书签 分享 收藏 举报 版权申诉 / 23

含氟的P型掺杂微晶半导体合金及其制造方法.pdf

  • 上传人:Y0****01
  • 文档编号:1078261
  • 上传时间:2018-03-30
  • 格式:PDF
  • 页数:23
  • 大小:1,021.24KB
  • 摘要
    申请专利号:

    CN85108047

    申请日:

    1985.11.02

    公开号:

    CN85108047A

    公开日:

    1986.07.16

    当前法律状态:

    终止

    有效性:

    无权

    法律详情:

    |||授权|||审定|||公开|||

    IPC分类号:

    H01L21/24; H01L21/40; H01L31/06; H01L21/20

    主分类号:

    H01L21/24; H01L21/40; H01L31/06; H01L21/20

    申请人:

    索冯尼克斯太阳能系统公司

    发明人:

    萨布亨杜·古哈; 詹姆斯·库尔曼

    地址:

    美国俄亥俄州索伦·科克伦路6180号

    优先权:

    1984.11.02 美国(US) 667,659; 1985.02.13 美国(US) 701,320

    专利代理机构:

    中国专利代理有限公司

    代理人:

    陶令霭

    PDF完整版下载: PDF下载
    内容摘要

    一种含有足够浓度晶体夹杂物的以显著改善材料性能的、含氟掺硼P型硅基半导体微晶合金,以及该合金的制造方法。包含有至少一层暴露于入射光下的这种合金的单个电池或多层电池的光生伏打器件改善了填充因子和转换效率。

    权利要求书

    1: 1、一种制造含氟的P型掺杂微晶硅基半导体合金的方法,其特征是,通过在一个气体混合物中建立辉光放电来沉积半导体合金膜,所说的气体混合物含有:不到1%的含硅的半导体源气体、不到1%的含硼掺杂剂源气体、以及高于90%的稀释气,所说的这些气体中至少有一种含有氟。 2、按照权利要求1的方法,其特征是,所说的半导体源气体是从下面的基本上由硅烷、硅烷与锗烷的混合物、四氟化硅、以及四氟化硅与锗烷的混合物所组成四组中选出的一组。 3、按照权利要求1的方法,其特征是,所说的掺杂剂源气体选自三氟化硼和乙硼烷。 4、一个光生伏打结构,包括在光学上和电学上都是串联关系的一层配置在另一层上面的许多层(16b′、18b′、20b′)非晶半导体材料,这许多层包括一个P型电导层(16b′)、一个本征型层(18b′)和一个n型层(20b′),用以在所说的本征型层(18b′)中建立一个电场区,以收集在所说区域中由于吸收入射光而产生的电子-空穴对,其特征是,所说的P型层(16b′)是一个硅基的、含氟的、掺杂硼的微晶层,其激活能低于0.1电子伏特,电导率大于0.5欧姆 -1 厘米 -1 ,禁带宽度大于
    2: 9电子伏特。 5、一个串叠式光生伏打结构(10′),包括许多层在光学上和电学上串联的一层配置在另一层上的许多层(16a′、18a′、20a′、16b′、18b′、20b′)非晶半导体合金材料,该光生伏打结构包括多个相反掺杂的层(20a′,20b′,16a′,16b′),用以建立多个电场区(18a′、18b′)以收集在所说的这些电场区域中由于吸收入射光而产生的电子空穴对,其特征是,所说的掺杂层(20a′、20b′、 16a′、16b′)中至少有一层是硅基的、含氟的掺硼微晶层(16b′),其激活能低于0.1电子伏特、电导率大于0.5欧姆 -1 ,厘米 -1 ,禁带宽度大于1.9电子伏特。 6、一种改进的掺硼P型含氟硅基半导体合金,其特征是,所说的合金含有至少80vol%的微晶夹杂物。 7、按照权利要求6的合金,其特征是,其激活能低于约0.1电子伏特。 8、按照权利要求6的合金,其特征是,它的电导率大于0.5欧姆 -1 厘米 -1 。 9、按照权利要求6的合金,其特征是,它的禁带宽度大于1.9电子伏特。 10、按照权利要求6的合金,其特征是,它在550毫微米的吸收常数低于3×10 4 厘米 -1 。

