《一种半导体的成膜技术.pdf》由会员分享,可在线阅读,更多相关《一种半导体的成膜技术.pdf(10页完整版)》请在专利查询网上搜索。
本发明可能是一种半导体设备,包含氟化绝缘膜和直接沉积在包括含氟绝缘膜上的SiCN膜,其中在SiCN膜中的氮密度从氟化绝缘膜和SiCN膜界面降低。在本发明中,靠近SiCN膜和CFX膜的界面具有高抗氟性,并且作为一个整体具有低介电常量,SiCN膜可以形成为一个硬掩膜。 。
CN200880100328.3
2008.07.24
CN101765904A
2010.06.30
授权
有权
授权|||实质审查的生效IPC(主分类):H01L 21/314申请日:20080724|||公开
H01L21/314; H01L21/768
H01L21/314
东京毅力科创株式会社
松岡孝明; 川村剛平
日本国东京都
2007.07.25 US 60/961,942; 2008.01.14 US 12/008,770
北京高默克知识产权代理有限公司 11263
张京安
本发明可能是一种半导体设备,包含氟化绝缘膜和直接沉积在包括含氟绝缘膜上的SiCN膜,其中在SiCN膜中的氮密度从氟化绝缘膜和SiCN膜界面降低。在本发明中,靠近SiCN膜和CFX膜的界面具有高抗氟性,并且作为一个整体具有低介电常量,SiCN膜可以形成为一个硬掩膜。
1. 一种半导体设备,包含:一种氟化绝缘膜;及一种直接沉积在该氟化绝缘膜上的SiCN薄膜,其中,在SiCN膜中的氮的密度依据氟化绝缘膜和SiCN膜之间的界面降低。2. 根据权利要求1所述的半导体设备,其中氮的浓度逐渐降低。3. 根据权利要求1所述半导体设备,其中通过等离子体气体反应在分成多个区域的容器中形成SiCN薄膜。4. 根据权利要求3所述的半导体设备,其中通过调整进入多个区域的气体流量比来形成SiCN薄膜。5. 根据权利要求4所述的半导体设备,其中形成一个SiCN膜内面的流量比与形成一种SiCN膜外面的流量比不相同。6. 根据权利要求5所述的半导体设备,其中容器包括一个较高区域和一个较低区域,并且当形成SiCN膜外面时,流入较高区域的气体总量比流入较低区域的气体总量大。7. 根据权利要求5所述的半导体设备,其中容器包括一个较高区域和一个较低区域,并且当形成SiCN膜内面时,流入较低区域的气体总量比流入较高区域的气体总量大。8. 根据权利要求6所述的半导体设备,其中一种上瘾的气体流入较高区域,而原料气体流入较低区域。9. 根据权利要求4所述的半导体设备,其中气体流量比会随着时间调整。
一种半导体的成膜技术 技术领域 该申请已向美国作过申请的优先权,临时申请编号为60/961,942,申请于2007年7月25日提交,标题为“半导体沉积法”,由以下所涉及的全部内容构成。 本发明涉及在基板上的成膜技术。该方法适用于半导体设备,液晶显示设备,有机EL元件。 发明背景 在电子设备的生产过程中,如半导体器件,液晶显示设备,有机电致发光(EL)元件,成膜过程是形成一个导电膜或绝缘膜于一个基板表面上的制造工艺。等离子膜形成过程,即使用等离子体形成膜于基板上的过程是这个膜形成过程。例如,当在基板上形成一个CF膜,并进一步形成绝缘膜于CF膜上的形成过程中,出现了一个问题,在CF中的氟原子扩散于绝缘膜中,从而CF膜和绝缘膜之间的接触降低了。此外,还出现了一个问题,当CF膜和绝缘膜在成膜过程中需进行热处理,由于氟原子在绝缘膜中扩散,绝缘膜被腐蚀,导致该绝缘膜剥离。 另外,上述等离子体成膜过程通常是通过一个等离子膜形成装置完成。近年来,微波等离子体成膜装置,由一个微波场产生的等离子形成膜,已经被广泛用作为一种等离子体成膜装置。根据这种微波等离子成膜装置,比作传统成膜装置的高密度等离子体能够被获得,因此成膜过程,对于基板,可以在短时间内有效完成。 上述微波等离子体由成膜仪器提供,例如,将基板放入处理容器。