数字传输系统中传输信道上数据传输的方法 本发明涉及用于在数字传输系统中传输信道上数据传输的一种方法,在此方法上为了信道编码,用软判决输出信号在发射机方面在快速编码器(Turbo-Codierer)中进行快速编码,而在接收机方面在快速译码器(Turbo-Decodierer)中进行快速译码。
在P.Jung著的“Comparison of Turbo-Code Decoders Appliedto Short Frame Transmission System(应用于短帧传输系统的快速码译码器的比较)”,IEEE Journal on Selected Areas inCommunications(IEEE通信选择领域杂志),卷14(1996)530-537页中分析研究数字传输系统用快速码的应用,在此对于传输线段中的快速码既分析研究编码器,也分析研究译码器。快速码的译码基于采用软输入/软输出译码器,要么在采用MAP(最大后验)符号估算器,要幺在采用MAP序列估算器,例如具有后验软输出维特比算法(APRI-SOVA)的估算器的条件下,可以实现这些软输入/软输出译码器。在此文献中阐述四种不同的译码装置和它们的处理某些差错率的能力。此外分析研究在不同应用情况下这些译码器的效率。确认了快速码和它们的迭代译码是预防包差错的一种有效措施。
在ICC‘95,西雅图,华盛顿,1995年6月18-22日,D.Divsalar和F.Pollara著的“Turbo Code for BCS Application(BCS应用的快速码)”中建议快速码,以便实现直至接近所谓仙农极限(Shannon-Grenze)的差错校正。为此应采用比较简单的分量码和大的交识器。在此文献中快速码用多重码在编码器中生成而在合适的译码器中译码。由Berrou及其他人在1993年引入快速码(请参阅C.Berrou,A.Glavieux和P.Thitimayshima著地“Near Shannonlimit area correction coding:Turbo codes(接近仙农极限区校正编码:快速码)”1993年IEE国际通信会议会议录,1064-1070页)。用这种方法一方面可以实现很好的差错校正。
从ETT欧洲电信学报,卷6,第5期,1995年9-10月,CatherineDouillard及其他人著的“Iterative Correction of IntersymbolInterference:Turbo-Equalization(符号间干涉的迭代校正:快速均衡)”中公开了一种所谓的快速校正,用此快速校正应排除在通过卷积码保护的数字传输系统上的符号间干涉的不利效应。接收机实施两个相继的软输出判决,由符号检测器和信道译码器经迭代过程实现这些软输出判决。在每次迭代时,如在快速编码时那样,采用在下次迭代时的来自检测器和译码器的非本征性信息。现实展示,用快速校正可以克服在多路信道上的符号间干涉效应。
未来的传输系统,例如欧洲的UMTS(通用移动电信糸统)要求具有达2Mbit/s载波数据速率的大量共存载波业务的以灵活方式的支持,在此谋求最好可能的频谱效率。在ACTS(先进通信技术和业务)项目AC090 FRAMES(未来无线电宽带多址接入糸统)中已开发一种MA(多址连接)图表,此图表称为FRAMES多址接入(FMA),并且满足UMTS的要求。FMA作为第三代的,包括广泛范围应用领域,载波业务和不同过程的传输系统,必须满足UMTS无线电接口标准的现今和未来的发展。FMA包括两种作业方式,即具有和不具有扩展的及与GSM(全球移动通信糸统)兼容性的WB-TDMA(宽带时分多址)和WB-CDMA(宽带码分多址)。虽然这里主要考察按FMA的系统,亦可以计入具有多重接入方法,例如FDMA(频分多址)或MC-CDMA(多载波码分多址)的传输系统,或已提及的传输系统的组合。
从快速码的高效率方面是希望在数字传输系统上采用这些快速码的。然而例如在FMA上的多样化的要求使得有必要的是,即在采用这样的快速码时注意,在充分利用快速码的可能性条件下实现数据传输。
