感应链路的脉冲宽度自适应
本申请要求于2007年8月10日提交的美国临时专利申请60/955,063的优先权,其内容结合于此作为参考。
技术领域
本发明涉及用于可植入式医疗器械的数字数据和能量传输方法,尤其是,涉及数据信号的信号调节以便相对于随机变化和未知参数更加鲁棒。
背景技术
许多可植入式医疗器械接收体外生成的数据信号,所述数据信号还能够作为用于植入体的电力来源。典型地,数据信号在电磁场感应链路上在高频(HF)射频(RF)带(3-30MHz)使用近场通信(NFC)的系统进行传送。例如,磁场感应(MFI)链路能够基于两个对准线圈(aligned coil)-一个在外而一个在内-之间的变压器型感应而在体外信号处理器和植入式器械之间传送和接收信号。
这种应用中的体外信号处理器能够被认为是自供电的引发器(initiator)(例如,通过电池),其中植入式器械是非自供电的目标装置,其通过从传送的RF数据信号提取电能而通过MFI链路被远程供电。植入式器械例如能够通过该植入式器械对所传送信号进行的负载调制而对外部命令进行应答以提供遥测反馈数据。然后,所述体外信号处理器中的遥测电路能够对该经负载调制的RF反馈信号进行解调。
数字数据传输通常以某些R比特/秒的固定数据比特率进行。图1示出了如使用开关键控(OOK)调制的从引发器装置传送到目标装置的逻辑1和0(可能经编码)的数据比特的简单情形(开关键控调制是幅移键控(ASK)的特殊情况)。如在图1的下部所看到的,RF载波信号是具有通常处于HF带中的基础频率(fc)的正弦波。典型地,数据比特率低于或等于fc/10比特每秒。在低功率条件限制下,诸如E类放大器之类的非线性功率放大器(PA)在产生如图1下部所示波形的引发器装置处对基带信号进行调制和放大。调制的OOK信号的解调和检测在目标装置处进行以产生如图1上部所示的信号。
在低复杂度条件限制下,解调和检测利用非相干方案。也就是说,与实施相对复杂的基于锁相环(PLL)和科斯塔斯环(Costas loop)的相干方案相比,在非相干方法中,执行解调而不必恢复rf载波并且执行检测而不必恢复原始时序。在图1所示的示例中,对基带信号进行曼彻斯特编码(Manchester encoding)从而正(负)转换表示逻辑1(0),并且存在比特中信号转换。注意,独立于比特流并且与曼彻斯特编码相一致,仅能够看到两种状态:双倍宽度的高(双倍宽度的低)或者单倍宽度的高(单倍宽度的低)。
通常使用基于异步过采样和计数(O&C)算法的低复杂度检测方法,但是这些方法相对于变化并不非常鲁棒。在异步过采样中,由与编码器时钟无关的时钟(在所述时钟之间没有施加频率或相位关系)以某些kR个样本每秒(k通常为大于3的数)对解调信号进行采样。计数算法对高(低)状态中的样本进行计数并且基于固定决策间隔(即,整数的离散集合)来决定当前计数表示双倍宽度的高(双倍宽度的低)还是单倍宽度的高(单倍宽度的低)。接着直接解码为逻辑1/0流的(即,不归零流,NRZ流)。数据检测在以下文献中以更大篇幅进行讨论:美国专利5,741,314、美国专利6,600,955、美国专利4,361,895和美国专利6,628,212,这些内容结合于此作为参考。
发明内容
本发明的实施例针对于一种用于与植入式医疗器械进行通信的信号处理器。体外处理器以固定数据比特率向所述植入式医疗器械传送植入数据信号,所述植入数据信号具有高和低逻辑状态的序列。高和低逻辑状态的脉冲宽度持续时间能够响应于来自可植入式医疗器械的反馈遥测数据而进行调节。
在具体实施例中,所述体外处理器可以使用电磁场感应链路以传送3MHz和30MHz之间的高频带无线频率。可以使用曼彻斯特数据编码对所述植入数据信号进行编码。可以从预先确定的脉冲宽度持续时间的群组中选择所述可调节脉冲宽度持续时间。
在以上任意实施例中,所述植入式医疗器械可以是耳蜗植入装置。
附图说明
图1示出了如这里所描述的NFC系统中的数据传输。
