成形制品的生产方法 本发明涉及包括对1个或多个含聚烯烃纤维的纤维层进行压缩的生产成形制品的方法。本发明还涉及可按本发明方法制取的成形制品及其在防弹领域的应用。
此种方法可从WO97/00766得知。文中描述道,防弹品质非常好的复合材料可按这样一种方法来制取:将彼此重叠的纤维层放在高温和非常高压力下压缩,随后在压力下将它们冷却。防弹品质用比能量吸收(SEA)来表示,这是一种成形制品在受到抛射体冲击后,每单位面积密度成形制品能够吸收的能量大小的度量。SEA被定义为0.5.m.v502/AD,其中m是抛射体质量。V50是这样一种朝成形制品发射的抛射体速度,在此速度条件下,有50%的抛射体刚好穿透该成形制品。AD是成形制品的面积密度。SEA在这里和下文中每当提到时应理解为受到AK-47软钢芯(MSC)弹头冲击时的SEA,除非另行指出。
然而,始终存在着对不断改进该成形制品防弹品质的需要。生产此类成形制品的已知方法的缺点在于,所要求的非常高压力常常难以达到,以及获得的成形制品的防弹品质不可接受,尤其是当压力比较低时。已知方法的另一个缺点是,它局限于UD(单向)复合材料。因此,本发明的目地是提供一种生产防弹品质改进的成形制品的方法,尤其是在相同或更低压力下。
这一目的令人惊奇地由本发明方法实现了,方法的特征在于,其中的纤维层包含0.02~25wt%聚烯烃的溶剂。“溶剂含量”在这里以及下文中每次出现应理解为溶剂在纤维层的聚烯烃纤维与溶剂总重量中所占重量百分率。
按本发明方法制取的含溶剂成形制品竟然具有较高SEA实在令人惊奇,因为溶剂本身本不具有防弹效果,因此不可能对保护水平做出贡献,同时它确实提高面积密度,故而理应降低SEA。含溶剂纤维产生较好防弹品质之所以令人惊奇还在于,已知溶剂的存在会降低纤维的机械性能(特别是由于蠕变速率较高,抗张强度和抗张模量较低),然而为达到较高防弹品质,却要求机械性能尽可能好。
本发明方法另一个优点是,单向成形制品中基质百分率可选择得比较低,而不会有纤维层脱层的危险,就是说,处于相同ILSS(层间剪切强度)。这样做还能提高成形制品的SEA。单向成形制品是一种由纤维在基质中构成的复合材料,其中纤维层中的纤维沿单向取向并且与相邻纤维层中的纤维构成一定角度。由于溶剂的存在,基质含量可减少相当于溶剂含量的2~20倍的幅度,相当于原来基质含量的10、15或甚至20%以上。在最优选的防弹成形制品中,正如下文将进一步描述的,基质含量例如可从一般值的约22~30wt%降低到小于20,优选小于18,更优选甚至小于17wt%。
“纤维”是指长而细的物体,例如单丝、复丝纱、带、短纤维、短纤维纱等。纤维原则上可具有任何随机选择的断面形状。“纤维层”应理解为沿二维延伸的含纤维的扁平构造,例如机织物、针织物、毛毡、单向取向纤维的层等。纤维层可以含有,也可以不含基质材料。本发明的效果在成形制品由单层构成的情况下已经显示出来了,但一般地,成形制品将是由2或更多纤维层构成的叠片,并借助压缩变得致密的。成形制品的例子是板,不论弯曲与否,头盔、胸甲、门板等。可按本发明制取的该成形制品尤其适合用于防弹领域。
各种各样的聚烯烃适合用于本发明方法中。尤其适合作为该聚烯烃的是聚乙烯和聚丙烯的均聚物和共聚物。另外,所用聚烯烃可包含少量1种或多种其他聚合物,特别是其他链烯-1聚合物。好的结果是当选用线型聚乙烯(PE)作为聚烯烃时达到的。线型聚乙烯在这里应理解为每100个碳原子具有少于1个侧链,优选每300个碳原子少于1个的聚乙烯,它另外可包含最高5mol%1种或多种与之共聚的其它链烯,例如丙烯、丁烯、戊烯、4-甲基戊烯或辛烯。除了聚烯烃之外,该纤维还可包含少量此类纤维通常使用的添加剂,例如抗氧剂、纺丝油剂、热稳定剂、颜料等。
