和2的各种油组合物:
实施例1:三羟甲基丙烷和以摩尔比7∶59∶34混合的正构C6酸、正构C8酸和正构C10酸形成的酯,40℃下的运动粘度为19.1厘沲。
比较实施例1:市售的水溶性切削油原液(比重1.04,不挥发物30%(质量)),稀释到20%(体积),表面张力36mN/m,PH=8.6
比较实施例2:市售的非水溶性切削油,40℃下的运动粘度为7.1厘沲,氯含量为3.6%(质量)。
使用上述每种油组合物进行切削操作来测定(1)刀具前倾面的摩擦系数, (2)刀具花纹的磨损宽度,和(3)最终成品表面的最高粗糙度。结果示于表1。比较实施例1的油组合物直接喷注到加工部位,而其余的油组合物则是按下文所述方式,以极微小量与大体积的空气一起提供给加工部位。实施例3是只供给空气的情况下进行同样项目的测定。为参考起见,表1还列出了每种油组合物处置方法对环境的影响程度。极微量油的供给方法
用一个高速轴承润滑使用的油-气润滑设备将油提供给切削刀具的尖端,用一个定时器操作混合阀以1分钟/喷射的固定间隔从油箱提供定量的油,油放入内通压缩空气的供油管中,使油与压缩空气混合。放油用的空气压力为0.4MPa,而压缩空气压力为0.6MPa。
(1)试验1(刀具前倾面的摩擦系数)
在下述条件下进行切削操作,1分钟后测定刀具前倾面的摩擦系数。
切削条件:
要切削的材料:S45C(碳钢)
刀具材料:超高强钢(P20)
切削速度:125m/分钟
进刀量:0.125mm/转
切削深度:1.5mm
(2)试验2(刀具花纹的磨损宽度)
在下述条件下进行切削操作,200秒后测定刀具花纹的磨损宽度。
切削条件:
要切削的材料:SNCM439(合金钢)
刀具材料:超高强钢(P20)
切削速度:250m/分钟
进刀量:0.25mm/转
切削深度:1.0mm
(3)试验3(最终成品表面的最高粗糙度)
在下述条件下进行切削操作,150秒后测定最终成品表面的最高粗糙度(μm)。
切削条件:
要切削的材料:SNCM439(合金钢)
刀具材料:超高强钢(P20)
切削速度:250m/分钟
进刀量:0.25mm/转
切削深度:1.0mm
表1本发明的实施例1比较实施例1比较实施例2比较实施例3供油量(ml/min) 0.03 4270 0.03 0试验1 1.06 1.12 1.04 1.10试验2(mm) 0.26 0.25 0.35 0.42试验3(μm) 13 14 18 23对环境的影响 小 大 大 -
从表1所示的结果可以看出,按本发明的油组合物对环境的影响很小且能使工件有很好的精加工表面,即很光滑,并能改进防刀具磨损的能力,延长刀具的使用寿命。
而使用市售的水溶性切削油的比较实施例1则对环境有很大影响,且防刀具磨损能力较差。使用市售的非水溶性切削油的比较实施例2对环境有很大影响,且防刀具磨损能力较差。未使用油的比较实施例3在工件精加工表面光滑性和防刀具磨损能力方面较差。发明实施例2到9
使用下列合成酯和/或天然油及脂肪制备表2所示的各种油组合物,试验评价其粘性,开孔试验评价润滑性能。结果示于表2。开孔试验中,所评价的比较实施例4是只吹送空气而未用油的情况。结果也示于表2。合成酯a:三羟甲基丙烷与摩尔比为7∶59∶34的正构C6酸、正构C8酸和正构C10酸混合物形成的三酯b:季戊四醇与正构C8酸形成的四酯c:三羟甲基丙烷与摩尔比为40∶60的正构C8酸和正构C18酸混合物形成的四酯d:三羟甲基丙烷与正构C10酸形成的二酯e:季戊四醇和正构C5酸形成的二酯天然油和脂α:市售的棕榈仁油β:市售的猪油γ:市售的菜籽油粘性评价
每种油组合物各5ml放入一个100mm×70mm的铝皿内,使其70℃下恒温放置336小时。然后通过手指接触方法按5级体系评价每种油组合物的粘性。试验前后用DPC测定每种油组合物的质量平均分子量,考察其变化率。
粘性5级评价体系如下:
A:完全不粘
B:完全不粘或有感觉的极轻微粘性
C:略粘
D:粘
E:很粘
润滑性评价(开孔试验)
在下述条件下,轮番使用每种油组合物和一个作对比的标准油(DIDA:己二酸二异癸酯)进行开孔试验。测定每种油组合物的开孔能,润滑按照下面的公式得到开孔能效。开孔能效越高,则得到的润滑性越好。
开孔能效(%)=(使用DIDA时的开孔能)/(使用油组合物时的开孔能)开孔条件:
刀具:丝锥M8(P=1.25m)