基于本发明的任务在于,在可变的信道质量时,或在对信道质量有变化着的要求的条件下,将传输信道的业务质量保持在规定的业务质量上,或尽可能改善业务质量。
为此按本发明的开始提及的方法其特证在于,为了改善业务质量从快速译码器上软输出的输出信号的方差中确定业务质量,并且通过打点(Punktierung)的适配如此调节编码速率,使得获得规定的业务质量。
在按本发明的方法上自适应地通过打点的适配在快速编码器输出端上调节编码速率。在此在传输信道的规定质量情况下,编码速率的提高,意即打点出更多的信息,恶化译码的结果。这意味着,位差错率BER提高。在接收机方面在按本发明的方法上可以借助于方差来识别在一个传输信道上实现的业务质量。如果业务质量低于或高于通常通过由使用者要求的业务(语音,数据)所确定的某个极限,可以经返回信道自适应地适配发射机中的编码速率。为此采用以后详细说明的测量曲线。本方法的优点在于与信道自适应地适配的码率。由此在传输信道上总是对于所要求的业务传输最大可能的有用信息,因为将对于差错校正必要的编码减少到最小必要的程度。此外编码速率的自适应适配在RCPTC上也是可能的,尽管对于专业人员这些码的打点不是很清楚的。
在业务质量的概念下在此理解为以下的内容。对于不同的业务适用一定的QoS准则(QoS=Quality of Service=业务质量),并且在FRAMES范围内对于不同载波业务己制订了QoS准则的定义。QoS准则的一个重要的组成部分是载波数据速率R。QoS准则也包括与最大失效概率PoutG结合的最大允许差错率PbG,或包损失率P1G。在功率传送的业务情况下,瞬时位差错率Pb超出PbG的概率P{Pb>PbG}必须不大于PoutG,意即
Pr{Pb>PbG}<PoutG。
在语音传输时PbG等于10-3,而PoutG等于0.05。在包业务上,对于瞬时包损失率P1适用相似的条件:
Pr{P1>P1G}<PoutG。
除了针对Pr的准则外还有在QoS准则的范围内的其它的条件。这里却主要考察直接与差错校正码(ECC)的选择有关的QoS参数PbG,P1G和PoutG。在ECC上,多重访问方法,调制和包参数主要决定编码速率Rc。换言之,编码速率Rc与是否满足或不满足某种业务用的QoS准则的问题有直接的关联。
在接收机方面在其上采用软输入/软输出符号估算器,或软输入/软输出序列估算器的一种方法上,当从快速译码器的软判决输出信号的方差σ2中确定业务质量时是有利的,在此有利地从方差σ2中计算位差错率作为业务质量的尺度。
在接收机方面采用MAP符号估算器或MAP序列估算器的一种方法上,当从快速译码器的软判决输出信号的方差σ2LLR中确定业务质量时是有利的。
在接收机方面在其上采用用于序列估算的维特比算法的一种方法上,当从快速译码器的软判决输出信号的方差σ2VIT中确定业务质量时是有利的。
由于按本发明的方法是既在MAP估算器上,也在通过维特比算法的估算上可采用的,实际上没有针对用于符号和序列估算的最重要方法的限制。尽管在以下的专门说明中仅在与MAP符号估算器的关联中证明此推论,这一点也适用。
按一种有利的发展按本发明的方法的特征在于,采用所谓的Berrou打点用于打点,在此Berrou打点时仅打点非有序的信息。在信噪比的较低值时这种打点方式是有利的。
按一种有利的发展按本发明的方法的特征在于,采用所谓的UKL打点用于打点,在此UKL打点时既打点有序的信息,也打点非有序的信息。在较高的信噪比时和因此在<10-4的位差错率时,这种打点方式是有利的。
按一种有利的发展按本发明的方法的特征在于,当业务质量位于规定的业务质量之上时,提高编码速率,并且当业务质量位于规定的业务质量之下时,降低编码速率。因此最好可能地利用信道容量是可能的,因为当信道质量是较好时,必须传输较少的冗余位。
按一种有利的发展按本发明的方法的特征在于,在编码速率的速率兼容家族之内的,在1/2和1,例如1/3,1/2,2/3,3/4之间的步骤中,进行编码速率的提高或降低。