为取得良好防弹效果,纤维优选是高度取向的。在本文的范围内,“高度取向的”应理解为至少500g/d(克/旦)的模量。优选的是,模量至少是800,更优选至少1000,最优选至少1200g/d。抗张强度优选大于30g/d。抗张强度(或强度)和抗张模量(或模量)按照ASTM D885M的规定定义和测定,采用500mm纤维的名义隔距(标尺)长度,50%/min的滑动横梁速度和Instroon2714夹具。测定前,纤维加捻到31捻回/米。根据测定的应力-应变曲线,模量可作为0.3~1%应变之间的梯度来确定。为计算模量和强度可将测定的拉伸力(以cN为单位)除以纤度(以dtex(分特)为单位),后者可通过称取10m纤维的重量来确定。
聚烯烃纤维,特别是聚乙烯纤维,优选具有大于5dl/g的特性粘度(IV)。优选的是,该聚烯烃纤维是特性粘度至少是5dl/g、抗张模量至少是800g/d的高度取向聚乙烯纤维。由于具有长分子链,具有这样的IV的聚烯烃纤维具有非常好的机械性能,例如高抗张强度、模量和断裂能量吸收。这也是为什么更优选的聚烯烃是IV大于10dl/g的聚乙烯的原因。IV是根据方法PTC-179(Hercules公司,1982-04-29修订版)的规定测定的,测定条件是:135℃,在萘烷中,溶解时间为16小时,抗氧剂是DBPC,用量是2g/l溶液;采用将不同浓度下的粘度外推至零浓度求出。
优选的是,本发明纤维的(单丝)纤度小于5旦,更优选小于3旦/根丝。现已发现此种纤维的防弹性能比较好。
为达到本发明的效果,聚烯烃纤维是如何制造的并不重要。生产高度取向纤维的已知技术例如是凝胶纺丝(Smith和Lemstra),原封反应器粉末的固相加工(Chanzy和Smith),熔融挤出(Ward)或者通过从溶液中再结晶的粉末的挤出(Kanamoto),再配合以1个或多个牵伸步骤以提高取向度。
溶剂可存在于纤维表面上和/或内部,并且可采用不同的方式加入到纤维层中。它可以是通过基本不含溶剂的纤维,如上所述,与溶剂进行接触,例如通过喷涂、浸渍或舔涂而施加到纤维上的。这可以在基本不含溶剂的纤维已成形为纤维层之前或以后实施。特别是,在施涂到纤维层上并且以低溶剂含量,大约低于1wt%,施涂的情况下,优选让纤维与溶剂和稀释剂的混合物相接触,施涂到纤维上以后再将稀释剂移出。这样做的优点是分布得更均匀。稀释剂例如是分布后很容易通过蒸发赶出的挥发性物质。
在本发明方法的优选实施方案中,该溶剂引入到纤维层中是由于纤维层包含一种溶剂含量介于0.02~25wt%的含溶剂聚烯烃纤维所致。溶剂存在于纤维内部的优点之一是,生产过程因存在于纤维表面的溶剂被擦去而受到污染的程度较轻,更重要的是,在较低溶剂含量条件下就可获得可比的防弹品质。在该实施方案中,非常好的防弹效果在溶剂含量介于0.02~5wt%的条件下已可实现。
含溶剂纤维可通过纤维与溶剂相接触,并让溶剂渗透到纤维内来制备。这样做的缺点是,需要几个工艺步骤,并且附着的溶剂将不得不除掉,以防止污染。为克服这一缺点,此种纤维优选通过下述方法直接生产:将聚烯烃和溶剂的溶液纺丝形成丝束,并将它们牵伸到高度取向状态,其间所使用的溶剂不全部移出(如同一申请人尚未公开的申请中所描述的那样)。在该方法的最优选实施方案中,溶剂向纤维层中的引入是通过让纤维层包含含溶剂高度取向聚烯烃纤维实现的,其中该纤维的特性粘度至少是5dl/g;抗张强度至少是30g/d;抗张模量至少是800g/d;并包含0.05~25wt%该聚烯烃的溶剂(相对于纤维总重量),其制备过程包括,将聚烯烃与溶剂的溶液进行纺丝成形为丝束,然后将它们牵伸为高度取向状态,其间所用溶剂不全部从纤维中移出。
