书签 分享 收藏 举报 版权申诉 / 12

压接触GTO可控硅整流器.pdf

  • 上传人:r5
  • 文档编号:1076236
  • 上传时间:2018-03-30
  • 格式:PDF
  • 页数:12
  • 大小:530.38KB
  • 摘要
    申请专利号:

    CN87105600

    申请日:

    1987.07.30

    公开号:

    CN87105600A

    公开日:

    1988.02.24

    当前法律状态:

    终止

    有效性:

    无权

    法律详情:

    |||授权|||审定||||||公开

    IPC分类号:

    H01L29/74; H01L21/60; H01L23/48

    主分类号:

    H01L29/74; H01L21/60; H01L23/48

    申请人:

    BBC勃朗·勃威力有限公司

    发明人:

    安德烈·杰克林; 蒂博尔·帕科西; 沃尔夫冈·齐默曼

    地址:

    瑞士巴登

    优先权:

    1986.07.30 CH 3049/86-4

    专利代理机构:

    中国专利代理有限公司

    代理人:

    吴秉芬

    PDF完整版下载: PDF下载
    内容摘要

    在采用直接压接件的GTO-可控硅整流器情况下,由于对半导体片(2)和压接件(1,3)的表面平整度、对压接件(1,3)的对中,以及对其边缘的安排提出了特殊的要求,从而制成了一个具有极好负荷变换稳定性,可实用的构件。

    权利要求书

    1: 压接触GTO-可控硅整流器,包括 a)一个安装在阴极面同阳极面之间,具有各种不同掺杂层的半导体片(2), b)所述半导体片(2)至少在阴极面处做成台面形,并具有由多个凸起的阴极凸台(7)的栅极-阴极结构,这些阴极凸台被深处的栅极区包围,以及 c)半导体片(2)在其阴极凸台(7)上总是复盖着一层金属化阴极层(6),阳极面处总是复盖着一层金属化阳极层;并带有 d)一个阴极面的片形压接件和一个阳极面的片形压接件(1、3),这些片形压接件被压在阴极层及阳极层上,以实现接触连接,其特征在于 e)压接件(1,3)与半导体片(2)的压力荷载接触面上的平面偏差小于±5微米,和 f)压接件(1,3)相互对准,以使它们中心轴之间的相互偏差小于500微米。
    2: 按照权利要求1的压接触GTO-可控硅整流器,其特征在于,阳极面是平的,并且至少要使阳极面的压接件(3)在面向半导体(2)的那面上在其边缘处被削平或锉园。
    3: 按照权利要求1的压接触GTO-可控硅整流器,其特征在于,压接件(1,3)用钼或钨制成。
    4: 按照权利要求3的压接触GTO-可控硅整流器,其特征在于,压接件(1,3)与半导体片(2)的平面偏差小于±1微米。
    5: 按照权利要求4的压接触GTO-可控硅整流器,其特征在 于,压接件(1,3)中心轴之间的相互偏差小于100微米。
    6: 按照权利要求1的压接触GTO-可控硅整流器,其特征在于,压接件(1,3)的直径大于20毫米。
    7: 按照权利要求1的压接触GTO-可控硅整流器,其特征在于 a)阴极凸台(7)的宽度大于0.1毫米, b)阴极凸台(7)的长度大于1毫米, c)阴极凸台(7)之间沟深度在5至50微米之间,和 d)阴极凸台(7)的数量大于或差不多等于100。
    8: 按照权利要求1的压接触GTO-可控硅整流器,其特征在于阴极面压接件(1)的直径要如此之大,至使压接件的边界超出阴极凸台(7)。

    说明书


    本发明涉及一种压接触GTO-可控硅整流器。

        本发明特别涉及一种这样的可控硅整流器,它有一个装在阴极同阳极之间的,具有各种不同掺杂层的半导体片,该半导体片至少在阴极面处被做成台面形,还有一个有多个凸起的,被深处的栅极区域包围的阴极凸台的栅极-阴极结构,半导体片总是在阴极凸台上复盖着一层金属化阴极层,在阳极面复盖着一层金属化阳极层;并有一个片形的阴极面压接件和一个片形的阳极面压接件,阴极面压接件压在阴极层上,阳极面压接件压在阳极层上,以实现接触连接。