    说明书


    含氟的P型掺杂微晶半导体合金及其制造方法

        非晶薄膜半导体合金作为一种用以制造电子器件的材料,例如制造光生伏打电池、光敏器件和光电导器件、晶体三极管、二极管、集成电路、存储器阵列等,已经获得日益增加的应用。非晶薄膜半导体合金可以以较低的成本进行制造,它具有宽范围的可以控制的电学性质、光学性质和结构性质,并可以沉积到较大的基面上。最重要的半导体合金材料有硅基合金、锗基合金和硅-锗基合金。

        如美国专利第4226898中所公开的,引入到非晶硅合金半导体材料中的氟显著地降低了在其禁带宽度中的局部缺陷状态密度,并便于添加其它的合金材料,例如锗。

        高质量的n型掺杂本征非晶半导体合金膜可以很容易制造。但是,制造具有好的电学质量的P型掺杂非晶半导体合金膜就要困难得多。

        本发明是关于非晶态的和非晶与晶体混合态的半导体材料。本文中所称的“非晶”材料是指表现出长程无序的材料,不过它们可以包含短程有序或中程有序,或者甚至可以含有晶体夹杂物。本文中所称的“微晶”材料是指含有晶体夹杂物的体积比值超过阈值的一类非晶态材料。当超过这个晶体夹杂物阈值体积比值时,某些(关键)的材料参数,如电导率、禁带宽度和吸收常数就会发生显著变化。这一微晶体材料物理性质发生显著变化的临界阈值,取决于特定晶体夹杂物的大小、形状和取向,但它对于不同导电类型的材料是相对恒定的。虽然有多种材料可以归类为“微晶体”,但是只有它们的晶体夹杂物体积比值超过了发生显著变化所必须的阈值时,这些材料才会表现出我们所发现有助于实施本发明的那些性质。晶体夹杂物的形状对于达到阈值所必需的体积比值是关键的。对于予测达到取决于晶体夹杂物形状的阈值所必需的夹杂物体积比值,有一维模型、二维模型和三维模型。例如,在一维模型中(这一模型可以比喻为载流子通过一根细电线流动),在非晶网中的夹杂物体积比值比须是100%才能达到阈值。在二维模型中(这一模型可以视为贯穿非晶网厚度而延伸的、大体上成园锥形的夹杂物),在非晶网中夹杂物的体积比值必须是约45%才能达到阈值。在三维模型中(这一模型可以视为在非晶态材料的海洋中基本上成球形的夹杂物),夹杂物的体积分数只需要约16-19%即可以达到阈值。因此,非晶材料(甚至那些由本领域的其他人归类为微晶的材料)可以包含晶体夹杂物而不会成为按本文中所定义的微晶体。

        我们已经认识到,微晶半导体合金材料所表现出的特别有益的性质可以通过在硅、氢半导体合金基体中掺杂氟而得到进一步加强,并且,添加氟或没有添加氟的、按我们所描述的微晶半导体合金材料在制造n-i-p型光生伏打器件中特别有用。

        松田等人在一篇题为“高电导率和宽光学禁带宽度的掺硼Si∶H膜”的论文中,描述了一种辉光放电沉积技术,这一技术用来在高功率低压力的条件下,由乙硼烷、硅烷、和氢的源气体混合物制造掺硼的含氢微晶硅合金材料的薄膜。据报导,结果得到的P型掺杂半导体合金,其光学禁带宽度为1.8eV、暗电导率约0.1欧姆-1厘米-1、激活能为0.03eV微晶夹杂物在非晶网中的总量为60vol%(体积百分比)。所报导的0.1欧姆-1厘米-1的电导率至少比本发明合金的电导率低两个数量级。Matsuda所报告的禁带宽度比起相应的本征半导体合金材料的禁带宽度要窄。Matsuda等人所描述的技术,没有将氟掺入半导体合金材料,仅仅依赖使用乙硼烷作为P型掺杂的气体源,并且未能提供最佳的晶体夹杂物体积百分数。乙硼烷是一种与大气接触时自然的相当昂贵的有毒气体材料,它在辉光放电过程中必然产生不合要求的半导体产物。在辉光放电过程中,乙硼烷趋向于将聚合的和低聚的硼类物质掺入正在沉积的半导体合金材料中,有害地影响了沉积的半杂体合金材料的化学性质、光学性质和电学性质。