孔径:Φ7.2mm
工件:S25C(t=10mm)
切削速度:9.0m/分钟供油方法
油组合物:用0.2MPa的压缩空气以25ml/小时的速度吹送。
DIDA:以4.3ml/分钟的速度直接吹送,不用压缩空气。
表2 油组合物 碘值 溴值 gBr2/100g 羟值 mgKOH/g 皂化值 mgKOH/g 粘性评 价 Mn变化率 % 开孔能 效%发明实施例2a 0.2 0.1 2 340 A 0 94发明实施例3b 1 1 0.5 351 A 0.1 91发明实施例4c 18 12 3 255 A 0.2 95发明实施例5a/γ=1∶1 54 34 2 261 B 2.5 93发明实施例6α 20 14 1 245 A 0.5 92发明实施例7β 60 38 4 198 C 5.5 96发明实施例8d 2 3 130 262 A 0.3 99发明实施例9e 1 1 363 370 A 0.7 84比较实施例4仅用空气 - - - - - - 80
1)Mn变化率%表示质量平均分子量的变化率
2)发明实施例5的油组合物(α/γ)是按质量比的混合物
从表2所示结果可以看出,包括碘值和溴值分别在0到80和0到50gBr2/100g范围的酯在内的油组合物呈现低粘性。已发现,油组合物进一步具有羟值在0.01到300mgKOH/g范围的这类酯时还呈现很好的润滑性。发明实施例10到20
使用下列合成酯和/或天然油及脂肪制备表3所示的各种油组合物,试验评价其粘性,开孔试验评价润滑性能。结果示于表3。开孔试验中,所评价的比较实施例5是只吹送空气而未用油的情况。结果也示于表3合成酯a:三羟甲基丙烷与摩尔比为7∶59∶34的正构C6酸、正构C8酸和正构C10酸混合物形成的三酯b:季戊四醇与正构C8酸形成的四酯c:三羟甲基丙烷与摩尔比为40∶60的正构C8酸和正构C18酸混合物形成的四酯d:三羟甲基丙烷与正构C10酸形成的二酯f:新戊二醇与油酸形成的二酯g:季戊四醇与油酸形成的四酯h:甘油与油酸形成的单酯(羟值:315mgKOH/g,皂化值:157mgKOH/g,碘值1.72,溴值:45gBr2/100g)天然油脂α:市售的棕榈仁油β:市售的猪油γ:市售的菜籽油δ:市售的高油酸向日葵油润滑性评价(开孔试验)
在下述条件下,轮番使用每种油组合物和一个作对比的标准油(DIDA:己二酸二异癸酯)进行开孔试验。测定每种油组合物的开孔能,润滑按照下面的公式得到开孔能效。开孔能效越高,则得到的润滑性越好。
开孔能效(%)=(使用DIDA时的开孔能)/(使用油组合物时的开孔能)开孔条件:
刀具:丝锥M8(P=1.25m)
孔径:Φ6.8mm
工件:S25C(t=10mm)
切削速度:9.0m/分钟供油方法
油组合物:用0.2MPa的压缩空气以25ml/小时的速度吹送。DIDA:以4.3ml/分钟的速度直接吹送,不用压缩空气。粘性评价
每种油组合物各5ml放入一个100mm×70mm的铝皿内,使其70℃下恒温放置168小时。然后通过手指接触方法按5级体系评价每种油组合物的粘性。试验前后用DPC测定每种油组合物的质量平均分子量,考察其变化率。
粘性5级评价体系如下:
A:完全不粘
B:完全不粘或有感觉的极轻微粘性
C:略粘
D:粘
E:很粘
表3 油组合物 羟值 mgKOH/g 皂化值 mgKOH/g 碘值 溴值gBr2/100g 开孔能 效% 粘性评 价 Mn变化 率%发明实施例10a 2 340 0.2 0.1 90 A 0发明实施例11b 0.5 351 1 1 89 A 0发明实施例12c 3 255 18 12 92 A 0.2发明实施例13a/γ=1∶1 2 261 54 34 90 B 2.1发明实施例14α 1 245 20 14 89 A 0.3发明实施例15β 4 198 60 38 93 B 2.9发明实施例16f 3 177 85 55 93 B 3.8发明实施例17δ 1 190 87 57 90 B 4.2发明实施例18d 130 262 2 3 95 A 0.5发明实施例19g 1 188 84 55 90 B 4.9发明实施例20a/h=9∶1 35 348 11 8 95 A 0.3比较实施例5仅用空气 - - - - 74 - -
3)Mn变化率%表示质量平均分子量的变化率
