书签 分享 收藏 举报 版权申诉 / 24

直接变换接收机.pdf

  • 上传人:大师****2
  • 文档编号:1341007
  • 上传时间:2018-04-16
  • 格式:PDF
  • 页数:24
  • 大小:944.32KB
  • 摘要
    申请专利号:

    CN98109216.0

    申请日:

    1998.05.12

    公开号:

    CN1202768A

    公开日:

    1998.12.23

    当前法律状态:

    终止

    有效性:

    无权

    法律详情:

    未缴年费专利权终止IPC(主分类):H04B 1/26申请日:19980512授权公告日:20030305终止日期:20120512|||授权|||公开|||

    IPC分类号:

    H04B1/26

    主分类号:

    H04B1/26

    申请人:

    松下电器产业株式会社;

    发明人:

    片山浩; 安倍克明; 今川保美

    地址:

    日本国大阪府

    优先权:

    1997.05.13 JP 122292/97

    专利代理机构:

    上海专利商标事务所

    代理人:

    李湘

    PDF完整版下载: PDF下载
    内容摘要

    本发明提供一种直接变换接收机,它包括第一本地振荡器;90度移相器以相移第一振荡器信号90度的第二振荡器信号;将接收的RF信号与第一本地振荡器信号混频的第一混频器;将接收的RF信号与第二本地振荡器信号混频的第二混频器;处理第一混频器输出信号的第一低通滤波器;处理第二混频器输出信号的第二低通滤波器;解调器;频率误差检测器;振荡器控制器;以及滤波器控制器。

    权利要求书

    1: 一种直接变换接收机,其特征在于包括: 产生变频的第一本地振荡器信号的第一本地振荡器; 与第一本地振荡器相连的90度相移器以相移第一振荡器信号90度从而将第 一振荡器信号转换为第二振荡器信号; 与第一本地振荡器信号相连以将接收的RF信号与第一本地振荡器信号混频 的第一混频器; 与第二本地振荡器信号相连以将接收的RF信号与第二本地振荡器信号混频 的第二混频器; 与第一混频器相连以处理第一混频器输出信号的第一低通滤波器,第一低通 滤波器具有可控的截止频率; 与第二混频器相连以处理第二混频器输出信号的第二低通滤波器,第二低通 滤波器具有可控的截止频率; 与第一和第二低通滤波器相连以从第一和第二低通滤波器的输出信号中恢 复接收到的RF信号代表的信息信号的解调器; 与解调器相连以检测接收到的RF信号载波频率与第一本地振荡器信号之间 误差从而响应解调器恢复的信息信号的频率误差检测器; 与第一本地振荡器和频率误差检测器相连以控制第一局部振动器信号频率 从而响应频率误差检测器检测到的误差的振荡器控制器;以及 与第一和第二低通滤波器以及频率误差检测器相连以控制第一和第二低通 滤波器截止频率从而响应频率误差检测器检测到的误差的滤波器控制器。
    2: 如权利要求1所述的直接变换接收机,其特征在于频率误差检测器包含积 分器,用来在长于信息信号发送数据速率周期的给定时间间隔上积分信息信号的 电压。
    3: 如权利要求1所述的直接变换接收机,其特征在于频率误差检测器包含: 峰值检测器,用来检测在长于信息信号发送数据速率周期的给定时间间隔内出现 的信息信号峰值电压;谷值检测器,用来检测在长于信息信号发送数据速率周期 的给定时间间隔内出现的信息信号谷值电压;以及加法器,用来将峰值检测器检 测到的峰值电压与谷值检测器检测到的谷值电压相加。
    4: 如权利要求1所述的直接变换接收机,其特征在于滤波器控制器包含在至 少两个不同数值之间改变的第一和第二低通滤波器截止频率以响应频率误差检 测器检测到的误差的装置。
    5: 如权利要求1所述的直接变换接收机,其特征在于滤波器控制器包括根据 频率误差检测器检测到的误差连续改变第一和第二低通滤波器截止频率的装 置。
    6: 一种直接变换接收机,其特征在于包括: 产生变频的第一本地振荡器信号的本地振荡器; 与第一本地振荡器相连的90度相移器以相移第一振荡器信号90度从而将第 一振荡器信号转换为第二振荡器信号; 与第一本地振荡器信号相连以将接收的RF信号与第一本地振荡器信号混频 的第一混频器; 与第二本地振荡器信号相连以将接收的RF信号与第二本地振荡器信号混频 的第二混频器; 与第一混频器相连以处理第一混频器输出信号的第一低通滤波器,第一低通 滤波器具有可控的截止频率; 与第二混频器相连以处理第二混频器输出信号的第二低通滤波器,第二低通 滤波器具有可控的截止频率; 与第一和第二低通滤波器相连以从第一和第二低通滤波器的输出信号中恢 复接收到的RF信号代表的信息信号的解调器; 与解调器相连以响应解调器恢复的信息信号而检测接收到的RF信号载波频 率与第一本地振荡器信号之间误差的频率误差检测器; 与第一本地振荡器和频率误差检测器相连以响应频率误差检测器检测到的 误差而控制第一局部振动器信号频率的振荡器控制器;以及 与第一和第二低通滤波器以及解调器相连以判断解调器恢复的信息信号中 是否存在给定信号模式并根据判断结果控制第一和第二低通滤波器截止频率的 信号处理器。
    7: 一种直接变换接收机,其特征在于包括: 产生本地振荡器信号的本地振荡器; 与本地振荡器相连以将接收的RF FSK信号与本地振荡器信号混频的混频 器; 与混频器相连以处理混频器输出信号的低通滤波器,低通滤波器具有可变的 截止频率; 用来检测接收到的RF FSK信号载波频率与本地振荡器信号之间误差的第一 装置;以及 与低通滤波器相连以根据第一装置检测到的误差改变低通滤波器截止频率 的第二装置。
    8: 如权利要求7所述的直接变换接收机,其特征在于进一步包括与本地振荡 器和第一装置相连以根据第一装置检测到的误差控制本地振荡器信号频率的第 三装置。
    9: 一种直接变换接收机,其特征在于包括: 产生本地振荡器信号的本地振荡器; 与本地振荡器相连以将接收的RF FSK信号与本地振荡器信号混频的混频 器; 与混频器相连以处理混频器输出信号的低通滤波器,低通滤波器具有可变的 截止频率; 与低通滤波器相连以从低通滤波器输出信号中恢复接收到的RF FSK信号代 表的信息信号的解调器;以及 与低通滤波器和解调器相连以判断解调器恢复的信息信号中是否存在给定 信号模式并根据判断结果控制低通滤波器截止频率的信号处理器。
    10: 如权利要求9所述的直接变换接收机,其特征在于进一步包括用来检测接 收到的RF FSK信号载波频率与本地振荡器信号之间误差的第一装置;以及与本 地振荡器和第一装置相连以根据第一装置检测到的误差改变控制本地振荡器信 号频率的第二装置。