        松田等人制造的薄膜P型掺杂半导体合金材料据说含有接近60    Vol%的晶体夹杂物。但这些结果是由薄膜而不是由器件得出的。为了精确地测量薄膜中的晶体夹杂物体积比值,膜必须比较厚,例如100毫微米厚,而松田的膜只有10毫微米厚。此外,由于晶体夹杂物的体积百分数随厚度而增加,因此松田不可能达到产生如我们所定义的微晶材料的阈值。

        中村等人公开了一个由三个串联的含硅太阳能电池制作成的光生伏打器件(“Tandem    Type    Amorphous    Solar    Cell”,Technical    Digest    of    the    International    P.V.S.E.C.-1,Kobe,Japan(Nov.1984)PP.587-590    and    “Tandem    Type    Amorphous    Solar    Cells”,Journal    of    Non-Crystalline    Solids,Vol.59    and    60(1983),PP.1111-1114)。Nakamura等人的光生伏打器件被描述为n-i-P型或P-i-n型光生伏打电池,其中n型掺杂层和P型掺杂层是微晶,即由微晶硅∶氢或微量硅∶锗∶氢制作成,不过,对于微晶这一术语未作释义。但是,在中村等人的论文中所描述的材料并不是本文中所定义的“微晶”。中村等人的材料不是微晶的证据是从他们在上述神户会议论文中的图5得出的。图5表明光学禁带宽度减小了然而暗电导率却显示出有明显上升。在按照我们所定义的微晶材料的全部测量中,光学禁带宽度随着暗电导率的增加而增加。

        在本发明的一个实施方案中,半导体合金材料由至少含有硅、氟和一种P型掺杂元素的微晶主基质组成。该P型掺杂剂最好是硼。含氟的P型掺杂微晶合金材料的特征是:激活能约低于0.05eV;电导率高于1.0欧姆-1厘米-1;禁带宽度接近20eV;对于550毫微米波长光的吸收常数大约3×104厘米-1;氟含量为0.5%-5%;以及微晶夹杂物大于50Vol%。在本发明的其它实施方案中,主基质可以由硅:锗合金组成,微晶半导体合金材料可以包含氢。

        本发明包括一种用辉光放电沉积方法制造含氟的P型掺杂微晶半导体合金材料的方法。本方法包括:通过辉光放电将包含含氟气体、半导体源气体、掺杂剂源气体和稀释气体的气体混合物分解,在基片上沉积上微晶合金薄膜。本方法的一个最佳的实施方案包括,引入包含不到约10%的半导体源气体、超过90%的稀释气和低于约1%的P型掺杂剂源气体的混合气体这步工序。在最佳实施方案中,半导体源气体是硅烷,稀释气是氢,掺杂剂源气体是三氟化硼。在另一个实施方案中,半导体源气体是四氟化硅,稀释气是氢,掺杂剂源气体是乙硼烷。在又一个实施方案中,半导体源气体是四氟化硅,稀释气是氢,掺杂剂源气体是三氟化硼。在另外一个实施方案中,半导体源气体是四氟化硅和硅烷混合物,稀释气是氢,掺杂剂源气体或者是三氟化硼或者是乙硼烷。在又一个实施方案中,半导体源气体和掺杂剂源气体与上述的几个实施方案中相同,但稀释气由氢和一种惰性气体如氩的混合物构成。

        在本发明的另一实施方案中,一个至少包括一组P型掺杂和n型掺杂半导体合金区的电子器件,使用了一个由含氟的微晶具有宽禁带宽度的半导体合金材料制成的P型掺杂半导体合金区。在这个电子器件的一个特定实施方案中,在一个基本上为本征半导体的合金区的两侧,配置一个P型掺杂区和一个n型掺杂区形成了一个P-i-n型光生伏打电池。这一P型掺杂的微晶半导体合金材料使得该光生伏打电池中的串联电阻减到最小程度。在又一个实施方案中,一个薄膜晶体管器件至少包含一个由含氟的P型掺杂微晶半导体合金材料制成的区域。在另一个实施方案中,一个CMOS互补型金属氧化物半导体薄膜晶体管至少包含一层含氟的P型掺杂微晶半导体合金材料。

        本发明的另外一个重要的实施方案包括一个串叠式光生伏打电池,它由许多层非晶态合金组成,这许多层非晶态合金依次一层沉积在另一层的上面,在电学上是串联连接的。这许多层包含有多个电场区,用以收集这些电场区中产生的电子-空穴对。照射到这一电池结构上的光依次通过掺杂层和电场区,在每一个电场区中吸收一部分光。这许多掺杂层包含多个具有微晶结构的P型掺杂层,所说的微晶结构特征是光吸收低、激活能低而电导率高。