图2示出了根据本发明具体实施例的系统中的各种功能模块。
图3图示了根据具体实施例的使用各种波形增量的脉冲宽度自适应。
图4图示了根据具体实施例的对波形增量进行优化的各个步骤。
图5图示了具体实施例中用于产生各种波形增量的电路逻辑的一个示例。
具体实施方式
对于为了诸如耳蜗植入体的可植入式器械而实施的近场通信(NFC)系统,参数和条件的变化严重影响HF信号的形状并且由此影响高和低逻辑状态的持续时间。因此,基于O&C算法的检测算法的鲁棒性严重受限于过采样因数(k)和决策间隔。虽然k严重影响功耗(k越高则功耗越高)并且其因此受到限制,但是决策间隔是自由设计参数。为了提高鲁棒性,决策间隔能够以自适应方式来定义,在该自适应方式中启动时的已知训练序列设置了目标解码器处的最佳间隔。
如以上所解释的,典型地NFC系统的特征在于:
·无源NFC,
·引发器,
·感应链路,
·RF正弦曲线的OOK调制(前向链路),
·非相干解调和检测,以及
·目标处的负载调制(返回遥测链路)
在这些条件限制之下,如果线圈(D)及其失准之间的差距事先已知(在某些已知间隔之内),则实现鲁棒检测算法的问题就变得困难:HF链路的带宽(B)和质量因数(Q)随D变化,由此所传送的HF信号的形状也随D变化(振幅变化)。高的Q以及由此低的B限制了HF信号的转变时间并且导致信号衰减(引起符号间的干扰)。此外,如果考虑到由于电气组件(即离散组件)的变化或者集成电路(IC)中的工艺参数变化,则检测问题就更加困难。除其它之外,这种类型的NFC系统包括医疗植入体(例如,耳蜗植入体)中的数据传输系统、无接触智能卡,并且通常包括RFID系统。
图2图示了本发明一个具体实施例中的各种功能模块。体外处理器装置包括信号预调节器201,其在启动时设置引发器基带信号的最优脉冲宽度。然后,调制器202使用OOK调制对预调节的基带信号(经曼彻斯特编码的)进行编码,并且数据信号通过感应链路203传送到目标装置。在目标装置中,由解调器204和检测器205对所接收的OOK调整的信号进行处理。遥测反馈数据由负载调制器206进行编码并且由遥测电路207在引发器装置中检测,以便由预调节器201中的控制模块208所使用。
在预调节器201中,将称作“增量(delta)”的高逻辑状态和低逻辑状态之间的脉冲宽度比设置为如图3所示。注意,曼彻斯特信号的比特持续时间保持相同。由控制模块208从有限集合中选择所述增量。所述增量直接影响在感应链路203上发送的所传送RF信号的形状,并且决策间隔由此能够保持固定。
控制模块208中的状态机执行如图4所示的设置PW增量的具体程序。在系统启动之后,控制模块208选择第一增量并且发送测试序列,步骤401。该训练序列可以设置目标的一个或多个参数。然后,控制模块208向目标发送遥测命令,步骤402,以便基于目标负载调制器206所发送的返回遥测信号读取先前设置的参数。在步骤403中,如果所接收的参数不是正确的参数,则假设目标处的检测失败(通常情况下还假设遥测信道是鲁棒的)。否则,检测正确地进行并且能够存储该增量,步骤405,并且增加所述测试序列增量,步骤405。对测试序列中的每一个增量重复该过程,步骤406。从所有所存储的增量中选择一个作为“最佳”(可能任意选择,例如,最长间隔中间处的增量)。这完成增量设置处理,系统切换到正常操作模式,步骤408。
图5示出了设置增量的预调节器模块201的可能实施方式的一个示例。其中,比特信号C1和C2定义了当前增量。数据输入由曼彻斯特信号给出,而数据输出是已经调节的信号。由C1通过多路复用器选择数据输入或其反转副本。该信号被存储在移位寄存器中。由C2通过多路复用器选择所述移位寄存器的输出。所选择的信号与原始信号或其反转副本进行或运算(OR)。C1再次与OR门的输出多路复用。
本发明的实施例能够以任意的常规计算机编程语言来实现。例如,优选实施例可以以过程编程语言(例如“C”)或面向对象编程语言(例如,“C++”、Python)来实现。本发明的可选实施例可以被实现为预先编程的硬件元件(例如,ASIC或FPGA)、其它相关组件,或者实现为硬件和软件组件的组合。