    说明书


    直接变换接收机

        本发明涉及可用于诸如PHS(个人手持电话)电话机、便携式电话或寻呼机之类移动通信装置中的直接变换接收机。

        日本专利特许申请6-54005揭示了一种包含FSK(移频键控)调制器的直接变换接收机。在该申请的直接变换接收机中,所接收的携带数字信息信号的射频(RF)FSK信号被送至第一和第二混频器中。第一混频器下变换RF FSK信号以响应第一本地振荡器信号。第二混频器下变换RF FSK信号以响应与第一本地振荡器信号正交的第二振荡器信号。第一本地振荡器信号从作为本地振荡器的电压控制振荡器输出。90度相移器将第一本地振荡器信号转换为第二振荡器信号。第一混频器的输出信号经第一低通滤波器处理,转换为基带I(同相)信号。第二混频器的输出信号经第二低通滤波器处理,转换为基带Q(正交)信号。调制电路从基带I信号和基带Q信号中恢复数字信息信号。调制电路输出被恢复的数字信息信号。

        在日本特许申请6-54005的直接变换接收机中,基带I信号和基带Q信号中的一个由频率-电压转换器转换为信号电压。电压比较器将信号电压与基准电压比较。同相/反相鉴别电路将电压比较器输出信号的相位与调制电路输出信号的相位进行比较以决定相位为同相还是反相。当相位相同时,同相/反相鉴别电路向充电器输出降压信号。当相位相反时,同相/反相鉴别电路向充电器输出升压信号。充电器产生电压信号以响应同相/反相鉴别电路输出的升压信号和降压信号。电压信号从充电器经低通滤波器送往电压控制振荡器的控制端。因此,第一本地振荡器的频率和第二本地振荡器的频率得到控制以响应充电器产生的电压信号。这种频率控制提供了自动频率控制(AFC),能够使第一和第二振荡器信号自动跟随所接收的RF FSK信号的载波频率(中心频率)。