        图1是包含有多个P-i-n型电池的一个串叠式光生伏打电池的不完全剖视图。

        图2是一个沉积装置的示意性剖视图,该装置用于在连续送进的基片材料基板上逐次沉积多层半导体合金材料薄膜。

        图3是一个类似于图1的器件的二重禁带宽度串叠式光生伏打器件的剖视图,它由两个n-i-P电池组成。

        图4是一个类似于图1的器件的二重禁带宽度串叠式光生伏打器件的剖视图,该器件由3个n-i-P电池组成。

        图5是一个类似于图1的器件的二重禁带宽度串叠式光生伏打器件的剖视图,该器件由4个n-i-P电池组成。

        图1显示了一个由各个P-i-n型电池12a、12b和12c构成的P-i-n型光生伏打器件10,例如一个太阳能电池。与电池12a邻接的是一个基片11,它可以是透明的,或者可以由下列材料制成:象不锈钢、铝、钽、钼、铬这样一些金属材料,或者嵌入绝缘体中的金属颗粒。对于某些用途,可能要求在制备非晶态材料之前,在基片11上先沉积一个薄的氧化物层和(或)一系列基极接触。因此,基片这一术语不仅包括一个可弯曲的膜,而且还包括通过予处理所加的任何成分。基片可以由其上面加有导电电极的玻璃或玻璃状材料制成。

        电池12a、12b和12c中的每一个最好都是由一个至少含有一种硅合金的薄膜半导体单体制作成。这些半导体单体中的每一个,都包含:一个n型导电半导体层,它们分别是20a、20b和20c;一个基本上本征半导体层,它们分别是18a、18b和18c;和一个P型导电半导体层,它们分别是16a、16b、和16c。本征层可以包含痕量的n型或P型掺杂材料而不丧失其本征中性,因而称之为“基本上本征层”。电池12b是一个中间电池,如图1中所示,可以堆积在图示的电池上附加的中间电池。本发明的方法和材料也可以用来制造单个的或多层的n-i-P电池、P-n电池、肖特基(Schottky)势垒电池、以及其它半导体或器件,如二极管、存储器陈列、光电导器件等。

        在电池22上配置一个透明导电氧化物(TCO)层22。在TCO层22上可以沉积上栅极24以增加电流收集效率。

        在图2中表明了一个多级的辉光放电沉积装置26,该装置用于连续生产包含本发明的微晶P型掺杂的禁带宽度宽的半导体合金材料的半导体电池。也可以采用其它装置来制造这种新材料。沉积装置26包括多个分离的沉积室,它们通过气门42相互连接。清除用的气体和基片材料基板11穿过气门42。

        装置26用于在基片材料基板11的表面上连续地沉积P-i-n结构的薄膜半导体层。装置26包含3个用于沉积P-i-n或n-i-P电池的沉积室,但也可以增加一些沉积室或减少一些沉积室以制造较复杂一些或较简单一些的电池。在沉积室28中,在基片材料基板11上沉积一个P型导电半导体合金层;在沉积室30中,在上述P型层上再沉积一个本征半导体合金层;在沉积室32中,在这一本征层上进一步沉积一个n型半导体合金层。为了便于说明,在沉积室中表示出一个未经处理的基片材料的卷筒11a和一个包含半导体合金沉积物的基片材料的收取卷筒11b,但是一般地说,它们是安放在与沉积室相连接的单独的容器中。电磁能源,如射频发生器38激励着辉光放电沉积这一工艺过程。能量可以是直流电或者是整个微波范围频率的交流电。它被供给到配置在沉积室内的阴极34并用一个屏蔽罩35保护起来。生长用的气体可以被引入装置26,按照与基片运行相平行的方向流动,其流动方向可与基片运行方向相同或者与其方向相反。生长用的气体通过输送管36供入。废气通过排气管41被抽出。许多横向放置的磁性元件50使基板11基本上保持成平面形状。辐射加热元件40加热该基片。设置在本征沉积室30两侧的惰性净化气导管37,将惰性气体通过气门42导向掺杂剂沉积室,以防止邻接沉积室中的反应气体混合物交叉污染。由于发生器38所提供的能量,在阴极34和接地的基片基板11之间形成了一个等离子体区。这个等离子体区将生长用的气体分解成为在基片材料基板11上沉积的气体产物。