实施例能够被实施为用于计算机系统的计算机程序产品。这样的实施方式可包括固定于有形介质上或者可经由调制解调器或其它接口装置传送到计算机系统的一系列计算机指令,所述有形介质诸如计算机可读介质(例如,磁盘、CD-ROM、ROM或固定磁盘),所述其它接口装置诸如通过介质连接到网络的通信适配器。所述介质可以是有形介质(例如,光或模拟通信线路)或者利用无线技术(例如,微波、红外或其它传输技术)实施的介质。这一系列计算机指令实现在此之前以功能性描述的系统的部分或全部。本领域技术人员应当意识到,这样的计算机指令能够以多种编程语言来编写以便用于多种计算机体系或操作系统。此外,这样的指令可以被存储在任意存储器器件中,诸如半导体、磁、光或其它存储器件,并且可以使用任意通信技术进行传送,诸如光、红外、微波或其它传输技术。可以预见到,这样的计算机程序产品可以作为带有打印或电子文档的可移动介质(例如,现成软件)来销售,利用计算机系统进行预载(例如,在系统ROM或固定磁盘上),或者通过网络(例如,互联网或万维网)从服务器或电子公告板进行销售。当然,本发明的一些实施例可以实现为软件(例如,计算机程序产品)和硬件的组合。本发明的其它的实施例被实现为完全的硬件或完全的软件(例如,计算机程序产品)。
虽然已经公开了本发明的各个示例性实施例,但是对于本领域技术人员显而易见的是,能够进行各种变化和修改,其会获得本发明的技术效果而并不背离本发明的保护范围。
权利要求书(按照条约第19条的修改)
1.一种用于与植入式医疗器械进行通信的信号处理器,所述信号处理器包括:
体外处理器,用于以固定数据比特率向所述植入式医疗器械传送具有高和低逻辑状态序列的植入数据信号,所述高和低逻辑状态具有可调节脉冲宽度持续时间以响应于来自可植入式医疗器械的反馈遥测数据对数据传送进行优化。
2.如权利要求1所述的信号处理器,其中所述体外处理器使用电磁场感应链路进行传送。
3.如权利要求1所述的信号处理器,其中所述体外信号处理器使用3MHz和30MHz之间的高频带无线电频率进行传送。
4.如权利要求1所述的信号处理器,其中所述植入数据信号使用曼彻斯特数据编码。
5.如权利要求1所述的信号处理器,其中所述可调节脉冲宽度持续时间能够从预先确定的脉冲宽度持续时间的群组中选择。
6.如权利要求1所述的信号处理器,其中所述植入式医疗器械是耳蜗植入装置。
7.一种用于与植入式医疗器械进行通信的方法,所述方法包括:
以固定数据比特率向所述植入式医疗器械传送具有高和低逻辑状态序列的植入数据信号,所述高和低逻辑状态具有可调节脉冲宽度持续时间以响应于来自可植入式医疗器械的反馈遥测数据对数据传送进行优化。
8.如权利要求7所述的方法,其中所述传送使用电磁场感应链路。
9.如权利要求7所述的方法,其中所述传送处于3MHz和30MHz之间的高频带无线电频率。
10.如权利要求7所述的方法,其中所述植入数据信号使用曼彻斯特数据编码。
11.如权利要求7所述的方法,其中所述可调节脉冲宽度持续时间能够从预先确定的脉冲宽度持续时间的群组中选择。
12.如权利要求7所述的方法,其中所述植入式医疗器械是耳蜗植入装置。
说明或声明(按照条约第19条的修改)
基于PCT19(1)条的声明
已经对权利要求1和7进行了修改,以阐明数据信号的脉冲宽度持续时间能够调节,以便对数据信号的数据传送进行优化。现有技术仅为了优化能量传送而调节数据信号的脉冲宽度。本申请提供了能够通过调节数据信号的脉冲宽度而对植入数据信号的传送信号的质量和鲁棒性进行优化的新颖教导,并且实际上,根据本发明实施例的优化程序甚至可以降低能量传送(与现有技术的目的相反)以便对数据传送进行优化。这样的特征没有在任何记录的技术中有所建议。
进行上述修改是为了使权利要求易于授权而并未损害修改之前的权利要求或者原始提交的任意权利要求的可专利性。