        日本特许申请6-54005的直接变换接收机的选择性取决于第一和第二混频器后面的第一和第二低通滤波器的截止频率。第一和第二低通滤波器的截止频率是固定地。因此在日本特许申请6-54005的直接变换接收机中,难以根据信号接收条件调整选择性。

        如上所述,日本特许申请6-54005的直接变换接收机具有AFC功能,能够校正第一和第二本地振荡器信号频率与接收的RF FSK信号载波频率(中心频率)之间的误差。AFC无法校正幅度超出接收机选择性提供的通频带的频率误差。由于第一和第二低通滤波器的截止频率以及接收机选择性是固定的,所以通频带也是固定的。因此在日本特许申请6-54005的直接变换接收机中,难以自动调整可由AFC校正的频率误差的上限。

        本发明的一个目标是提供一种改进的直接变换接收机。

        本发明的第一方面是提供一种直接变换接收机,它包括产生变频的第一本地振荡器信号的第一本地振荡器;与第一本地振荡器相连的90度相移器以相移第一振荡器信号90度从而将第一振荡器信号转换为第二振荡器信号;与第一本地振荡器信号相连以将接收的RF信号与第一本地振荡器信号混频的第一混频器;与第二本地振荡器信号相连以将接收的RF信号与第二本地振荡器信号混频的第二混频器;与第一混频器相连以处理第一混频器输出信号的第一低通滤波器,第一低通滤波器具有可控的截止频率;与第二混频器相连以处理第二混频器输出信号的第二低通滤波器,第二低通滤波器具有可控的截止频率;与第一和第二低通滤波器相连以从第一和第二低通滤波器的输出信号中恢复接收到的RF信号代表的信息信号的解调器;与解调器相连以检测接收到的RF信号载波频率与第一本地振荡器信号之间误差从而响应解调器恢复的信息信号的频率误差检测器;与第一本地振荡器和频率误差检测器相连以控制第一局部振动器信号频率从而响应频率误差检测器检测到的误差的振荡器控制器;以及与第一和第二低通滤波器以及频率误差检测器相连以控制第一和第二低通滤波器截止频率从而响应频率误差检测器检测到的误差的滤波器控制器。

        本发明第二方面基于第一方面,并提供一种直接变换接收机,其中频率误差检测器包含积分器,用来在长于信息信号发送数据速率周期的给定时间间隔上积分信息信号的电压。

        本发明第三方面基于第一方面,并提供一种直接变换接收机,其中频率误差检测器包含:峰值检测器,用来检测在长于信息信号发送数据速率周期的给定时间间隔内出现的信息信号峰值电压;谷值检测器,用来检测在长于信息信号发送数据速率周期的给定时间间隔内出现的信息信号谷底电压;以及加法器,用来将峰值检测器检测到的峰值电压与谷值检测器检测到的谷底电压相加。

        本发明第四方面基于第一方面,并提供一种直接变换接收机,其中滤波器控制器包含在至少在两个不同数值之间改变第一和第二低通滤波器每一个的截止频率以响应频率误差检测器检测到的误差的装置。

        本发明第五方面基于第一方面,并提供一种直接变换接收机,其中滤波器控制器包括根据频率误差检测器检测到的误差连续改变第一和第二低通滤波器截止频率的装置。

        本发明的第六方面是提供一种直接变换接收机,它包括产生变频的第一本地振荡器信号的本地振荡器;与第一本地振荡器相连的90度相移器以相移第一振荡器信号90度从而将第一振荡器信号转换为第二振荡器信号;与第一本地振荡器信号相连以将接收的RF信号与第一本地振荡器信号混频的第一混频器;与第二本地振荡器信号相连以将接收的RF信号与第二本地振荡器信号混频的第二混频器;与第一混频器相连以处理第一混频器输出信号的第一低通滤波器,第一低通滤波器具有可控的截止频率;与第二混频器相连以处理第二混频器输出信号的第二低通滤波器,第二低通滤波器具有可控的截止频率;与第一和第二低通滤波器相连以从第一和第二低通滤波器的输出信号中恢复接收到的RF信号代表的信息信号的解调器;与解调器相连以检测接收到的RF信号载波频率与第一本地振荡器信号之间误差从而响应解调器恢复的信息信号的频率误差检测器;与第一本地振荡器和频率误差检测器相连以控制第一局部振动器信号频率从而响应频率误差检测器检测到的误差的振荡器控制器;以及与第一和第二低通滤波器以及解调器相连以判断解调器恢复的信息信号中是否存在给定信号模式并根据判断结果控制第一和第二低通滤波器截止频率的信号处理器。