        我们发现,只要使用适当的源气体材料,并保持适当的沉积条件,通过辉光放电沉积可以容易地制造出禁带宽度宽的微晶半导体合金材料。引入源气体材料时,必须十分谨慎,因为在辉光放电等离子区中可能发生多种竞争的化学反应。在这些反应中,有一些反应有利于半导体合金材料的生长或沉积,而另一些反应则促进腐蚀掉已沉积的半导体合金材料。我们已经发现,必须控制这些竞争的化学反应才能控制腐蚀与沉积的相对速率。我们还发现,如果生长速率大大超过沉积材料的腐蚀速率,则在基片上就会沉积上一层未形成所要求的、达到阈值所必需的晶体夹杂物体积百分数的半导体合金膜。当然,如果腐蚀速率超过了沉积速率,半导体合金膜就不可能沉积上去了。只有当半导体合金材料的生长和它的腐蚀以近似相同的速率进行时,才会沉积上微晶半导体合金材料,也就是说,具有所要求的晶体夹杂物体积百分数。

        典型的生长用的气体混合物包括:用来提供半导体元素或主基质元素的半导体材料气体源、一种或多种用来降低半导体合金的禁带宽度中的不合需要的电子状态的降低气体状态密度的元素、以及将P型掺杂剂元素掺入半导体合金材料的主基质中的P型掺杂剂气体源材料。生长用的气体混合物还包含气体稀释剂,用以稀释气体及使进入辉光放电等离子区中的反应元素的浓度及其组合达到最优化,这一气体稀释剂可以由单个组分或者由多组分的混合物组成。在某些情况下,这种稀释气还有助于各反应元素的实际分解和再化合,在其它一些情况下,这种稀释气也作为降低状态密度的元素。

        我们已经发现,必须使用高度稀释的源气体混合物才能得到所需要的材料。也就是说,比较起来我们更喜欢这样的一种气体混合物,在这种气体混合物中与稀释气体相比气体源材料的反应元素是以比较低的浓度存在的。实施本发明的典型的生长用的气体混合物包括:0.1-10%的半导体合金材料气体源,如硅烷或四氟化硅,可以单独使用也可以与锗烷结合使用;和在气体稀释剂材料如氢、氩或二者的混合物中稀释的,0.02-0.4%的气体稀释剂材料,例如三氟化硼或乙硼烷。换句话说,三氟化硼与硅烷之比最好在大约40%的范围内,而乙硼烷与硅烷之比最好是在4%的范围内。所使用的典型的沉积参数是:基片温度约275℃(最佳范围是150℃至225℃),压力大约65-270帕斯卡,电磁能密度大于约1.5瓦/厘米2。

        一种优选的微晶半导体合金材料包括由掺杂硼的硅∶氢∶氟制成的合金。由于这种新的半导体合金材料是微晶的,因而它可以容易而有效地被掺杂以获得极低的激活能,典型地是在大约0.05eV的范围内。按下列工艺步骤制出这样的掺硼的、宽禁带宽度的、高电导率的微晶含氟含氢的半导体合金材料。

        实施例1

        将由0.20%硅烷、0.08%三氟化硼和99.72%氢构成的气体源混合物导入一个辉光放电沉积装置,该装置大致类似于沉积装置26并保持在大约80帕斯卡的压力下。基片加热至约225℃,以13.56兆赫的频率、30瓦的功率给阴极34加能量达30分钟。沉积60毫微米厚的半导体合金膜。喇曼(Raman)光谱仪和透射电子显微镜的测量证实了,这个样品是晶粒尺寸的范围在5-10毫微米的微晶。微晶硅夹杂物的体积百分数估计大于80%。这个体积百分数远远高于使某些关键的电光特性现出显著变化的阈值。例如,这个样品的暗电导率约5.0欧姆-1厘米-1。相比之下,对于晶体夹杂物体积百分数低于阈值的相应的P型掺杂硅∶氟∶氢合金,暗电导率约为10-4-10-3欧姆-1厘米-1,而对于由松田等人制造的使用乙硼烷作为掺杂剂源的未氟化微晶硅∶氢合金,暗电导率大约是0.1欧姆-1厘米-1。P型掺杂的微晶硅合金的激活能低于约0.05eV,相比之下,对于所说的相应的非晶态P型掺杂硅∶氟∶氢合金样品是0.4-0.3eV。所说样品的光学禁带宽度是2.0eV,相比之下,晶体夹杂物体积百分数低于域值的相应硅∶氢∶氟合金样品的光学禁带宽度是1.6eV,而由松田等人制造的P型掺杂未氟化的微晶硅∶氢合金,光学禁带宽度是1.8eV。对550毫微米波长光的吸收常数是3×104厘米-1,相比之下,对于晶体夹杂物体积百分数低于阈值的P型掺杂硅∶氢∶氟合金样品,其吸收常数是1×105厘米-1。最后,向主基质中掺入了大约3.5%的氟。

