地球空间网际协议编址 本发明一般地涉及数据通信领域,并更具体地涉及与移动部件的数据通信的改进方法,尤其,本发明包括一种基于位置(地球空间)的动态网际编址方式,该方式是和现有网际协议和体系结构反向兼容的但对大量的移动部件提供改进的数据通信。
【发明背景】
网际
我们今天所知的网际协议(IP)是在70年代后期设定的,其中32位(232或用4个8位消息,例如255.255.255.255,表达,后者称为Ipv4)的消息允许大约42.5亿个唯一地址。当时认为这会提供足足有余的地址空间以满足未来的需要。当时IP仍是试验性的并由学术界所关注而且用于学术界。在当时个人计算机只是一种预测。
大约在90年代已经清楚Ipv4编址正被用尽,某些人早在1995年就认识到这一点。结果是Ipv6的使用,尽管其研发班子被称为网际工程特别工作组(IETF)。该特别工作组的一个关键规章是向前的以及向后的彼此可协作性。
该新编址方式的基本结构是用8个用冒号隔开的16位消息表示的128位的消息,并在十六进制下表达(例如十六进制下的FFFF:FFFF:…,十进制下地65535:65535:…,以及二进制下的1111111111111111:1111111111111111:…)。可使用地址的组合约为3.4×1038个唯一地址,足以应付下一千年(若不是不可预见的未来)的网络编址。
作为IETF方式的一部分,还在旁边设置一个二进制前缀(100),其代表可使用的网络编址的1/8。这是设置在旁边的并且可用于基于地理的编址。单播被定义为用于某单个接口的分辨或分配地址或是其唯一标识符,即,发送到某单播地址的分组被传送到由该地址标识的接口上。
TCP/IP代表开放系统互连(OSI)参考模型中的连接/无连接协议。OSI是一个标准参考模型,用于网络中二个最终用户之间的通信。它用于开发产品和了解网络。OSI参考模型描述七层相关的功能,当在网络中从一方向另一方发送数据时在各端上需要知道这些功能。通过其归入该分层结构的何处可以部分地说明现有网络产品或程序。例如,TCP/IP通常和别的因特网程序封装在一起,以作为支持因特网上通信的一组产品。这种产品包括文件传送协议(FTP)、远程登录协议、超文本传送协议(HTTP)、电子信函协议,并有时还包括其它。
OSI模型描述某网络(任何IP网络)中从最低层(物理连接即蜂窝电话)上至包含着用户应用的层的数据流。到网络中的和来自网络的数据逐层通过。每层能和上一层以及下一层通信,
OSI参考模型包括七层:
1.应用层表示在其上应用访问网络服务的层。该层代表直接支持应用的各种服务。
2.表示层把来自应用层的数据翻译成中间格式。该层还通过提供诸如数据加密的服务管理安全问题,并且压缩数据从而只需在网络上传送较少的位。
3.会话层允许不同系统上的二个应用建立、使用和结束会话。该层建立会话中的二个计算机间的对话控制,调节哪一方发送以及何时发送和发送多长。
4.传输层处理错误识别以及差错恢复。在需要时它还把长消息重新包装成供传输的若干小分组并且在接收端把分组重构成原始消息。接收传输层还发送接收确认。
5.网络层对消息定址并把逻辑地址和名字翻译成物理地址。它还确定从源到目的地计算的路由并且管理交通问题,例如交换、路由选择以及控制音频信号或数据。
6.数据链路把来自物理层的原始位组封装成帧(数据的逻辑的结构化分组)。该层负责在不出错把各帧从一台计算机传送到另一台计算机。在发送一帧后,它等待来自接收计算机的确认。
7.物理层把数据从一个系统发送到另一个系统并且调节物理介质上的数据传输。该层定义如何把缆线连接到部件上以及为在系统上发送数据使用何种传输技术。
当二个部件在网络上通信时,一个系统上各层处的软件假定它和另一个系统上的同一层通信。例如,一个系统的传输层和另一个系统的传输层通信。第一系统上的传输层不关心该通信实际上如何通过第一系统的各个低层、如何登上物理介质并且如何接着向上穿过第二系统的各个低层。