        本发明的第七方面是提供一种直接变换接收机,它包括产生本地振荡器信号的本地振荡器;与本地振荡器相连以将接收的RF FSK信号与本地振荡器信号混频的混频器;与混频器相连以处理混频器输出信号的低通滤波器,低通滤波器具有可变的截止频率;用来检测接收到的RF FSK信号载波频率与本地振荡器信号之间误差的第一装置;以及与低通滤波器相连以根据第一装置检测到的误差改变低通滤波器截止频率的第二装置。

        本发明第八方面基于第七方面,并且提供一种直接变换接收机,它进一步包括与本地振荡器和第一装置相连以根据第一装置检测到的误差控制本地振荡器信号频率的第三装置。

        本发明的第九方面是提供一种直接变换接收机,它包括产生本地振荡器信号的本地振荡器;与本地振荡器相连以将接收的RF FSK信号与本地振荡器信号混频的混频器;与混频器相连以处理混频器输出信号的低通滤波器,低通滤波器具有可变的截止频率;与低通滤波器相连以从低通滤波器输出信号中恢复接收到的RF FSK信号代表的信息信号的解调器;以及与低通滤波器和解调器相连以判断解调器恢复的信息信号中是否存在给定信号模式并根据判断结果控制低通滤波器截止频率的信号处理器。

        本发明的第十方面基于第九方面并提供一种直接变换接收机,它进一步包括用来检测接收到的RF FSK信号载波频率与本地振荡器信号之间误差的第一装置;以及与本地振荡器和第一装置相连以根据第一装置检测到的误差改变控制本地振荡器信号频率的第二装置。

        图1为现有技术的直接变换接收机的框图。

        图2为按照本发明第一实施例的直接变换接收机的框图。

        图3为图2中解调器实例的框图。

        图4为图2中频率误差检测器第一实例的示意图。

        图5为图4中频率误差检测器的频率误差与输出信号电压之间的关系图。

        图6为图2中频率误差检测器第二实例的框图。

        图7为图2中滤波器控制器第一实例的框图。

        图8为图2中滤波器控制器第二实例的框图。

        图9为图2中低通滤波器第一实例的框图。

        图10为图2中低通滤波器第二实例的框图。

        图11为按照本发明第二实施例的直接变换接收机的框图。

        图12为图11中信号处理器控制程序的流程图。

        为了更好地理解本发明,以下将描述现有技术的直接变换接收机。

        图1为日本特许申请6-65005中揭示的现有技术直接变换接收机。图1的直接变换接收机包括通过输入端113接收RF FSK信号的第一和第二混频器114和115。RF FSK信号载带数字信息信号。

        第一混频器114响应第一本地振荡器信号下转换接收的RF FSK信号。第二混频器115下转换RF FSK信号以响应与第一本地振荡器信号正交的第二振荡器信号。第一本地振荡器信号由作为本地振荡器的电压控制振荡器111产生。第一振荡器信号从电压控制振荡器111送至第一混频器114。90度相移器112从电压控制振荡器111接收第一本地振荡器信号。90度相移器112将第一本地振荡器信号转换为第二振荡器信号。90度相移器112将第二本地振荡信号送至第二混频器115。

        第一混频器114的输出信号经第一低通滤波器116处理,转换为基带I(同相)信号。第二混频器115的输出信号经第二低通滤波器117处理,转换为基带Q(正交)信号。调制电路118从低通滤波器116和117接收基带I信号和基带Q信号。解调电路118从基带I信号和基带Q信号中恢复数字信息信号。被恢复的数字信息信号从解调电路118经输出端118A送至外部设备(未画出)。