4)发明实施例13和20的油组合物(α/γ,a/h)是按质量比的混合物
从表3所示结果可以看出,包括羟值在0.01到300mgKOH/g范围的酯在内的油组合物呈现润滑性提高的现象,包括碘值和溴值分别在0到80和0到50gBr2/100g范围的酯在内的油组合物呈现低粘性。包括两类不同的酯且将其调和到羟值在0.01到300mgKOH/g范围时呈现润滑性提高的现象。发明实施例21到40及参比实施例1和2
按表4和5所示配方,使用下述作为基础油的酯、油性改进剂和抗氧剂制备各种油组合物。通过开孔试验评价润滑性能,并评价每种油组合物的粘性。
表4示出发明实施例21到40及参比实施例1,所有的实施例均使用合成酯作为基础油。参比实施例1是一种仅包括合成酯a的油组合物。
表5示出发明实施例21到40及参比实施例2,所有的实施例均使用天然脂肪和油类的酯γ作为基础油。参比实施例2是一种仅包括天然脂肪和油类的酯γ的油组合物。
所评价的比较实施例6是仅吹送空气的情况,结果也示于4。润滑性评价(开孔试验)
在下述条件下,轮番使用每种油组合物和一个作对比的标准油(DIDA:己二酸二异癸酯)进行开孔试验。测定每种油组合物的开孔能,润滑按照下面的公式得到开孔能效。开孔能效越高,则得到的润滑性越好。
开孔能效(%)=(使用DIDA时的开孔能)/(使用油组合物时的开孔能)开孔条件:
刀具:丝锥M8(P=1.25m)
孔径:Φ6.8mm
工件:S25C(t=10mm)
切削速度:9.0m/分钟 供油方法
油组合物:用0.2MPa的压缩空气以25ml/小时的速度吹送。
DIDA:以4.3ml/分钟的速度直接吹送,不用压缩空气。粘性评价
每种油组合物各5ml放入一个100mm×70mm的铝皿内,使其70℃下恒温放置168小时。然后通过手指接触方法按5级体系评价每种油组合物的粘性。试验前后用DPC测定每种油组合物的质量平均分子量,考察其变化率。
粘性5级评价体系如下:
A:完全不粘
B:完全不粘或有感觉的极轻微粘性
C:略粘
D:粘
E:很粘
表4
合成酯a5)用作基础油 油性改进剂 抗氧剂 开孔能效 %粘性评 价 Mn变化率%6) 类型 用量(重%)发明实施例21 正十二烷醇 10 - 104 A 0.1发明实施例22 油醇 10 - 101 A 1.8发明实施例23 硫化油酸 5 - 98 A 1.7发明实施例24 油酸 10 - 106 B 2.3发明实施例25 聚丙二醇单丁基醚 10 - 99 A 0.1发明实施例26 2,2-二羟基萘 0.1 - 99 A 0发明实施例27 2,3-二羟基萘 1 - 105 A 0发明实施例28 对叔丁基邻苯二酚 1 - 103 A 0.1发明实施例29 正十二烷醇 10 维生素 E(1) 103 A 0.1发明实施例30 正十二烷醇 10 DBPC(1) 101 A 0.1参比实施例17) - - - 90 A 0比较实施例68) - - - 74 - -
5)合成酯a:三羟甲基丙烷与摩尔比为7∶59∶34的正构C6酸、正构C8酸和正构C10酸混合物形成的三酯(碘值:0.2,溴值:0.1gBr2/100g,羟值:2mgKOH/g,皂化值:340mgKOH/g)。
6)Mn变化率%表示质量平均分子量的变化率。
7)参比实施例1是仅包括合成酯a的油组合物的实例。
8)比较实施例6是不用油组合物仅送入空气的实例。
表5
天然脂肪和油γ9)用作基础油 油性改进剂 抗氧剂 开孔能 效% 粘性评 价 Mn变化率 %10) 类型 用量(重%)发明实施例31 正十二烷醇 10 - 104 B 4.1发明实施例32 油醇 10 - 103 C 8.2发明实施例33 硫化油酸 5 - 101 C 8.8发明实施例34 油酸 10 - 101 C 9.1发明实施例35 聚丙二醇单丁基醚 10 - 98 B 4.8发明实施例36 2,2-二羟基萘 0.1 - 98 B 4.5发明实施例37 2,3-二羟基萘 1 - 104 B 3.7发明实施例38 对叔丁基邻苯二酚 1 - 102 B 3.9发明实施例39 正十二烷醇 10 维生素 E(1) 102 A 1.2发明实施例40 正十二烷醇 10 DBPC(1) 102 A 1.7参比实施例211) - - - 92 C 7.9比较实施例612) - - - 74 - -