        实施例2

        在本实施例中,制造了两个n-i-P结构的光生伏打电池。这两个电池在下面这一点上是相同的,即它们每一个都是由一个上面沉积了一层n型掺杂的硅合金材料的反射不锈钢基片和在这个n型掺杂层上沉积的一层本征硅半导体合金材料所组成。此外,第一个样品具有一层在本征半导体合金材料层上沉积的、含有晶体夹杂物体积百分数低于阈值的P型掺杂硅∶氟∶氢合金材料。第二个样品沉积在本征半导体合金材料层上,有一层含有晶体夹杂物体积百分数超过阈值的微晶P型掺杂硅∶氟∶氢合金材料。使这样制造的两个光生伏打电池承受接受太阳穿过大阳层直接照射强度(AM1-标准日照)的模拟日光照射。这两个光生伏打电池的光电转换参数小结于下面的表1中。

        表1

        微晶P型掺杂硅∶氟∶氢    非晶态P型掺杂硅∶氟∶氢

        合金层    合金层

        开路电压    0.952伏    0.72伏

        短路电流密度 13.895毫安/厘米212.0毫安/厘米2

        占空因子    0.712    0.58

        转换效率    9.4%    5.0%

        表1表明,使用这种微晶P型掺杂的硅∶氟∶氢合金层全面地改善了光生伏打电池的所有性能。

        实施例3

        在本实施例中,在一个不锈钢基片上形成了一个比较薄的n-i-p型光生伏打电池。这个光生伏打电池不同于在图2中所表示并参照图2进行说明的电池,仅就它比较薄,即总厚度只有大约100毫微米而言。这种比较薄的光生伏打电池专门设计成在厚度与化学成分上与串叠式的光生伏打器件中的顶部电池相似。制造这种电池是为了说明使用本发明的微晶P型掺杂宽禁带宽度半导体合金材料作为串叠式光生伏打器件中的P型掺杂层的可行性。半导体合金层是在前述实施例中所提出的条件下全辉光放电沉积的。我们发现,这样制造出来的比较薄的n-i-p光生伏打电池产生了大约0.936伏的开路电压和大约9.548毫安/厘米2的短路电流密度。这个光生伏打电池的比较低的短路电流密度是由于它很薄。这个光生伏打电池的占空因子是大约0.706,1平方厘米电池的最大功率输出密度是大约6.312毫瓦/厘米2。

        实施例4

        在图3中,用参考标号10′概括地表示了一个串叠式光生伏打器件。串叠式光生伏打器件10′是由两个重叠的n-i-p光生伏打电池12a′和12b′构成,每个电池都包括含氟的微晶P型掺杂宽禁带宽度半导体合金材料层16a′和16b′。

        光生伏打器件10′是按以下步骤制成的:

        在不锈钢基片11上沉积约25毫微米厚的第一层n型掺杂的半导体合金(硅∶氢∶磷)层20′,在20a′层上沉积约350毫微米厚的第一个本征半导体合金(硅∶氟∶氢∶硼(痕量))层18a′,在本征层18a′上沉积约10毫微米厚的第一层P型掺杂半导体合金(硅∶氟∶氢∶硼)层16a′,在16a′层上沉积约10毫微米厚的第二层n型掺杂的半导体合金(硅∶氢∶磷)层20b′,在20b′层上沉积约100毫微米厚的第二层本征半导体合金(硅∶氟∶氢∶硼(痕量))层18b′,在18b′层上沉积约7.5毫微米厚的第二层P型掺杂的半导体合金(硅∶氟∶氢∶硼)层16b′,在16b′层上沉积约50毫微米厚的铟锡氧化物(ITO)层22,最后在ITO层22上沉积指状栅24。这些半导体合金层是由硅烷、氢和磷化氢的源气体混合物辉光放电沉积形成n型掺杂半导体合金层,由硅烷、氢和痕量的三氟化硼的源气体混合物辉光放电沉积形成本征半导体合金层,由硅烷、氢和三氟化硼的源气体混合物辉光放电沉积形成P型掺杂的半导体合金层。