        在图1的现有技术的直接变换接收机中,频率-电压转换器102从低通滤波器116接收基带I信号。频率-电压转换器102将基带I信号转换为相应的信号电压。频率-电压转换器102将信号电压施加在电压比较器104的第一输入端上。基准电压经输入端103施加在电压比较器104的第二输入端。装置104将信号电压与基准电压进行比较,将信号电压转换为双电平电压(二进制信号)。电压比较器104向限幅放大器105输出双电平信号。限幅放大器105对电压比较器104的输出信号进行限幅处理。限幅放大器105向与门电路108a的第一输入端和与门108b的第一输入端输出所得的二进制信号。

        解调电路118向延时电路106输出恢复的数字信息信号。延时电路106使数字信息信号延迟一预先确定的时间。延时电路106向与门电路108a的第二输入端输出最终的数字信号。延时电路106经非门电路或者反相器(没有标号)将最终的数字信号送至与门电路108b的第二输入端。同相/反相鉴别电路107将限幅放大器105输出信号的相位与延时电路106输出信号的相位进行比较以判断相位是相等还是反相。当相位相同时,同相/反相鉴别电路107向充电器109输出降压信号。具体而言,与门电路108b向充电器109输出降压信号。当相位相反时,同相/反相鉴别电路107向充电器109输出升压信号。具体而言,与门电路108a向充电器109输出升压信号。充电器109产生电压信号以响应同相/反相鉴别电路107输出的升压信号和降压信号。充电器109产生的信号电压由降压信号和升压信号决定降压和升压。电压信号从充电器109经低通滤波器110送往电压控制振荡器111的控制端。因此,第一本地振荡器的频率和第二本地振荡器的频率得到控制以响应充电器109产生的电压信号。这种频率控制提供了自动频率控制(AFC),能够使第一和第二振荡器信号自动跟随所接收的RF FSK信号的载波频率(中心频率)。

        图1的现有技术直接变换接收机的选择性取决于第一和第二混频器114和115后面的第一和第二低通滤波器116和117的截止频率。第一和第二低通滤波器116和117的截止频率是固定的。因此,在现有技术的直接变换接收机中,难以根据信号接收条件自动调整选择性。

        如上所述,现有技术的直接变换接收机具有AFC功能,能够校正第一和第二本地振荡器信号频率与接收的RF FSK信号载波频率(中心频率)之间的误差。AFC无法校正幅度超出接收机选择性提供的通频带的频率误差。由于第一和第二低通滤波器的截止频率以及接收机选择性是固定的,所以导带也是固定的。因此在现有技术的直接变换接收机中,难以自动调整频率误差的上限供AFC校正用。

        第一实施例

        图2示出了按照本发明第一实施例的直接变换接收机。图2的直接变换接收机包括接收载带数字信息信号的RF FSK信号的天线1。接收的RF FSK信号从天线1经天线放大器2送至混频器5和6。

        包括有变频振荡器的本地振荡器3输出一信号,其频率被自动控制在接收的RF FSK信号的载波频率(中心频率)上,下面将清楚说明。本地振荡器3的输出信号施加到混频器5上作为第一本地振荡器信号。本地振荡器3的输出信号还施加到90度相移器4上,转换为90度相移信号。这样,本地振荡器3的输出信号与90度相移器4的输出信号正交。90度相移器4的输出信号施加到混频器6上作为与第一振荡器信号正交的第二振荡器信号。

        混频器5下转换接收的RF FSK信号以响应第一本地振荡器信号,即本地振荡器3的输出信号。混频器5的输出信号由低通滤波器7处理,转换为基带I(同相)信号。低通滤波器7具有可变的截止频率。

        混频器6下转换接收的RF FSK信号以响应第二本地振荡器信号,即90度相移器4的输出信号。混频器6的输出信号由低通滤波器8处理,转换为基带Q(正交)信号。低通滤波器8具有可变的截止频率。

        解调器9从低通滤波器7和8接收基带I信号和基带Q信号。解调器9实现解调以响应基带I信号和基带Q信号。因此解调器9从基带I信号和基带Q信号中产生解调所得的信号。一般情况下,解调所得的信号与接收的RF FSK信号代表的数字信息信号一致。解调所得的信号从解调器9经输出端9A发送到外部设备(未画出)。而且解调器9向频率误差检测器11发送解调所得的信号。

        装置11检测接收的RF FSK信号的载波频率(中心频率)与施加在混频器5和6上的第一和第二本地振荡器信号频率之间的误差。频率误差检测器11产生代表检测到的频率误差的信号。频率误差检测器11向振荡器控制器10和滤波器控制器12输出频率误差信号。