9):天然油脂γ:市售的菜油(碘值:114,溴值:73gBr2/100g,羟值:3mgKOH/g,皂化值:173mgKOH/g)。
10)Mn变化率%表示质量平均分子量的变化率。
11)参比实施例2是仅包括天然油脂的油组合物的实例。
12)比较实施例6是不用油组合物仅送入空气的实例。
从表4和5所示结果可以看出,按本发明的油组合物,即发明实施例21到40比仅包括酯(表4为合成酯,表5为天然油脂)作为基础油的参比实施例1和2的油组合物呈现出较高的润滑性和较低的粘性。进一步包括抗氧剂的各个油组合物,即发明实施例39和40的粘性进一步降低。发明实施例41到56及参比实施例3
按表6所示配方,使用作为基础油的酯γ(天然油脂)和合成酯以及抗氧剂制备各种油组合物。评价每种油组合物的粘性,结果示于表6。还评价了仅包括酯γ(天然油脂)作为基础油的油组合物。结果也示于表6。粘性评价
每种油组合物各5ml放入一个100mm×70mm的铝皿内,使其70℃下恒温放置一个月。然后通过手指接触方法按5级体系评价每种油组合物的粘性。试验前后用DPC测定每种油组合物的质量平均分子量,考察其变化率。
粘性5级评价体系如下:
A:完全不粘
B:完全不粘或有感觉的极轻微粘性
C:略粘
D:粘
E:很粘
表6 基础油 抗氧剂粘性评 价 Mn变化率 % 类型 用量(重%)发明实施例41γ13) DBPC 0.1 C 6.8发明实施例42γ DBPC 1 B 4.1发明实施例43γ DBPC 10 A 0.8发明实施例44γ DBPC 0.1 C 8.2发明实施例45γ 2,6-二叔丁基-4-苯甲醚 1 A 1.1发明实施例46γ 2,6-二叔丁基-5-苯甲醚 0.1 C 7.5发明实施例47γ 维生素C 1 A 1.9发明实施例48γ 维生素C 0.1 C 6.8发明实施例49γ 抗坏血酸的脂肪酸酯 1 A 1.4发明实施例50γ 维生素E 0.1 C 7.1发明实施例51γ 维生素E 1 A 0.9发明实施例52a14) 维生素E 10 A 0.5发明实施例53a DBOC 0.1 A 0.3发明实施例54a DBPC 1 A 0.2发明实施例55a 维生素E 0.1 A 0.3发明实施例56a 维生素E 1 A 0.1发明实施例57a/h=9/115)质量比混合 维生素E 0.1 A 1.4发明实施例58a/h=9/115)质量比混合 维生素E 1 A 0.5参比实施例316)γ - E 75.113):γ(天然油脂):市售的菜油(碘值:114,溴值:73gBr2/100g,羟值:3mgKOH/g,皂化值:173mgKOH/g)。14)a(合成酯):三羟甲基丙烷与摩尔比为7∶59∶34的正构C6酸、正构C8酸和正构C10酸混合物形成的三酯(碘值:0.2,溴值:0.1gBr2/100g,羟值:2mgKOH/g,皂化值:340mgKOH/g)。15)h(合成酯):甘油与油酸形成的单酯(羟值:315mgKOH/g,皂化值:157mgKOH/g,碘值1.72,溴值:45gBr2/100g)16)仅包括天然油脂γ的油组合物17)Mn变化率%表示质量平均分子量的变化率。
从表6所示结果可以看出,比起仅用酯作为基础油的油组合物,包括作为基础油的酯和抗氧剂的油组合物(发明实施例41到58)的很难发粘。工业应用
使用酯作为基础油能提供一种适合在油以极微小的量与压缩流体一起提供给金属工件要切削研磨部位的极微量润滑体系中使用的切削研磨油组合物。特别是使用碘值和/或溴值在特定范围内的酯可改进油组合物的粘性,从而避免因油组合物的粘着及由此造成加工性变差而导致的加工工具处理能力降低的现象。并且使用羟值和/或皂化值在特定范围内的酯能够提供一种润滑性得以提高的油组合物,从而可以更有效地进行切削研磨操作。
向作为基础油的酯内添加油性改进剂能够提供一种润滑性得到进一步提高的油组合物。在此情况下,使用羟值和/或皂化值在特定范围内的酯能够提供一种润滑性得以进一步提高的油组合物。并且使用碘值和/或溴值在特定范围内的酯可改进油组合物的粘性以及润滑性。
向作为基础油的酯内添加抗氧剂能够提供一种很难变粘的油组合物。在此情况下合并使用油性改进剂能够提供一种润滑性和粘性得到改进提高的油组合物。在这种情况下,使用羟值、皂化值、碘值和溴值在特定范围内的酯可提供一种具有极好润滑性和低粘性的油组合物。