尽管TCP和OSI的传输层良好匹配并且IP和网络层良好匹配,但其它程序相当松散地(而不是精致地)和会话层、表示层及应用层匹配。在该模型下,我们只包括网络层以及更高层中的因特网相关程序。OSI还可应用于其它网络环境以包括语音。完整遵循OSI参考模型的一组通信产品应精巧地和每层相配。
借助Ipv6和Ipng的出现,网络接口的数量可越过网络扩展到各个部件上。本质上可把实时、安全的单播点通过概念上称为任一播(anycast)的被定义为单个发送方和一组多个接收方的最近一方之间的通信延伸到各个用户上。该术语任一播不同于多播(单个发送方和多个接收方之间的通信)和单播(网络中单个发送方和单个接收方之间的通信)。任一播是为了让单个主机对一组主机启动高效的路由选择表更新而设计的。Ipv6可判定那个网关主机最靠近并且向该主机仿佛通过单播通信那样发送各分组。而该主机本身又可对组内的另一个主机进行任一播,直至更新所有的路由选择表。
任一播允许单播接口现在充当至部件的一条单播链路,部件的地址是唯一的并且其接口对于因特网基干是虚拟的。通过把该概念扩展到传统接口部件如计算机和网络之外的部件并且还通过扩充编址方式,我们为所有意向和用途建立了近实时地和安全地传送数据的能力。Ipv6、单播链路和任一播是隧道效应协议(减小数据传送的网络等待时间的所需协议)的关键要素。
和因特网相关,隧道效应把因特网用为部分专用安全网络。“隧道”是某给定消息或文件可穿过因特网的具体路径。已经提出称为点对点隧道效应协议(PPIP)的一个协议或一组通信规则,它使得有可能在因特网上通过“多个隧道”建立一个虚拟专用网络。这应意味着为了广域通信各部件不再需要独立服务提供者(ISP)支持而是可以在近产时下安全地使用各公用网络。由微软以及其它公司赞助的PPTP以及由思科系统公司提议的Layer 2 Forwarding在为一个新网际工程特别工作组(IETF)标准提出的主要建议之中。借助作为网际点对点协议(PPP)的一种扩充的PPTP,带有PPP客户支持的通信部件的任何用户能使用ISP安全地和域内别处的部件连接。
PPP是一个用于二个部件间的通信的协议并且是一个可用在不同物理介质,例如双绞线或光纤线或卫星传输,上的全双工协议。它对分组封装采用高速数据链路控制(HDLC)的一种变型。PPP通常优于早期事实上的串行线路网际协议(SLIP),因为它能处理同步以及异步通信。PPP可和其它用户共享一条线路并具有SLIP不具备的差错检测。在可选择时,PPP是优先的。
虚拟专用网络(VPN)是一种专用数据网络,它使用公用电信基础设施并通过使用隧道效应协议以及安全程序保持专用。虚拟专用网络可以和仅可由一个公司使用的自有线路或租用线路系统大不相同。VPN的思路是通过共享公用基础设施在低得多的成本下赋于用户相同的能力。电话公司已为语音消息提供安全的共享资源。
虚拟专用网络使得有可能在相同的安全性下为数据共享公用资源。当今的用户为外部网(extranet)和广域外联网寻求使用虚拟专用网络。使用虚拟专用网络涉及在通过公用网络发送前加密数据和在接收端处解密数据。进一步的安全级别涉及不仅加密数据而且加密起始以及接收网络地址。虽然迄今尚不存在标准协议,微软、3Com和几个其它公司已提出一种标准协议即点对点隧道效应协议(PPTP)而且微软已把该协议建立到它的视窗NT服务器中。应会使用诸如微软的PPTP支持的VPN软件和安全软件。
GPS
全球定位系统或“GPS”是作为美国陆军在越战中所经历的问题的后果而产生的。地面部队的主要困难之一是如何彼此保持联系,尤其是在苛刻丛林地形下。曾使用过局域化的罗兰系统,但它遭受所有无线电系统的共同错误,例如地面波折射以及夜间和坏天气下的劣质无线电接收。接着美国试验由4个卫星组成的一个系统,最初命名为TRANSIT。它们处于地球上方的高轨道,可由海军用户以及陆军使用。然而,该系统很不准确,由于最好只能每二小时一次得到位置固定。