        振荡器控制器10产生振荡器控制信号以响应频率误差信号。振荡器控制信号取决于频率误差检测器11检测得到的频率误差信号。振荡器控制器10向本地振荡器3输出振荡器控制信号。本地振荡器3的输出信号频率,即第一本地振荡器信号频率得到控制以响应振荡器控制信号。这种频率控制使得频率误差趋于零。因此第一本地振荡器信号频率得到自动控制以跟随接收的RF FSK信号的载波频率(中心频率)。此外,第二本地振荡器信号频率,即90度相移器4的输出信号频率得到自动控制以跟随接收的RF FSK信号的载波频率(中心频率)。

        具体而言,本地振荡器3包括产生第一本地振荡器信号的电压控制振荡器。振荡器控制器10产生的振荡器控制信号的电压大小取决于频率检测器11检测到的频率误差。振荡器控制器10将振荡器控制信号施加到本地振荡器3内电压控制振荡器的控制端。因此,第一本地振荡器信号的频率得到控制以响应振荡器控制信号。

        滤波器控制器12产生滤波器控制信号以响应频率误差信号。滤波器控制信号取决于频率误差检测器11检测的频率误差。滤波器控制器12向低通滤波器7和8输出滤波器控制信号。低通滤波器7和8的截止频率得到控制以响应滤波器控制信号。这种截止频率控制使得频率误差增加时截止频率也增加。因此,即使当接收的RF FSK信号载波频率与第一和第二本地振荡器信号频率之间的频率误差较大时,低通滤波器7和8也不会阻断代表数字信息信号的信号成分。此外,低通滤波器7和8也不会使本地振荡器3、振荡器控制器10和频率误差检测器11组合实现的自动频率控制功能失效。

        图3示出了解调器9结构的实例。图3的解调器9包括本地振荡器21、90度相移器22、混频器23和24、加法器5、带通滤波器26以及频率检测器27。

        混频器23从低通滤波器7接收基带I信号(参见图2)。本地振荡器21输出具有预先确定频率的信号,其频率远低于施加在混频器5和6上的第一和第二本地振荡器信号的频率。本地振荡器21的输出信号还施加在90度相移器22上,转换为90度相移信号。因此本地振荡器21的输出信号与90度相移器22的输出信号互相正交。90度相移器22的输出信号被施加到混频器23上作为与第三本地振荡器信号正交的第四本地振荡器信号。

        装置23将基带I信号与第四本地振荡器信号(90度相移器22的输出信号)混频。混频器23向加法器25输出混频所得的信号。装置24将基带Q信号与第三本地振荡器信号(本地振荡器21的输出信号)混频。混频器24向加法器25输出混频所得的信号。加法器25将混频器23和24的输出信号组合为FSK信号。加法器25产生的FSK信号的中心频率一般等于施加在混频器23和24上的第三和第四本地振荡器信号的频率。FSK信号从加法器25经带通滤波器26向频率检测器27发送。带通滤波器26的通带设计得与代表数字信息信号的FSK信号成分的频率匹配。频率检测器27对FSK信号进行诸如脉冲计数检测过程或正交检测过程之类的频率检测过程。这样装置27就检测出FSK信号的频率。频率检测器27将FSK信号转换为通常与数字信息信号一致的双电平信号(二进制信号)。频率检测器27将双电平信号送往输出端9A和频率误差检测器11(参见图2)作为解调所得的信号。

        图4示出了频率误差检测器11的第一种结构实例。图4的频率误差检测器11包括电阻31和电容32。电阻31的一端与解调器9的输出端相连(参见图2)。电阻31的另一端与电容32的一端相连。电容32的另一端接地。电阻31与电容32之间的节点与振荡器控制器10和滤波器控制器12的输入端相连(参见图2)。电阻31和电容32组合形成对解调所得的信号,即解调器9的输出信号进行运算的积分器(参见图2)。积分器具有预先确定的时间常数,它远远大于对应调制所得信号的发射数据率的数值。解调所得信号,即解调器9的输出信号(参见图2)在时间域上的平均值取决于接收的RF FSK信号的载波频率与施加在混频器5和6上的第一和第二本地振荡器信号之间的误差(参见图2)。图4中频率误差检测器11积分或平滑解调所得的信号,即解调器9的输出信号(参见图2),并产生电压大小取决于上述频率误差的信号。这种电压信号出现在电阻31与电容32之间的节点上。电压信号被送往振荡器控制器10和滤波器控制器12(参见图2)作为频率误差信号。