“溶剂”在这里和下文中应理解为能溶解所述聚烯烃的物质。聚烯烃的适宜溶剂乃是本领域技术人员已知的。它们,例如可从《聚合物手册》(J.Brandrup和E.H.Immergut,第3版,第VII章,pp.379~402)中选择。优选的是,相对于所用聚烯烃,特别是聚乙烯,所采用的溶剂的Chi-参数小于0.5,更优选小于0.45,进一步优选小于0.4,最优选小于0.35。溶剂的chi-参数描述在《溶解度参数及其他内聚参数手册》第2版中,Allan Barton出版,p.386。这样做的优点是,在相同溶剂含量条件下,质量的改善程度更大并且,在细节上已做必要修改,为达到相同程度防弹性能的改善需要较少溶剂和/或较低压力和较短压缩时间。聚烯烃,特别是聚乙烯的适宜溶剂例子是,分别或彼此组合起来:萘烷、1,2,3,4-四氢化萘、甲苯,低级正链烷如己烷,(对)二甲苯、石蜡油、异三十烷、矿物油、石蜡、环辛烷。优选的是,使用萘烷,最优选石蜡油。
在本发明方法中,压缩前纤维包含0.02~25wt%聚烯烃用溶剂。溶剂含量若低于0.02wt%,将没有或实际上没有效果。含量若高于25wt%,缺点是,它们通常将不再对防弹性能的改善继续做出贡献,或者甚至有损。SEA随着溶剂含量增加到某一最佳溶剂含量,此时,对能量吸收的贡献不再能抵消面积密度的增加,于是SEA再度下降。尽管由于溶剂比纤维便宜,最终成形制品含有高于最佳溶剂含量的溶剂可能是有利的,但溶剂含量的选择优选是获得高防弹性能的最佳值。最佳溶剂含量还依赖于纤维构型、所选溶剂品质以及压缩条件。例如,为达到防弹性能上的相同改善,非常好的溶剂如石蜡和萘烷的需要量将低于低品质溶剂,而且溶剂的最佳量,在较低压力下将比在较高压力下高。倘若溶剂是通过将它分布到单向纤维层上的基本不含溶剂的纤维表面,则溶剂含量优选得高一些,例如大于0.5,优选大于1,进一步优选大于1.5wt%。在压缩机织物的过程中,溶剂含量优选大于1wt%,更优选大于1.5wt%,最优选大于2wt%,更最优选大于3wt%。本领域技术人员很容易确定每种条件下的最佳量。在最优选的实施方案中,其中纤维层包含单向、含溶剂高度取向聚乙烯纤维,同时溶剂的chi-参数小于0.5,则良好防弹性能在0.05~5wt%这样比较低的溶剂含量条件下已可取得。优选的是,纤维层的溶剂含量介于0.1~2wt%,更优选0.1~1.5wt%,进一步优选0.1~1.2wt%,最优选0.05~1wt%溶剂。以上所提到的优选全部基于为获得尽可能高SEA来考虑的。
虽然其他实施方案并不排除,但通常并且优选的是,出现在平衡中所有的纤维层基本相同,同样,上述溶剂相对于整个成形制品的含量也如此。本发明方法中溶剂含量是通过加入量的选择来选择的。纤维的、纤维层的或成形制品的溶剂含量可按已知方式确定,例如直接地通过红外技术、C13NMR,或者间接地——通过溶剂移出,例如通过萃取或顶空气相色谱法或者所述技术的组合来测定。
在本发明方法的一种实施方案中,溶剂是挥发性溶剂。该挥发性溶剂可留在成形制品中。特别是在薄成形制品的情况下,例如最高2mm,优选最高1mm,更优选最高0.5mm,使用挥发性溶剂,并且在压缩后将其完全和部分地从成形制品中移出可能有利。结果,可到达较高SEA。优选的是,如此获得的成形制品中残留挥发性溶剂的含量最终应低于2%,更优选最高是1.5%,最优选最高1%,因为这样做,出现塑性屈服、水泡、脱层、臭味的危险比较小。