        在本实施例中,光生伏打电池12a′和12b′是由一般说来具有相似禁带宽度的半导体合金材料构成,即它们不是最佳的。串叠式光生伏打电池的开路电压约为1.821伏,占空因子约为0.725,由此表明,在光生伏打电池12a′的P型掺杂的宽禁带宽度微晶半导体合金材料层16a′与光生伏打电池12b′的n型掺杂半导体合金材料层20b′之间,存在着良好的隧道结。串叠式光生伏打器件的短路电流密度只有大约6.654毫安/厘米2,而这一短路电流密度予计是低的,因为这两个光生伏打电池的禁带宽度是相似的。大部分光在光生伏打电池12b′中被吸收,光生伏打电伏12a′不能产生很多电流。尽管短路电流较低,光生伏打电池10′仍以大约8.8%的光电转换效率工作。

        实施例5

        在本实施例中,除了光生伏打电池12a′作为一个硅∶锗∶氟∶氢∶硼(痕量)的窄禁带宽度本征半导体合金层18a′被辉光放电沉积之外,按照与图3所说明的器件同样的方式制造一个n-i-P型光生伏打器件10′。窄禁带宽度光生伏打电池12a′是采用大体上参照与实施例1所描述的方法相似的辉光放电方法制造出来的,但是,采用硅烷、锗烷、氢和三氟化硼的气体混合物来沉积本征硅∶锗合金材料层。n型掺杂和P型掺杂的半导体合金材料层大致与前述实施例中所述的相似。电池12a′产生的开路电压约为0.739伏,短路电流密度约为18.704毫安/厘米2,转换效率约为8.51%,占空因子为0.616。

        实施例6

        在图4中表明了一个串叠式光生伏打器件10″。串叠式光生伏打器件10″是由三个重叠的n-i-p光生伏打电池12a″、12b″和12c″构成,每一个电池含有一层本发明的含氟的微晶P型掺杂宽禁带宽度半导体合金材料,它们分别是16a″、16b″和16c。

        光生伏打器件10″是按下述步骤制作出来的:

        在不锈钢基片11上沉积第一层约30毫微米厚的n型掺杂半导体合金(硅∶氢∶磷)层20a″,在20a″层上沉积第一层约350毫微米厚的本征半导体合金(硅∶锗∶氢)层18a″,在18a″层上沉积第一层约10毫微米厚的P型掺杂半导体合金(硅∶氟∶氢∶硼)层16a″,在16a″层上沉积第二层约10毫微米米厚的n型掺杂半导体合金(硅∶氢∶磷)层20b″,在20b″层上沉积第二层约200毫微米厚的本征半导体合金(硅∶氢)层18b″,在18b″层上沉积第二层约10毫微米厚的P型掺杂半导体合金(硅∶氟∶氢∶硼)层16b″,在16b″P型掺杂层上沉积第三层约10毫微米厚的n型掺杂半导体合金(硅∶氢∶磷)层20c″,在20″c″层上沉积第三层约50毫微米厚的本征半导体合金(硅∶氢)层18c″,在18c″层上沉积第三层约8毫微米厚的P型掺杂的半导体合金(硅∶氟∶氢∶硼)层16c″,在16c″层上沉积约60毫微米厚的ITO层22,在22层上沉积指状栅24。这些半导体合金层是辉光放电沉积形成的,由硅烷、氢、磷化氢和氩的源气体混合物沉积形成各n型掺杂的半导体合金层,由硅烷、氢、锗烷和氩的源气体混合物沉积形成最下部的本征半导体合金层,由硅烷、氢、和氩的源气体混合物沉积形成上部的几个本征半导体合金层,由硅烷、氢和三氟化硼的源气体混合物沉积形成各P型掺杂的半导体合金层。18a″为分级沉积的,即它上部的10毫微米是用不含锗烷的,源气体混合物沉积的。电池12a″的禁带宽度约为1.5eV,第二和第三个电池分别为12b″和12c″,它们的禁带宽度是1.7eV左右。

        由于上部的两个电池具有相同的禁带宽度,因而这个电池不是最佳的。光生伏打电池10″的开路电压约为2.501伏,占空因子约为0.701,短路电流密度约为6.395毫安/厘米2,转换效率是11.208%。