接着开发导航星系统并从1986年以一种有限方式运行,但是由于轨道上的卫星数量少每天只能覆盖3-4个小时。1990年海湾战争开始时GPS系统开始“部分运行”。此时,实验性集团1卫星组和已建立的集团2卫星组一起使用,从而产生21个卫星的可使用星座。1990年国防部(美国)使该系统为平民用户运行,它和我们今天使用的GPS系统是一样的。
各GPS卫星每天绕地球飞行二次,高度为11,000英里,并发射它们的准确位置和高度。GPS接收机捕获信号,然后测量信号发送和接收之间的间隔以确定接收机和卫星之间的距离。一旦接收机至少对三个卫星计算该数据,就可确定它在地址表面上的位置。
每个卫星发射年鉴数据和历表数据。年鉴数据是中从任何卫星接收的有关该星座中各个卫星的位置和高度的普通信息。在其存储器中具有准确年鉴的接收机在给出最近已知位置和时间下知道在天空中的何处寻找卫星。历表数据是精确卫星定位信息,其由GPS接收机用于计算位置。每个卫星发射它自己的历表数据。
从卫星上还发射二种不同的信息类型;CA(粗获取)和PPS(精确定位系统)。CA编码信号可给出15米RMS(均方根)精度。然而,美国国防部在该系统中引入一种随机误差,称为供选利用性(SelectiveAvailability)。这意味着各卫星会随机给出一个误差信号,官方上其把信号精度降低到100米,尽管通常精度为50米。租用用户(主要是陆军)才可使用PPS,它可给出1米之内的精度。
随着该技术的出现、其足够商业化以及其在尺寸、成本和精度上的进展,作为一种传统上被认为是不兼容的、不能使用的或近期前被认为是不必要的但现在对系统是已使用的技术的GPS正在浮出水面。
无线通信
在过去几年内蜂窝(无线)通信已从模拟式进展到数字式。利用电信工业中标准化的各种协议发送这些数据流。它们称为GSM,CDMA,TDMA等等,每个协议是唯一性的但是是在数据概念下作为话音发展的。一些协议已进展成纯数字式的,但在电信网络整体上仍然是话音网络上的话音。这些高速数字通信具有在纯数字环境下由TCP/IP支持的能力。
迄今技术上这三个不同的领域-网际数据通信、全球定位系统以及无线通信基本上独立地发展;每一个解决它自己的挑战和商业市场。本申请来自于在一个更宽的环境下对这些技术的反思并开拓它们重叠或应该重叠的方式,从而提供新的功能和效率。这种需要确定要对从这些不同技术中选出的各方面施以影响并融合到一起。更具体地,需要容纳大量的日益增加的移动用户,同时提供更高层次的数据通信服务。
一种具体要求是至和从移动计算部件通信数据的方式。尽管计算机或其它移动部件可能以不可预测的方式在地球上移动,数据通信必须是快速的和可靠的。移动数据通信还必须和现有的网络及协议兼容一对范例的大改变在商业上是没有生命力的。
本发明总体地包括用于和诸如膝上计算机或无线电话的移动部件进行数据通信的方法和设备。本发明提供一种对移动部件编址的新方法,它可容纳大量的移动部件并且所有地址都是唯一的。同一方法还可有益地用于静止部件。(事实上,移动部件是间歇性静止的,就象大多数静止部件可重新定位那样)。全球定位系统为任何部件提供地球上的一个唯一格式和参考点。地球上的任何二个地点都不具有相同位置。以0.6英尺分辨率按纬度和经度(例如,-122 30.1255,4528.3478)计算唯一地址的总数量,大约可得到2.16×1016个唯一地址。本发明的一个关键方面是利用全球位置生成一种全球唯一的、和网际协议(IPv4,IPv6)兼容的编址方式。借助无线电信手机供应商最近宣布它们的产品中包括GPS接收机,在无线电话中已能得到所需的全球位置数据,并且以类似方式最终可把全球定位数据集成到任何电子设备中。本发明能把各唯一应用加入到系统体系结构的传输层和网络层中。
本发明第二个关键方面是网络体系结构中的范例改变。本发明向后和现有的网络及协议兼容,但它以新方式影响它们。常规下,诸如无线电话或膝上计算机的移动部件被认为是网络体系结构中的“客户”,并且相应地设置通信软件或“栈组”。客户要和并通过服务器通信。初始时服务器或主机应对客户分配IP地址(典型地利用DHCP-动态主机配置协议)。然后客户通过服务器利用分配的地址与它者通信。充当网关的服务器会从客户接收分组、重新包装它们(封装)并把它们发送到更广大的网络上。