并且在处理容器的上半部分,设置有径向线缝隙天线,并且淋浴板得以通过微波从径向天线以供应气体。进一步说,微波等离子体成膜装置采用了一种替代材料气体用于膜,其来自处理容器的壁表面。 作为一种等离子体处理方法。一种膜形成用微波等离子体成膜装置,例如,下面已经知道的。例如,日本发布尚未审查的专利申请号:2005-093737,披露了一种等离子体处理方法,在基板上成膜,其能够形成高品质的膜,在低温下,短时间内通过优化一定数量的自由基离子的数量,补充给基板。另外,如日本发布的未通过审查的2006-324023号专利申请中,披露一种等离子体成膜装置能够尽量减少淋浴板的变形或扭曲,通过保持淋浴板的理想温度板,并改善淋浴板平面温度的一致性。 另外,如日本发布的未通过审查的2005-150612号专利申请中,披露等离子体成膜装置,在高频波馈电测范围内,即等离子生成区,在其被输入处理容器之前,适当地产生一种等离子,其可防止等离子激活气体等离子化。进一步说,国际出版未经审查的2000-74127号专利申请中,披露等离子过程设备,其可保持等离子体稳定性,不论用于该过程的气体类型,因为没有膜附着在微波所接触部分的绝缘体淋浴板表面上用于处理的气体的解离或约束。 但是,通过使用上述文件所描述的技术,在提高基板上膜的热阻,或防止膜的过度裂开,不能得到充分的实现。因此,出现了一个问题,在基板上形成的膜之间的接触性能退化的问题。此外,对于在基材上形成的膜,在各种条件功能性的特点提出了一个需求。进一步说,对于生产成本,冗长的制造过程及节省材料成本也提出了要求。 发明内容 一方面本发明是一种半导体器件,其包含一种氟化绝缘膜和直接沉积在氟化绝缘膜上的SiCN膜,其中在SiCN薄膜中的氮的密度在氟化绝缘膜和SiCN膜的接触面度降低。 氮的浓度可能会逐渐减少。可通过在分成多个分隔的容器里进行离子气体反应制造出SiCN薄膜。可通过调整进入多个分隔的气体流量比来制造SiCN薄膜。 形成SiCN薄膜内侧的流量比可能会不同于形成SiCN薄膜外侧的流量比。当形成的SiCN薄膜表面时,该容器可能包括较高区域和较低区域,并且气体流进较高区域的总量可能多于流进较低区域的气体总量。 该容器可能包括上游地区和较低的地区,进入该地区大量减少气体量可能比上进入时,形成了SiCN薄膜内陆地区流动的气体量更大。一种上瘾的气体可能流入较高区域并且材料气体可能流入较低区域。气体流量比可能会调整跟着时间。 在本发明中,SiCN薄膜,其有高抗氟,接近利用CFX膜界面,并且具有低介电常量,作为一个整体可以形成为一种硬掩膜。 在一个实施例中,当上述方法可用于进一步形成膜于基板上的膜上时,从而可以预防过度膜解离。当膜过于解离时,这成为一种蚀刻类,并且不能促进膜形成。当膜过度解离被预防时,该膜成为一种形成类,从而膜之间的接触性得以改进。另外,该膜形成所用的上述有效方法提高了耐热性(允许的温度限制)。 进一步说,通过使用上述方法,各种不同特点的膜可以形成。并且可通过上述方法,可以形成各种组成成分的膜。因此,膜的特性和组成成分是可以被控制的。 进一步说,在一个实施例中,当类型相同的气体用于上述方法中时,彼此分解条件是不同的。因此,如果不同类型的气体被利用,气体成分可以共存在一个区域内。因此,低成本的气体可能被利用,以取代高成本气体。此外,可形成具有的结构类似于利用高成本气体形成的膜。 通过随时调整利用上述方法的气体流量比,可形成更多特性的膜和有更多组成成分的膜。从而,膜的特性和膜组成成分可以更有效地被控制。此外,生产成本可降低,通过利用低成本的材料,取代高成本材料。 通过使用上述方法得以改变气体的流量比,膜表面成分和内部成分是可以改变的。例如,当膜表面结构是高介电常数和高机械强度,但是,其可能被设置成在机械强度和电常数方面相对较低。进一步说,为了提高机械强度或膜的热强度,二次成膜过程即所谓的治愈一般是用于低K材料,然而,这样的一个过程可以通过使用上述方法消除。 