为了解决所提出的任务,用于开始所述方式的数据传输的按本发明的方法的特征在于,为了改善业务质量从快速译码器上的软输出输出信号的方差中确定业务质量,并且取决于业务质量调节译码迭代次数。在此利用用于改善业务质量的一种另外的方案,可以附加于或替代通过编码速率影响业务质量的利用来实现这一点。
按一种有利的发展,上述按本发明的方法的特征在于,在考虑与此相连的时间延迟和译码结果的改善的条件下优化译码迭代的次数。
现在借助于附图说明本发明的实施例。所示的:
图1为快速编码器的方框图;
图2为RSC编码器的方框图,正如在按图1的快速编码器中采用此RSC编码器那样;
图3为快速译码器的方框图;
图4为取决于快速译码时迭代次数,对于在AWGN信道上的RCPTC效率的示意图;
图5为在快速译码上不同迭代次数时的,瑞利(Rayleigh)信道上的RCPTC效率示意图;
图6为取决于不同编码速率的,AWGN信道上的RCPTC效率示意图;
图7为取决于不同编码速率的,瑞利信道上的RCPTC效率示意图;
图8为在不同编码速率时的,AWGN信道上的RCPTC效率示意图;
图9为在不同编码速率时的,瑞利信道上的RCPTC效率示意图;
图10为在第二译码器输出端上的位差错率BER和方差σ2LLR之间的关系的示意图;
图11为在有差错或正确译码的包上,与信噪比关系中的方差σ2LLR的示意图。
鉴于硬件的经济采用,ECC电路应是尽可能通用地可采用的,而ECC配置通过软件控制应允许高度的灵活性。这里采用的RCPTC使这成为可能,因为它具有必要的灵活性。用图1中所示的快速编码器2可以生成RCPTC。快速编码器2具有Ne=2二进制的,递归的有序卷积编码器4,6(RSC),这些具有例如在3和5之间的小约束长度的卷积编码器是在采用快速交识器8的条件下并连的。将输入序列u输送给编码器4(RSC,码1),和经快速码交织器8输送到编码器6(RSC,码2)上,以及输送给打点/复用器装置10。打点/复用器装置从编码器4获得一个其它的输入C1,而从编码器6获得一个其它的输入C2。打点/复用器装置10的输出端是输出序列b。
在快速编码器2上,最小的码速率Rc,min等于1/(Ne+1)=1/3。借助于采用附加的RSC编码器时,可以进一步降低最小的编码速率Rc,min。
将具有有限持续时间的二进制输入序列u输入编码器4中,并且在编码器的输出端上产生具有同一有限持续时间的,像u的冗余序列C1。将在交识之后表示序列u的序列uI输入编码器6中。编码器6中的编码产生冗余序列C2。打点和复用冗余序列C1与C2和序列u,以便形成输出序列b。快速编码器是一种有序的编码器,在此u是含有在b中的有序信息的基础。
在编码器4实例上的图2中表示了可用于编码器4和6的RSC编码器。作为有序信息的序列u在编码器4的输入端上等待处理。序列u经综合网络12到达延迟级14和到达其它的综合网络16。延迟级14的输出信号到达一个第二延迟级18上和综合网络12上。第二延迟级18的输出信号到达加法级12上和加法级16上。然后加法级的输出端是冗余序列C1。
在这种编码器的选择时硬件费用起作用,应尽可能低地维持此硬件费用。出于此原因,在FRAMES范围内采用的两个RSC编码器是完全一致的,并且有为3的约束长度。尽管这些RSC编码器只具有四种状态,在低的信噪比Eb/No值时这些RSC编码器展示良好的效率。因此在低信噪比时,具有这些RSC编码器的RCPTC的效率是有利的。
快速编码器2的输出序列b经传输信道和解调器到达具有RSC编码器24和一个第二RSC译码器26的RSC快速译码器22(图3)。在译码器24的输出端和译码器26的输入端之间安排了快速码交识器28。在译码器26的输出端和译码器24的输入端之间安排了快速码交识器30。译码器24,26是一种软输入/软输出译码器。