本发明颠倒这种常规设置。依据本发明,由“客户”或最终用户部件,例如移动电话或膝上计算机,分配自己的IP地址,而不是去查找服务器或主机。从而我们定义一个新的DCCP:动态客户配置协议。现在客户充当一个服务器,即它可直接在更大的网络上甚至在网际上通信,这减少了中间机器的数量。这样,这种新型的分配着它自己的IP地址(基于全球位置)的独立客户可以模拟网关或路由器,根据它的选择封装它自己的各分组。在客户上解出地址,而不是如现有技术要下到主机上才能得到。这种范例具有比现有技术系统快得多地横贯网际的明显潜力,并使通信等待时间和开销大大小于现有水平。
通过和无线载波网中的基站相反把协议栈组驱赶到最终用户,话音可进展到“数据上的话音”运输状态。本发明概念的基础是小型无线部件的集成,从而它可产生唯一IP编址方式,并进而支持用于任一播和单播分散的SLIP或PPP、诸如PPTP的支持VRN的隧道效应协议并且支持用于从会话到网络的运输的面向连接的协议(TCP)。我们确定出的关键性缺少要素是一种以唯一方式支持上述各方面的编址方式,从而要解决的冲突地址是例外而不是一种规律。智能和控制必须驱赶到通信部件上,以达到有效路由选择的实时数据传送。从下述从参照附图开始的对优选实施例的详细说明中,本发明的其它目的和优点会显而易见。
图1是一个屏幕照片,示出依据本发明的利用从位置数据得到的动态IP编址的地球空间路由选择方法的操作。
图2是一个类似图1的屏幕照片,示出第一位置数据和从该位置数据得到的IPv4依从格式下的未分辨的动态IP(UDIP)地址,并且示出物理网关地址以及动态虚拟网关(DVG)地址。
图3是另一张类似图1的屏幕照片,表示移动部件的新位置(纬度和经度)。
图4示出通过VUL的请求以便为建立数据传送分辨地址;DCCP向网络传递唯一地址。
图5示出手机提供的GeoIP的改变。
图6示出已对网络分辨出的GeoIP中的改变。
图7是一个流程图,示出依据本发明的地球空间编址方法和数据通信。
图8是一个流程图,表示一种转换位置数据的方法从而形成未分辨的动态网际协议(UDIP)地址。
传输控制协议/网际协议(TCP/IP)已被传统地定义为或者至少被认为是只用计算机网络的连接和无连接数据传送协议。本发明的一个方面是把该对分配着某地址(IP地址)的可寻址接口部件的定义扩充到包括进行数据传送但不限于计算应用的硬件、软件和固件平台上。计算之外的使用包括并不限于话音及视频数据。话音数据是通过模数转换器、CODEC、VOCODER等转换成数字流的模拟信号。
在基于卫星的通信系统中,对于通信体系结构出现一组独特的问题。宿留用户(主叫用户)的“塔架”不再是静止的,它以16,000 MPH的速度移动;而用户和其网络部件是静止的。这种相对于当前无线网络的对传统规则的颠倒需要非常规意识下的网络管理。
网络管理智能需要分散到用户。需要唯一性编址方式以支持颠倒的规则。GeoIP通过称为动态客户配置协议(DCCP)的协议栈工作,其中把IP地址作为唯一节点地址传递给主机。由于极接近产生的冲突作为例外解决。
如前面所定义Ipv4采用4个8位的消息。下述各图说明一个对Ipv4的转换处理的软件平台实施例。图1表示一些用于数据输入和输出的字段。该图中的各项代表利用GeoIP支持地理编址定义的各新项。图2示出用户当前纬度和经度,以及未分辨的动态IP(UDIP)、所看到的动态虚拟网关(DVG)以及下个网关。DVG是虚拟单播链路(VUL),具有唯一名字和一个分配地址。它是基干的子网或子屏蔽。在运行中,用户和其部件经过VUL到DVG对因特网“说话”对用户显示的点是主机或VUL。越区切换期间所看到的下个网关假定规则是VUL。解出的节点和用户不知道DVG已经改变,该节点仍通过VUL传送数据。