附图说明 图1和2示图,显示一种微波等离子体处理装置结构,其是根据本发明的第一种具体化。 图3是透视视图,显示一种生产气体供给装置的结构,用于图1和2中的微波等离子体处理装置。 图4是仰视图,显示一种磁盘状导体构成了图3中的生产气图供给装置的一部分。 发明详述 一种CVD装置,用于产生使用RLSA的等离子区,在下文解释。图1和2图示一种微波等离子体处理装置10的结构,其是根据本发明的第一个具体化。 参考图1,微波等离子体处理装置10包括处理容器11和台架13,其被用于处理容器11来支持基板12,得以通过一个静电卡盘处理,其中台架13最好是用AlN(氮化铝)或Al2O3(氧化铝)组成,通过热等静压(HIP)作用。在处理容器11中,有至少两个或最好大于或等于3个排气口111A在空间11A中,空间11A等距离的围绕在台架13周围,因此台架13上的基板12轴向对称。处理容器11是经排气口111A排出达到低气压,使用渐次的导螺杆泵,这些稍候解释。 处理容器11最好是含铝的奥氏体不锈钢制作,而且会形成氧化铝保护膜在内壁表面通过一个氧化过程。进一步说,还会形成一个磁盘状高密度Al2O3淋浴板14,通过热等静压形成,在处理容器中11中外壁的一部份中,对应于基板12,作为外壁的一部份,其中淋浴板14包括大量的喷嘴孔14A。通过热等静压过程形成的Al2O3淋浴板14是使用添加剂Y2O3形成的,并且具有0.03%或更少的多孔性。这意味着,氧化铝淋浴板可充分地克服毛孔或小孔,并有一个非常大的,而不会大到氮化铝导热系数是陶瓷的30W/mK。 淋浴板14安装在处理容器11上,通过一个密封环111S,并且一个高密度Al2O3盖板15,也是用形成余热等静压的方法,通过密封环111T安置在淋浴板14上。淋浴板14与凹陷14B结合在一起,连接各自的喷嘴孔14A,从而形成等离子体通道,在侧面于是和盖板15相连,其中凹陷14B也与另一成形于淋浴板14内部的等离子体通道14C相连,关联于等离子体入口111P,其形成于处理容器11的外壁。 淋浴板14是由个扩展部分边缘来支持,其是形成于处理容器11内壁上的,其中,扩展部分111B形成一个圆形表面于淋浴板14部分,得以抑制放电。 由此,一种如氩或氪供应到等离子入口111P的等离子体,是供应到一个空间11B正下方的淋浴板14,在通过淋浴板14里的通道14和14B之后,均一的通过孔14A。 在盖板15上,设置了一个径向线缝隙天线20,形成磁盘状槽板16,其由多个槽16A和16B形成,如图2所示。连接盖板15,磁盘状线体17具有槽板16,以及一个推迟板18,其是绝缘材料,低损耗,例如氧化铝,二氧化硅或氮化硅夹在槽板16和天线体17之间。径向线缝隙天线20是安装在处理容器11上,通过一个密封环111U,并且2.45GHz或8.3GHz频率的微波进入径向线缝隙天线20,来自外部微波源(未显示),通过同轴波导21。因此,提供的微波会辐射进入处理容器内部,从位于槽板16上槽16A和16B,通过盖板15和淋浴板14。因此,微波促成等离子体中的等离子体激活,其是从位于淋浴板14正下方的空间11B中的孔14A安装的。应该注意的是盖板15和淋浴板14是用Al2O3制作,并且作为一个有效率的微波发射窗口。为了避免在等离子通道14A-14C内激发等离子体,等离子体在上述通道14A-14C内保持的压力,大约是6666Pa-13332Pa(约50-100托)。 为了改善径向线缝隙天线20和盖板15之间的紧密接触,本具体化的微波等离子处理装置10有个环形凹槽在处理容器11上,得以使用槽板16。通过疏散凹槽经由一个排泄口11G与之相连,在槽板16和盖板15之间缝隙中的压力得以降低,并且通过大气压径向线缝隙天线20有助于固定上面的盖板15。应当指出,这个缝隙不仅包括槽板16上的槽16A及16B,也包括其他种种原因形成的缝隙。