解调器(未展示)提供包含在u中的有序信息Un的估算值Xn,以及已由编码器4或6生成的,所传输冗余位的估算值Y1,n和Y2,n。这两个译码器24,26需要由瞬时的信号幅度和噪声方差组成的信道状态信息(CSI=Channal State Information)。在处理CSI时译码器24,26中的每一个处理有序信息,冗余和后验信息Le1,n和Le2,n,由此生成然后在后继的译码器上用作为后验知识的非本征性信息Le2,n和Le1,n。译码是迭代的,而随着每次迭代改善译码的结果。改善的程度却随着进一步的迭代逐渐下降。在迭代的某个次数之后将快速译码器22的输出信号输送入检测器(未表示)中,正如这在这类传输系统上通常的那样。
为了使RCPTC的采用与存在的业务要求适配,人们可以设想,适配RSC编码器,这却会导致硬件费用方面不受欢迎的外加负担。交织器大小与专门业务的适配本身是已知的,并且在采用RCPTC时由于交识器的灵活性也是一个问题。
此外在考虑整个编码复杂性的条件下,可以按照QoS准则调节在译码时的迭代次数。在接收机上具备了为了利用快速码的这种性能的两种可能性。对于规定的QoS准则可以随着上升的信噪比Eb/No提高迭代次数。在衰落信道上,例如在传输信道上这是特别有利的。另一方面也可随着时间上改变的QoS准则变化迭代次数。只有在采用快速码,尤其在采用RCPTC时具备了译码迭代次数的可调节性。
用RCPTC改善系统中效率的一种其它可能性在于调节打点,使得可以准备就绪具有变化的码速率Rc,min<=Rc<=Rc,max的RCPTC,由此可以改变在不变的快速码交识器和RSC编码器上的编码性能。
对于打点原则上有序列u,C1与C2供支配。当通过打点完全抑制序列中的两个时,假设最大的码率Rc,max=1。在此情况下编码性能取决于,序列中的哪些被打点。当例如完全打点冗余序列C1与C2时,在此仅不改变地让序列u通过,ECC是不可获得的,并且在衰落信道上的接收机上,时间分集增益是不可实现的。在此情况下快速译码器降低到一种简单的阈值检测器。
当通过打点完全抑制冗余序列C1与C2中的一个时,在此仅第二冗余序列与序列u一起可以通过,快速编码器变为一种常规的RSC编码器。快速译码器降低到为了实施半迭代而实现的一种常规的RSC译码器。在此情况下基于非本征信息的后验知识是不存在的。按QoS准则不同,编码速率Rc可以在1/2和1之间变化。由于Ne=2有效,RSC编码器可以基于两种不同的码,并且借助于不改变编码速率Rc地抑制某个冗余序列C1或C2,可以变化QoS准则和编码复杂性。
上述可能性却妨碍当传输两个冗余序列C1与C2的位时,仅供支配的一种快速码作业,如果,并且适用:
un#u1,n
式中un和u1,n是包含在u或u1中的。在此情况下适用:
Rc,min<=Rc<1。
当不进行打点时,实现最小的编码速率Rc,min=1/(Ne+1)。在此情况下,按QoS准则和传输信道状态不同,要么实现常规的RSC译码,要么实现快速译码,在此传输应用上的两个因素在时间上变化。
在真正的快速码作业时以下的方案是可能的。不打点序列u,部分地打点冗余序列C1与C2.在此情况下作为RSC码的或作为快速码的作业是可能的。译码迭代次数是可调节的,而编码速率可以位于1/3和1之间。这种打点方式称为Berrou加点。
一种另可选择的可能性在于,部分地打点序列u和冗余序列C1与C2。在此情况下用RSC码的作业是不可能的,而是只有用快速码的作业是可能的。译码迭代次数是可调节的,而编码速率可以位于1/3和1之间。这种打点方式称为UKL打点(UKL=UniversityKaiserslautern凯泽斯劳滕大学)。最后还可以考察不进行打点的情况。在此情况下用RSC码和快速码的作业是可能的。译码迭代次数是可调节的,而编码速率位于1/3和1附近。
在RCPTC上的有利特征在于自适应地改变编码速率Rc的可能性,在此在ARQ时可以传输必要的信息,不必传输整个编码的包。信息的,平衡编码速率中差值的附加部分的传输是足够的。
在已说明于RCPTC情况下编码适配的可能性之后,在采用RCPTC时现在借助于模拟来说明适配可能性对系统效率的影响。