UDIP是GPS纬度和经度的函数。UDIP会不断改变直到通过VUL其被解出。图3示出用户地址的动态改变。用户的位置已改变,他的UDIP已改变,并且他向网络报告这一点并报告他的域和域名。
在常规无线系统中,蜂窝电话向网络报告设备序列号、移动标识号或其它唯一命名约定。通过把移动标识号和信元点、信元段组合起来,网络知道在何处可达到用户。依据本发明,动态移动标识号或UDIP是从位置数据,例如由GPS提供,导出的用户位置。
一旦通过VUL请求解出地址以便建立数据传送时,DCCP向网络传递唯一地址,见图4。事先已分配好DNS名字和DNS,DCCP得到GPS纬度和经度,把其转换成GeoIP并且解出地址作为单播节点。现在可出现数据传送。若用户位置改变,网络或DCCP可重新解出GeoIP,见图5。图5表示由手机提供的GeoIP的改变。图6表示已对网络重新解出的GeoIP中的改变。
解出GeoIP中的改变的这种动态能力满足一些网络管理问题,例如对于紧急呼叫(如911)该呼叫应到何处。这导致需要开发出地理空间路由器或者对基于位置的呼叫敏感的路由器。
除了紧急应用之外,在特定地区(GeoFence,地理围墙)内解出的DUIP可编程为响应对用户有意义的数据交换,例如广告消息。若用户下了高速公路并越入网络设立的GeoFence,解出他在该GeoFence内的新GeoIP,可从网络向该用户发送一条数据消息以对该用户呈现该位置处的有意义信息。在一种商业应用中可以在低价格下向用户发出产品或服务的广告消息。若许多用户通过同一点,该任一播可包括多播消息或地理空间多播。若该GeoFence定义1平方哩的地区,可向该定义区域内的带有解出地址的任何用户发送该消息。
在本发明的第二实施例中,数据流可包含视频和音频。利用本地理空间任一播概念,可根据已知位置建立预定路由。在固定网络节点的情况下,可分配静态分配值而不是由GPS部件动态分配。在任一播模型的情况下,静态分配的编址可帮助确定网络中的最近节点或网关。更新路由选择选择表将是例外,其根据交通而不是根据规则。
图7是一个流程图,说明依据本发明的通信方法。步骤70,初始化,取决于特定实现可包括几个步骤。通常,通过清除缓冲器、设定寄存器等初始化存储器寄存器、缓冲器或位置确定技术部件(例如GPS,SPS)。该处理开始于正在进行网络连接并需要协商处理。
接着,获取位置72包括从位置确定源或部件,例如GPS接收机,请求当前纬度、经度、高度和时间。
步骤74如下面参照图8进一步说明的那样把位置数据转换成地理IP地址。在步骤76选择IP版本或协议(尽管这可预先确定),并根据选定的协议采用对应的转换算法78、80。接着步骤82如后面详述那样装配IP地址。利用从72收集的信息以及移动标识号(MIN)装配地理IP地址,从而得4个16位的唯一的加密字段。
若来自76的地址要求是Ipv6,建立包含MIN的8个16位的字段(二进制)。一个字段的前3个二进制字符为000后13个字符是一个加密密码,后面跟着其余7个含有加密的纬度、经度、时间、移动ID的字段。若请求V4地址,则从框80检索按4个8位二进制字段表示的Ipv4。在这二种情况(Ipv4、6)下完成二进制字段的十六进制和十进制表达。
在步骤84,在RAM中存储得到的UDIP,按三种(十六进制、十进制、二进制)IP地址表达中的一种。判定86表示一个循环计时器,其中每五秒获取一个新位置(步骤72)并在84中把新的未解出的动态因特网协议存储起来。参考号88标识定时器循环路径。
步骤90是来自会话管理程序的对UDIP(未解出的动态IP)地址的请求。这是在步骤92从RAM检索的。参照步骤94,在协商处理期间,动态客户配置协议(DCCP)通过虚拟单播链路(无线部件)向动态虚拟网关发送UDIP。该客户告诉服务器其动态“电话号码”或本情况下其IP地址的处理完全和服务器向请求客户分配IP地址的现有方法不同。