        参见图5,图4中频率误差检测器11的输出信号电压正比于给定范围内的频率误差。

        图6示出了频率误差检测器11第二结构实例。图6中的频率误差检测器11包括峰值检测器41、谷值检测器42和加法器43。峰值检测器41和谷值检测器42接收调制所得信号,即解调器9的输出信号(参见图2)。装置41在远远长于对应调制所得信号发射率的每个给定时间间隔内检测解调所得信号。峰值检测器41向加法器43输出峰值电压。装置42在每个给定时间间隔内检测解调所得的信号的谷值电压。谷值检测器42向加法器43输出检测的谷值电压。加法器43将峰值电压与谷值电压组合为一个信号,其电压取决于接收的RF FSK信号载波频率与施加在混频器5和6上的第一和第二本地振荡器信号之间的误差(参见图2)。加法器43向振荡器控制器10和滤波器控制器12输出电压信号(参见图2)作为频率误差信号。

        图7示出了滤波器控制器12的第一结构实例。图7中的滤波器控制器12包括从频率误差检测器11接收频率误差信号的窗口比较器61(参见图2)。装置61将频率误差信号的电压与定义预先确定窗口范围的两个基准电压比较。当频率误差信号的电压落在预先确定的窗口范围内时,即,当频率误差位于给定范围内时,窗口比较器61向低通滤波器7和8输出高电平信号(参见图2)作为滤波器控制信号。当频率误差信号的电压超出预先确定的窗口范围内时,即,当频率误差超出给定范围内时,窗口比较器61向低通滤波器7和8输出低电平信号(参见图2)作为滤波器控制信号。低通滤波器7和8(参见图2)的结构相似。低通滤波器7和8(参见图2)的截止频率在低值与高值之间变化以响应图7滤波器控制器12的滤波器控制信号。具体而言,低通滤波器7和8(参见图2)的截止频率在滤波器控制信号处于低电平状态时,即频率误差超出给定范围内时等于高值。低通滤波器7和8(参见图2)的截止频率在滤波器控制信号处于高电平状态时,即频率误差位于给定范围内时等于低值。

        滤波器控制器12包括运行于频率误差信号上的不同的窗口比较器。在这种情况下,窗口比较器的输出信号由诸如包括与门和或门之类逻辑电路的合适电路组合成多比特滤波器控制信号。此外,低通滤波器7和8(参见图2)的截止频率在三个或更多的数值之间变化以响应多比特滤波器控制信号。因此,在这种情况下,低通滤波器7和8(参见图2)的截止频率在三个或更多的数值之间变化以响应频率误差信号代表的频率误差。

        图8示出了滤波器控制器12的第二结构实例。图8的滤波器控制器12包括从频率误差检测器11(参见图2)接收频率误差信号的电压-电流转换器71。装置71将频率误差信号转换为正比于频率误差信号电压的信号。电压-电流转换器71向低通滤波器7和8(参见图2)输出电流信号作为滤波器控制信号。在这种情况下,低通滤波器7和8(参见图2)的截止频率连续变化以响应滤波器控制信号。因此低通滤波器7和8(参见图2)的截止频率根据频率误差信号代表的频率误差连续变化。

        参见图2,低通滤波器7和8的结构类似。以下将只详细描述低通滤波器7。

        图9示出了低通滤波器7的第一种结构实例。图9的低通滤波器7包括电阻81、电容82、输入端83、输出端84、电容85和开关86。电阻81的一端经滤波器输入端83与混频器5的输出端相连(参见图2)。电阻81的另一端与电容82的一端相连并且经开关86与电容85的一端相连。电容82和85的另一端接地。电阻81、电容82与开关86之间的节点与滤波器输出端84相连。滤波器输出端84与解调器9相连(参见图2)。开关86的控制端受图7中第一滤波器控制器12输出的滤波器控制信号的控制。开关86在开启和关断状态之间改变以响应滤波器控制信号。具体而言,当滤波器控制信号为高电平时开关86改变为接通状态。当滤波器控制信号为低电平时开关86改变为断开状态。当开关86变为接通状态时,电容85与电容82并联从而使图9的低通滤波器7的截止频率取低值。当开关86变为断开状态时,电容85与电容82断开从而使图9的低通滤波器7的截止频率取高值。