然而,要赶出溶剂,特别是在成形制品较厚的情况下,实际上常常是困难并且经济上没有吸引力。因此,优选将溶剂的全部或一部分留在成形制品中。在本发明更优选的实施方案中,特别是在成形制品较厚的情况下,溶剂是不挥发溶剂。与挥发性溶剂相比,这样做的优点是,起泡的危险较小,并且成形制品具有较好的稳定性,结果,所获成形制品的防弹品质将较长时间内维持高水平。另一个优点是,成形制品没有很难闻的气味,无毒或不损害健康,这一点对作为身体保护用途尤其重要。不挥发溶剂应理解为在低于聚烯烃熔融温度的温度实际上不蒸发的溶剂。优选的是,它们是沸点显著地比纤维熔融温度,优选高出50~100℃的溶剂。最优选的是,该溶剂是不挥发石蜡。其优点在于,不挥发石蜡,特别是石蜡油(或矿物油)是具有上述优点的较好溶剂,降低成形制品稳定性的危险最小。该溶剂也可以是1种或多种适宜溶剂的混合物。在本发明另一种实施方案中,该溶剂是不挥发溶剂,优选石蜡,与挥发性溶剂的混合物,挥发性溶剂在制成的成形制品中的浓度最高为2%,更优选最高1.5%,最优选最高1%(相对于总纤维重量)。混合物的优点在于其溶剂品质比非挥发性溶剂组分好,稳定性好。
在本发明方法中,优选采用尽可能高的压力,例如按WO97/00766中所述。所给出的压力介于10~165巴。压缩温度应选择得高,但不应高到因纤维软化或熔融导致防弹性能再次下降的程度。WO97/00766描述道,对于聚乙烯纤维,压缩温度介于110~130℃。一般而言,125℃被认为是安全的上限。令人惊奇地发现,最佳效效果恰恰是,在纤维层中溶剂存在下,在更高温度与更高压力的组合时获得的。在本发明方法中,溶剂含量优选具有0.05~5wt%;压缩温度高于125℃;压力高于165巴。在上述压缩条件组合下取得如此好的结果是令人惊奇的,因为当压力高于165巴时没有观察到过性能方面的明显提高,而另一方面,当温度高于125℃时,性能通常会下降。优选的是,压缩温度,依次递增地优选高于130、135、140、145或甚至150℃,并配合以压力依次递增地优选高于175、200、250、275或甚至300巴。最高结果是在150℃和300巴,在0.05~2wt%萘烷或石蜡存在下取得的。按该方法生产的单向复合材料具有非常好的防弹性能,最高达145J/m2/kg甚至更高。
本发明还涉及一种可按上面所描述的本发明方法制取的成形制品。特别是,本发明涉及包含1个或多个重叠压缩的纤维层的成形制品,纤维层包含聚烯烃纤维以及0.05~25wt%该聚烯烃的溶剂。用于防弹成形制品的优选实施方案直接来源于并因此被描述在上面的优选实施方案中。本发明成形制品与已知成形制品相比(在面积密度可比的条件下)具有较高防弹保护水平。优选的是,本发明防弹成形制品当被AK47MSC子弹击中时,具有至少115J/kg/m2,更优选大于120J/kg/m2,进一步优选大于135J/kg/m2,最优选大于145J/kg/m2的比能量吸收(SEA)。
最佳实施方案是一种包含1个或多个由彼此重叠地压缩的纤维层的成形制品,纤维层包含高度取向聚乙烯纤维和最高30wt%基质材料(相对于纤维层的总重量),纤维层中的纤维处于单向取向并且与相邻纤维层中的纤维构成一定角度,其中该纤维的特征是:特性粘度至少是5dl/g;抗张模量至少是800g/d;纤度小于5旦/根丝;并且包含0.05~5wt%不挥发溶剂,该成形制品当被AK47MSC子弹击中时,具有至少115J/kg/m2的比能量吸收(SEA)。
本发明还涉及本发明成形制品在防弹领域中的应用,例如作为头盔、门板、地板、椅子和门铠甲,放在汽车、坦克、武装直升机等里面,防弹背心插入板等。