协商处理96是借助协商对例外冲突接收唯一地址。换言之,若存在冲突,服务器将协商新地址。一旦完成96,则在步骤98建立会话并交换数据。步骤100分配动态虚拟网关-即把用户(或无线部件)插入通信插座。在步骤102,服务器说明未分辨的动态IP现在是解出的网络连接(RDIP)。
判定104表示一个带有未说明变量Y的循环计时器,Y取决于服务器希望以什么频率根据物体的地理运动建立和重新解出新的IP。变量,换言之即循环间隔,可以按游历速度和方向的函数得以确定。若时间不等于时间加变量Y,则解出的动态IP继续有效(参考号“C”)。若时间等于时间加Y,循环通过路径106回到72以建立新地址,即通过至102的处理根据变化和位置重新解出新IP。
步骤108是DVG越区切换。本发明的另一个重要方面在于在移动环境下网关可能必须重新协商连接,以和请求重新协商的连接的客户相对。这在会话期间无缝地发生。根据需要动态虚拟网关交给另一个服务器。步骤110表示网关和该新服务器协商虚拟单播链路。
从而在112中重新无缝地建立网关。步骤114返回98(数据交换)继续会话完成,接着退出116并在118处结束。
下面以伪代码示出一个转换纬度和经度以形成地理IP地址的示意算法。
可取舍
Dim a为双精度的纬度
Dim b为双精度的纬分
Dim c为双精度的经度
Dim d为双精度的经分
Dim e为整数
Dim f为整数
Dim g为整数
Dim h为整数
Dim I为整数
Dim j为整数
Dim k为整数
Dim i_1为字符串
Dim j_1为字符串
Dim k_1为字符串
Dim i_2为字符串
Dim j_2为字符串
Dim k_2为字符串
Dim l为字符串
Dim m为字符串
Dim n为字符串
Dim p为字符串
Dim q为字符串
Dim r为字符串
Dim s为字符串
Dim u为字符串
Dim v为字符串
Dim w为字符串
Dim x为字符串
Private Sub Commandl_Click()
x=Text6.Text
w=x
Text7.Text=w
Text5.Text="503.819.7491@airtouch.net"
End Sub
Private Sub Command2_Click()
a=45
b=30.345
c=122
d=30.678
I=9
j=268
k=77
e=(a+45)*1.417
f=(b*4.25)
g=(c*1.417)
h=(d*4.25)
l=e
m=f
n=g
p=h
Text6.Text=1+"."+m+"."″+n+"."+p
Text9.Text=k
Text10.Text=I
Text11.Text=j
Text1.Text=a
Text2.Text=b
Text3.Text=c
Text4.Text=d
IfI<=255 Then
i_1=I
i_2=I
Else:i_1=255
i_2=I-255
End If
Ifj<=255 Then
j_1=j
j_2=j
Else:j_1=255
j_2=j-255
End If
Text8.Text=i_1+"."+i_2+"."+j_1+"."+j_2
k=55
I=268
j=77
IfI<=255 Then
i_1=I
i_2=I
Else:i_1=255
i_2=I-255
End If
Ifj<=255 Then
j_1=j
j_2=j
Else:j_1=255
j_2=j_255
End If
Text12.Text=i_1+"."+i_2+"."+j_1+"."+j_2
End Sub
Private Sub Command 3_Click()
a=35
b=32.345
c=111
d=50.678
e=(a+45)*1.417
f=(b*4.25)
g=(c*1.417)
h=(d*4.25)
I=268
I=77
k=55
l=e
m=f
n=g
p=h
Text6.Text=1+"."+m+"."+n+"."+p