需进一步指出,这种缝隙是通过密封环111U用在径向线缝隙天线20和处理容器11之间来密封。 通过使用小分子量的惰性气体通过疏散口11G和凹槽111G填充槽板16和盖板15之间的缝隙,传热从盖板15道槽板16槽板得以促进。因此,最好使用He这种惰性气体,由于其大导热系数和大电离能量。如果当缝隙被He充满时,最好设置的压力约0.8atm。在图1所示结构中,在排泄口11G上安置了阀11V,用来槽111G的排泄和填充惰性气体进入槽111G。 应该指出,当中央控制器21B通过一个形成于推迟板18中的开口连接到槽板16,一个同轴波导21A的外波导管连接到磁盘状天线体17。因此,进入同轴波导21的微波在天线体17和槽板16之间在径向方向上扩散,并且是从槽16A和16B发射出去。 图2显示形成槽板16上的槽16A及16B。参考图2,槽16A是设置成同心圆排列方式,设置槽16B给每一个槽16A,槽16B垂直穿越16A,于是槽16B与槽16A同心圆式连接。在槽16A及16B之间形成一定间隔,对应于通过在槽板16的辐射方向上的辐射状板18压缩的微波波长,因此,微波从槽板16以接近平面波的形式发出。由于槽16A和槽16B形成相互垂直关系,微波辐射从而形成一个包括两个垂直极化部分的圆形极化波。 在图1中等离子处理装置10,提供了一个冷却块19,与在天线体17上的冷却水系统19A共同组成,并且聚集在淋浴板14上的热量通过辐射线状槽天线20吸收,由冷却块19来冷却,经由冷却水系统19A中的冷却水。该冷却水系统19A是由冷却块19以螺旋形式形成19,并且提供有可控制的具有氧化还原电位的冷却水,其中该氧化还原电位的控制是通过消除溶解在冷却水中的氧气经由氢气起泡来实现。 在图1中的微波等离子体处理装置10,则进一步在处理容器11中,在淋浴板14和载物台13上的基板12之间,提供了一个工业气供给机制31,其中工业气体供给装置31有气体通道31A,设置在一个格子形中,而且释放一种工业气体,该气体从工业气体入口111R进入,其设置在处理容器11的外壁上,并经过多个工业气体喷嘴口。因此,希望统一基板处理得以实现,在工业气体供应装置31和基板12之间的空隙11C中。这种基板处理包括等离子体氧化处理,等离子体氮化处理,等离子体氧氮化处理和等离子体CVD处理。进一步说,它可能进行一个基板12的活性离子蚀刻,通过提供一种容易分解的碳氟化合物气体,诸如C4F8,C5F8 or C4F6或一种包含F or Cl的蚀刻气体,然后进一步从一个高频电源13A处使用一种高频电压到载物台13。 在本发明具体化的微波等离子体处理装置10中,通过加热处理容器11的外壁至约150℃,可在处理容器内壁上避免反应副产品的沉积物沉积。因此,微波等离子体处理装置10可以不断地稳定运行,仅需一次一天左右的干洗处理。 图3是一个仰视图,显示图1中的工业气体供给装置31的结构。参考图3,工业气体供给装置31是由磁盘堆栈类导电成员311和312形成,例如含有镁的铝合金或含Al的不锈钢。这有一个孔31A,倾向于矩阵式,得以用作等离子通道。例如,孔31A孔径为19毫米×19毫米大小,迭代提供了倾斜度在横向方向和纵向方向都是24毫米。这个工业气体供给装置31有一个总厚度大约8.5毫米的,而且特别设置一个距离基板12表面约16毫米的缝隙。 图4是一个底部图,显示图3中的磁盘状导电部件311的结构。参考图4,在磁盘状导电部件311中,设置有一个格型工业气体通道31B,和工业气体供应通道31C相连,沿磁盘状导电部件133外部圆形形成,如图4中的虚线所示。工业气体供应通道31C连接到工业气体入口111R。在磁盘状导电部件311的相反的表面上,还形成了大量的工业气体喷嘴孔31D,与工业气体通道31B相连。该工业气体是从工业气体喷嘴孔31D释放给磁盘状导电部件312。 