图4在示图中展示RCPTC的效率,在此示图中表示了对于经AWGN信道的语音传输用的信噪比Eb/No的位差错率BER。包大小曾是150位,而编码速率约=1/3。语音传输用的载波数据速率为8=kbit/s。将未编码的传输作为基准线来表示。此模拟的参数是在1和5之间变化的译码迭代次数。在第一次译码迭代之后,为实现<10-3的位差错率所必要的最小信噪比约等于3.5db。在第二次译码迭代之后,大约较少1.3db是必要的。下一次译码迭代使得0.2db的增益成为可能。下一次迭代使得少于0.1db的增益成为可能。在第五次译码迭代之后,对于少于10-3的位差错率所必要的最小信噪比约等于1.8db。因此可以看出,效率的改善随着增长的迭代变得更少。相比之下,具有约束长度为9的一个常规NSC码要求约1.9db,以便实现<10-3的同一位差错率。即便在像150位这样小的包大小上,RCPTC因此是比常规的码稍为更有效率的。
图5在示图中展示RCPTC的效率,在此示图中表示了对于在载波数据速率为144 kbit/s时的,在包大小为672位时的,在码率约为1/2时的,和在完全经受交识的瑞利衰落信道上的窄带ISDN用的信噪比EB/No的位差错率BER。模拟参数又是译码迭代的次数。在四次译码迭代之后,少于10-3的位差错率要求为3.8db的最小信噪比。在10次迭代之后只有约3.4db是必要的。具有像四次译码迭代的相似译码复杂性的一个常规NSC码具有约束长度8,并且要求较高达1.1db的信噪比。
图6至9展示对于在采用RCPTC时的效率的示意图,在此相对于信噪比EB/No标出了位差错率BER或帧差错率FER。图6展示对于在包大小为672位时的,在10次译码迭代时的,和在AWGN信道上的信噪比的位差错率。图7展示对于在包大小为672位时的,在10次译码迭代时的,和在完全经受交识的瑞利信道上的信噪比的位差错率。图8展示对于在包大小为672位时的,在10次译码迭代时的,和在AWGN信道上的信噪比的帧差错率FER。图9展示对干在包大小为672位时的,在10次译码迭代时的,和在完全经受交识的瑞利衰落信道上的信噪比的帧差错率。在图6至9的示图中应用两种不同的打点方法,即上面已提及的Berrou打点和UKL打点。可以看出,在信噪比的较小值时Berrou打点具有较好的效率,而在高信噪比时,和因此在<10-3的位差错率时,UKL打点是有利的。交叉点朝着在增长着的编码速率时的较低位差错率方向移动。
图10中展示了对于在第二译码器输出端上的,对数似然比(LLR=Log-Likelihood Ratio)的方差的位差错率,在此假设一个RCPTC,一个为372位的包大小,10次译码迭代,和一个AWGN信道。从此图中可以看出,编码速率对于位差错率和方差σLLR2之间的关系没有影响,因为这两个数值具有与信噪比EB/No的相似的依赖关系。因此当σLLR2是己知时,可以容易地进行位差错率的估算,估算的结果可以用作为一种行动用的基础,例如用作为适配译码迭代次数用的,或适配用于改善传输质量的编码速率用的,或在ARQ情况下用于请求重新发送有差错地编码的包的基础。
最后图11展示在采用具有包大小为600位的,码率约为5/9的,10次译码迭代的,和一个AWGN信道的RCPTC情况下,与信噪比EB/No相比,在第二译码器输出端上的对数似然比LLR的方差σLLR2。RCPTC曾是为64kbit/s的载波业务设计的。从图11中得出,像在与图10的关联中的类似考虑也适用于方差σLLR2与包差错出现的依赖关系。在有差错地译码的包上,σLLR2总是大于在正确译码的包的情况下的σLLR2。因此当对于刚刚检验过的包的信噪比EB/No和σLLR2为已知时,可以容易地生成和为了控制目的采用的与包差错概率有关的软判决变量。
尽管本说明主要涉及本发明在数字移动无线电上的应用,本发明不局限于此,而且可以普遍地以所述的优点采用在数字传输系统上,例如在功率连接的系统上,光学传输系统(红外和激光传输系统)上,卫星无线电系统上,深空间传输系统上,定向无线电传输系统上,和无线电广播传输系统(数字无线电或电视)上。