Text9.Text=k
Text10.Text=I
Text11.Text=j
Text1.Text=a
Text2.Text=b
Text3.Text=c
Text4.Text=d
IfI<=255 Then
i_1=I
i_2=I
Else:i_1=255
i_2=I-255
End If
Ifj<=255 Then
j_1=j
j_2=j
Else:j_1=255
j-2=j_255
End If
Text8.Text=i_1+"."+i_2+"."+j_1+"."+j_2
k=112
I=77
j=55
IfI<=255 Then
i_1=I
i_2=I
Else:i_1=255
i_2=I_255
End If
Ifj<=255 Then
j_1=j
j_2=j
Else:j_1=255
j_2=j-255
End If
Text12.Text=i_1+"."+i_2+"."+j_1+"."+j_2
End Sub
Private Sub Command4_Click()
Text1.Text=""
Text2.Text=""
Text3.Text=""
Text4.Text=""
Text5.Text=""
Text6.Text=""
Text7.Text=""
Text8.Text=""
Text9.Text=""
Text10.Text=""
End Sub
Private Sub Command5_Click()
End
End Sub
End Sub
参照图8的流程图可以更容易说明上述处理。图8是一个流图,说明一种变换位置数据以形成未分辨的动态网际协议(UDIP)地址的方法。在该图示中,UDIP地址是依从IPv4的。可把它形成为遵循其它协议。该处理代表图7的框80、82的展开。现参照图8,“从缓冲器得到字符串”步骤42从缓冲存储器读取位置数据。在步骤44分析该数据串以识别和恢复至少四个数据元素,如步骤46中所示这些数据元素是(1)纬度度数;(2)纬度分数;(3)经度度数和(4)经度分数。这些元素通过对应的变量名,例如X1、X2、Y1和Y2,分别标识,其中这些变量名是任意的并仅出于方便。各纬度变量值用于步骤48中示出的公式以计算新值F1和F2,而各经度变量值代入步骤50中示出的计算,从而形成四个值F1至F4,它们的范围都在0-255之内。接着四舍五入所有小数值以得到最接近的整数,步骤52。然后步骤54用句点字段定界符串接F1至F4形成IPv4格式地址。图8中流图的下面示出转换的一个例子56。
可使用基于位置数据的许多其它转换;上述只是一个常用的易于计算的例子。应把所有其它基于位置数据形成依从IP协议地址的变换等同于上面示出的方式。本发明的范围中还包含把高度作为用来确定唯一地址的位置数据的一部分。使用高度例如避免同一建筑物中但不同楼层的部件之间的冲突。
转换成IPv6应看成是地理IP编址方法的第二实施例。在IPv6情况下,如前面所解释可使用128位的消息。把常规格式下的纬度和经度转换成地理IPv6可通过改变一个圆周中的度数数量的定义来实现。一种适当的算法可包括考虑到十六进制值或16的乘积的最小公分母以及作为45的乘积的弧度测量。对于该实施例,在算法中把720度作为一个圆周中的度数的数量。该概念使地理IP编址方式的十六进制表达为最大。若不需要最大化,可使用的编址数量既支持常规的又支持非常规的编址方式。
当在编址方式中采用对地理编址取消的保留前缀100时,产生用于地理IP的FFF(4095)个唯一区段。4F5B的地址产生二进制地址(100111101011011:)。这代表(十六进制4F5B-4000=5B5或十进制下的3931)。这可表示IP球上的区段3931。后面的2-16位元素可直接表示该区段内的度数和分数,或者可用从GPS部件导出的各变量加密。
业内人士清楚在不背离本发明的基础原理下可对本发明的上述实施案的各细节做出许多改变。从而本发明的范围应只由下述权利要求书确定。