        值得注意的是电容82与85的连接和断开可以用电阻81阻值变化来代替以响应滤波器控制信号。

        图10示出了低通滤波器7的第二种结构实例。图10的低通滤波器与图8中的滤波器控制器12组合。图10中的低通滤波器7包括差分放大器91、电容92、输入端93和输出端94。差分放大器91构成“gm”放大器。差分放大器91的正相输入端经滤波器输入端93与混频器5(参见图5)的输出端相连。差分放大器91的反相输入端与输出端相连。差分放大器91的输出端与电容92的一端相连。电容92的另一端接地。差分放大器91的输出端与电容92之间的节点与滤波器输出端94相连。滤波器输出端94与解调器9(参见图2)相连。差分放大器91的控制端受到图8滤波器控制器12输出的滤波器控制信号的控制。差分放大器91构成电阻,其阻值按照滤波器控制信号而连续变化。因此图10中低通滤波器7的截止频率根据频率误差检测器11(参见图2)检测的频率误差连续变化。具体而言,流入差分放大器91的集电极电流取决于滤波器控制信号的大小。因此差分放大器91的电导“gm”取决于滤波器控制信号。

        第二实施例

        图11示出了按照本发明第二实施例的直接变换接收机。除了以下设计不同之外图11的直接变换接收机与图2的直接变换接收机相似。图11的直接变换接收机适于诸如4值FSK信号之类的多值FSK信号。

        图11的直接变换接收机包括从解调器9接收解调所得信号的信号处理器13。信号处理器13包括编程为实现信号模式识别的微处理器。

        具体而言,信号处理器13检测解调所得的信号中的给定信号模式(给定的符号模式)。信号处理器13判断解调所得的信号中是否存在给定的信号模式。信号处理器13根据判断结果产生二进制信号。信号处理器13向低通滤波器7和8输出二进制信号作为滤波器控制信号。因此,低通滤波器7和8的截止频率根据解调所得的信号中是否存在给定信号模式而变化。

        图11的直接变换接收机采用图9的低通滤波器7。在图11的直接变换接收机中,低通滤波器8的结构与低通滤波器7相似。

        信号处理器是13中的微处理器包括输入/输出端口组合、处理部分、ROM和RAM。微处理器根据ROM存储的程序运行。图12为在对应解调所得信号的单位时间段(一个符号)的周期内重复执行的程序部分流程图。当信号处理器13判断解调所得信号有效时开始重复执行图12的程序部分。当信号处理器13检测到解调解调所得信号无效时结束图12程序部分的重复执行。

        参见图12,程序部分的第一个步骤S1从解调所得信号的当前信号模式中提取信息。当前信号模式由解调所得信号最后面和最前面的预定数量的时间段(最前面和最后面的符号)表示。步骤S1从ROM中读取给定信号模式的信息。给定信号模式的长度对应预先确定的单位信号时间段(符号)。步骤S1将当前信号模式与给定的信号模式核对。当步骤S1判断当前信号模式与给定信号模式一致时,程序从步骤S1进入步骤S2。当步骤S1判断当前信号模式与给定信号模式不一致时,程序从步骤S1跳转至S3。

        步骤S2将标志FL从“0”改变为“1”。值得注意的是标志FL已经初始化为“0”。在步骤S2之后,程序进入步骤S3。

        步骤S3判断标志FL是否为“1”。当判断标志FL为“1”时,程序从步骤S3进入步骤S4。否则程序从步骤S3进入步骤S5。

        步骤S4向低通滤波器7和8输出高电平信号作为滤波器控制信号。在步骤S4之后,程序结束当前执行循环。

        步骤S5向低通滤波器7和8输出低电平信号作为滤波器控制信号。在步骤S5之后,程序结束当前执行循环。

        步骤S2和S3所用的标志FL使得以下过程发生。只要解调所得信号有效,则在检测到解调所得信号中的给定信号模式之后就继续向低通滤波器7和8输出高电平的滤波器控制信号。

        例如,当滤波器控制信号变为高电平状态时低通滤波器7和8的截止频率取低值。当滤波器控制信号变为低电平状态时低通滤波器7和8的截止频率取高值。

    关 键  词:
    直接 变换 接收机
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:直接变换接收机.pdf
    链接地址:https://www.zhuanlichaxun.net/p-1341007.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1