        实施例7

        图5中的串叠式光生伏打器件10′″是由4个重叠的n-i-P光生伏打电池12a′″、12b′″、12c′″和12d′″构成,每个电池含有一层本发明的含氟的微晶P型掺杂宽禁带宽度半导体合金材料,它们分别为16a′″、16b′″、16c′″和16d′″。

        光生伏打器件10′″是按以下步骤制成:

        在不锈钢基片11上沉积第一层约35毫微米厚的n型掺杂半导体合金(硅∶氢∶磷)层20a′″在20a′″层上沉积约350毫微米厚的第一层本征半导体合金(硅∶锗∶氢)层18a′″,在18a′″层上沉积第一层约10毫微米厚的P型掺杂半导体合金(硅∶氟∶氢∶硼)层16a′″在16a′″层上沉积第二层约10毫微米厚的n型掺杂半导体合金(硅∶氢∶磷)层20b′″,在20b′″层上沉积第三层约300毫微米厚的本征半导体合金(硅∶氢)层18b′″,在18b′″层上沉积第二层约10毫微米厚的P型掺杂半导体合金(硅∶氟∶氢∶硼)层16b′″,在16b′″层上沉积第三层约10毫微米厚的n型掺杂半导体合金(硅∶氢∶磷)层20c′″,在20c′″层上沉积第三层约100毫微米厚的本征半导体合金(硅∶氢)层18c′″,在18c′″层上沉积第三层约10毫微米厚的P型掺杂半导体合金(硅∶氟∶氢∶硼)层16c′″,在16c′″层上沉积第四层约10毫微米厚的n型掺杂半导体合金(硅∶氢∶磷)层20d′″,在20d′″层上沉积第四层约35毫微米厚的本征半导体合金(硅∶氢)层18d′″在18d′″层上沉积第四层约10毫微米厚的P型掺杂半导体合金(硅∶氟∶氢∶硼)层16d′″,在16d′″层上沉积厚约6毫微米的ITO层22,在22层上沉积指状栅24。

        这些半导体合金层是辉光放电沉积形成;由硅烷、氢、磷化氢和氩的源气体混合物沉积形成各n型掺杂半导体合金层;由硅烷、氢、锗烷和氩的源气体混合物沉积生成最下面的本征半导体合金层;由硅烷、氢和氩的源气体混合物沉积形成上部的几个本征半导体合金层;由硅烷、氢和氟化硼的源气体混合物沉积形成各P型掺杂半导体合金层。本征半导体合金层18a′″是分级沉积的,即它的上半部10毫微米是由前面提到的不含锗烷的源气体混合物沉积的。第一个沉积的电池12a′″的禁带宽度约为1.5eV,第二个、第三个和第四个电池分别为12b′″、12c′″和12d′″,它们的禁带宽度为1.7eV左右。

        由于每个电池具有不同的禁带宽度,这个器件也不是最优化的。只有电池12a′″是由具有与上部三个光生伏打电池不同的禁带宽度的半导体合金材料制成。本发明的4个重叠的n-i-p型光生伏打电池12a′″、12b′″、12c′″和12d′″,一般地类似于重叠堆积形成图4的光生伏打器件的P-i-n光生伏打电池12a″、12b″和12c″。四重串叠式光生伏打电池10′″的开路电压约为3.349伏,占空因子约为0.709,短路电流密度约为3.203毫安/厘米2,转换效率约为7.61%。由于由新的微晶P型掺杂半导体材料提供的内建电势高,所以光诱导的退化实际上是不存在的。这个电池尽管在AM1条件下暴露1500小时以上,它仍以初始光电转换效率的97%工作。

        除了制造高效光生伏打器件外,本发明的P型掺杂宽禁带宽度微晶半导体合金材料还可以有益地用于制造其它类型的电子器件。例如,由许多薄膜二极管组成的存储器陈列将由于掺入这种微晶材料而获益。类似地,还有场效应管一类的薄膜晶体管,以及包括CMOS晶体管的陈列也将由于掺入这种P型掺杂的微晶材料而获益。本发明的微晶半导体合金材料还可以有益地用于构成在制造集成电路中所使用的接触点、电路连线、总线汇流线以及其它类型的导电元件。

    关 键  词:
    掺杂 半导体 合金 及其 制造 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:含氟的P型掺杂微晶半导体合金及其制造方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-1078261.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1