虽然本文专门描述了含聚烯烃纤维和该聚烯烃的溶剂的防弹成形制品,但公开的内容也类似地适用于包含可溶性纤维和所涉及纤维的溶剂的其他成形制品。
下面将参考实施例来说明本发明。
机织物:对比实验A
不含石蜡的SK76 Dyneema纱线被机织为纬密和经密各为8根/厘米的简单织物。该机织物的面积密度为318g/m2。将20层该织物压缩形成平板,每层之间夹着60μm Stamylex(LLDPE)薄膜。压力为10巴,温度为125℃,压缩时间为20min。该压缩时间结束后,在维持压力的情况下将板冷却。按照Stanag2920标准采用17格令FSP(子弹)测定V50。该V50是532m/s,对应于21.4J/m2的能量吸收(SEA)。
所用SK76纱线的性质是:
强度36.0cN/dtex
模量:1180cN/dtex
强度和模量的测定采用Zwick拉伸试验机进行,其中用Instroon2714夹具、500mm纤维握持长度以及250mm/min的试验拉伸速率。模量是在0.3~1%之间测定的。
机织物:实例1
制备具有特定石蜡含量的SK76 Dyneema纱线:由加入了特定数量石蜡的溶剂按凝胶纺丝法在SK76纱线通常使用的条件下制成。由Merck供应的Dunflussig石蜡,动态粘度25~80MPa/s、密度0.818~0.875g/cm3,用作该石蜡。规定的石蜡含量根据加入到溶剂中的石蜡的百分率来计算并假定该石蜡在纤维生产过程中完全留在纤维内。
按照对比例A那样制备板并进行试验,不同的是,采用的SK76纱线含有大约0.8%石蜡溶剂。该纱线的强度、模量与无溶剂纱线一样。机织物的面积密度是302g/m2。含溶剂板测定得到的V50是560m/s,对应于24J/kg/m2的能量吸收。
斜纹机织物:对比实验B
不含溶剂的合股Dyneema SK75纱线被机织为纬密和经密各3.75根/厘米的3/1组织式样、面积密度276g/m2的斜纹织物。22层该织物压缩成为板,每层之间夹着30μm Stamylex(LLDPE)薄膜,按照实例1中规定的那样试验。V50是534m/s,对应于23.8J/kg/m2的SEA。
所用SK75纱线的性质(按对比实验A那样测定)是:
强度35.1cN/dtex
模量:1130cN/dtex
斜纹机织物:实例2
按对比例B那样制备斜纹机织物,只是现在使用的SK75纤维含有约2000ppm萘烷,按顶空气相色谱术测定。虽然纱线性质相同,但板的V50提高了,即,达到600m/s,对应于28J/kg/m2的SEA。
UD(单向)复合材料:对比例C和实例3~7
如实例1所描述的那样制备的不同石蜡含量的SK76和SK75Dyneema纱线经过加工成形为单层,由单向取向纱线结合在Kraton基质(异丙烯-苯乙烯共聚物,壳牌提供)中构成。4片单层制成一个“单层叠片”,其中每个单层内的纤维方向与相邻层内纤维方向构成90°角。75片此种单向叠片在125℃和165巴压力下压缩35min而制成防弹成形制品。该成形制品在维持压力的情况下用水冷却。成形制品按Stanag2920标准采用AK47MSC圆头子弹进行试验。该纱线性质未因石蜡的加入而受影响。 纤维石蜡(%)V50(m/s) C SK75 0<710 3 SK75 0.4 730 4 SK75 0.8 780 5 SK76 0.4 750 6 SK76 0.8 780 7 SK76 1.2 810 8 SK76 0.8 820
单向复合材料:实例8
按照实例3~7制备单向复合材料并进行试验,其面积密度等于19kg/m2;石蜡油含量0.8wt%;在300巴压力和150℃的压缩温度下进行压缩。结果在上表中给出。