根据本发明制作的微波等离子体处理装置10被用于基板上,形成一薄膜,通过采用具体的例子,使该具体化的描述更详尽。在本发明中,通过改变进入微波等离子体处理容器10的空间11B和11C的气体流量比,使具有不同的分子组成比例的膜能够被叠加。例如,如果三甲基硅烷和氮气进入空间11B及空间11C,基板上形成一个SiCN硬掩模,但是,在这种情况下,如果在空间11B及空间11C中的流量比在界面区和膜区的成膜时间之间发生变化,可形成分子的组合比例在界面区和膜区是不同的SiCN薄膜。 通常,利用CFX膜或类似的基板,其上方有一层SiCN薄膜层压复合,但是,例如,当CFx薄膜上的SiCN薄膜的迭片结构启动时(用于界面区的成膜的时候),对于空间11B,使其流量比率大于空间11C的,反之,在膜区成膜时,对于空间11C,使其流量比率大于空间11B的。以这种方式配置允许Si-N键和Si-C键的百分比得以提高,接近界面,并且在膜中,分别与在流量比率为1∶1时的成膜相比。在CFX膜界面附近,为增加CFX与SiCN薄膜之间的粘性,最好用含高抗氟的SiCN薄膜。SiCN薄膜具有大比例的Si-N键,是一个高抗氟薄膜,并且因此最好是通过上述方式来成膜。在另一方面,SiCN具有很大比例的Si-N键,有较大的介电常数,相对于具有大比例的Si-C键的SiCN薄膜。因此,在另一个区域而不是在临近内界面的区域,也就是,在膜区中,具有大比例的Si-C键的SiCN薄膜更可取,因此最好是通过上述方式来成膜。通过采用这种方法,高抗氟的SiCN薄膜靠近CFX膜界面,并具有低介电常数,作为一个整体,可以形成一个硬掩膜。 进入上述空间11B及空间11C的气体并不限于上述气体,而是任何类型的气体都可以进入。通常情况下,进入空间11B,气体如氩气(Ar),氮气(N2),氨气(NH3)或氢气可以引进,而进入空间11C,可以是三甲基硅烷和氮气的混合气体,硅烷,乙硅烷,甲基硅烷(如单甲基硅烷,二甲(基)甲硅烷,三甲基硅烷,或四甲基硅),硅氮烷(如甲基硅氮烷或乙荃硅氮烷),或类似气体。假如需要在基底上形成SiCN薄膜,氩气和三甲基硅烷和氮气的气体混合物最好分别进入空间11B及空间11C。另一方面,如果想要在基板上形成SiC薄膜,氩气和三甲基硅烷最好分别进入空间11B及空间11C。进一步说,如果想要在基板上形成SiN膜,氩气和硅烷或乙硅烷最好分别进入空间11B及空间11C。同样,即使氮气和三甲基硅烷分别进入空间11B及空间11C,可形成SiCN薄膜。 即使SiCN,SiC,或SiN膜的形成是基于上述方法之一,通过改变在空间11B及空间11C中气体流量比,可形成这些有不同的分子组成比例的膜。注意:上面使用的术语“分离”,但是,这并不意味着在形成的膜中的膜组成成分分离,而是表示已进入空间11B或11C的气体被带入气体反应的分离条件,在这个条件下进行反应,形成膜。 上述解释本发明的一个具体化,但是,本发明不仅限于上述的特定例子。例如,一种膜是在基板上形成的,然而,根据本发明的成膜技术可应用于其它制膜,如电极膜。同样,其他气体,如氙气,或氪气,可用于淋浴板14的气体。进一步说,根据本发明的成膜技术可以应用于不仅是半导体设备的基板,也可用于生产液晶显示设备或有机EL元件的基板。 有关本发明的基板处理包括,例如,等离子体氧化处理,等离子体氮化处理,等离子体氧氮化处理,等离子体CVD处理,等等。根据本具体化的微波等离子体处理装置10可避免反应副产品的沉积和类似物质沉积在上述处理装置容器11的内壁上,通过加处理容器的外壁在大概150℃,并且可以持续稳定运行,需对四周进行约每天一次的干洗。
下载文档到电脑,查找使用更方便
30 金币 0人已下载
还可以输入200字符
暂无评论,赶快抢占沙发吧。
copyright@ 2017-2018 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1