        电子学成就在能量传输、能量控制或在电力传动装置中的不断普及,使功率较高的大功率半导体,特别是二极管和可控硅整流器得到发展。具有直径较大的半导体片的大功率半导体有较高的载流能力和较高的反向截止电压。制造这种有较高负荷的功率半导体的困难不仅在半导体片本身的制备过程中存在,而且主要存在于将半导体片安装在恰当的外壳中地安装过程中。

        在半导体片装入外壳的安装过程中,不仅仅要注意保证半导体片与周围之间有良好的电气接触和热接触,还要使它具有足够的负荷变换稳定性,也就是说,给所装入的元件要有足够的保护,使其在负荷变换时能抗疲劳。对此,外壳里的半导体片的接触连接显得特别重要。

        很久以来人们就已经知道利用所谓的“合金型压接件”大功率半导体(参见J.Knobloch,S.Prough,“Solderless    Construction    of    large    Diameter    Silicon    Power    Devices”,Proc.IAS    Conf.1977),这种半导体器件中,用专门的焊剂(例如,一种铝合金)将半导体片的一面焊在金属衬底上(如用钼,或钨做的衬底),另一面与一个加压的金属片呈加压接触。

        用钎焊制成的半导体-金属-层结构由于其热膨胀系数明显不同,从而使直径越来越大的半导体片产生较大的机械弯曲力,这种机械弯曲力使构件的负荷变换稳定性不断变坏。

        为此,人们用所谓的“直接压接件”来代替通常的硅可控整流器和二极管的合金型接触,从半导体的两边,用加压的金属片使其加压接触,(参见den,o,g。Artikel    von    J.Knobloch    et    al.oder    Brown    Boveri    Mitt.1(1979).S.5-10)。

        这种压接触连接的方式,在两边为平面形表面的半导体片构成的通用硅可控整流器中证明是可靠的,因为是平面形的表面,保证了半导体片内部的压力分配非常均匀。

        其差别是,可截止的GTO(栅极截止)-可控硅整流器有台面形栅极-阴极结构(参见US-PS4127863)。为了压接触连接,在阴极面上仍然采用了许多凸起的阴极凸台,阴极凸台的小的面积一起承受较大的压力,而且必须使加在半导体片上的压力尽可能均匀。

        在DE-OS2719219中(图6及有关的说明)中提出了原则性建议,也是在这种GTO-可控硅整流器中使用直接压接件。这种原则性建议是行不通的,而且该文献中什么也没说明,要在GTO中实现直接压接件,存在很多困难。

        在GTO中,带有台面形栅-阴极结构的条件实际上是困难的,从DE-OS3134074(20页2-21行)得知,为了减轻阴极凸台上的压力,甚至在那里当使用简单的合金压接件时,在阴极凸台顶部上造成栅极区域。

        在所述的GTO-可控硅整流器上,具有一个直接压接件带来技术上的困难,迄今为止,市场上能买到的只有带一个合金型压接件的大功率GTO可控硅整流器(参见IEEE    Transactions    on    Electron    Devices,vol.ED-28,No.3,Marz1981,S.270-274)。

        本发明的任务是创造一种压接触连接的GTO-可控硅整流器,它装有一个直接压接件,并具有足够的负荷变换稳定性。

        该任务采用开始所说的压接件GTO-可控硅整流器技术,通过下述措施得到解决,即使压接件和半导体片在它们的加压接触面上所具有的平面偏差小于±5μm,并使压接件相互对准到它们的中心轴的相对偏差小于500μm。

        这些措施的总作用是有效的防止了器件的功能因为器件上出现的有关相应机械张力的张力变化而被破坏。

        按照本发明的可控硅整流器的压接件最好用钼或钨制成。

        如果平面偏差小于±1μm,中心轴偏差小于100μm将会得到最佳的效果。

        采用增大压接件的直径,可以改善压力的分布,选择压接件的直径大于20毫米是有益的。

        必须指出的是,所有这些措施在本专业技术人员范围内从未描述过适当的确定尺寸,而且所采用的这些措施使一个实际可用的GTO-可控硅整流器在出乎意料之外,并针对着原先的假定得到实现。

        附图的简要说明

        下面将用实施例结合附图对发明作更详细的说明。

        唯一的附图是具有直接压接件的GTO-可控硅整流器结构的断面图,它是本发明的基础。发明的实施方法

        正如已经提到的,在实际中,直接压接件的应用至今局限于具有大表面阴极的功率半导体上,特别是二极管和晶体管,两个受压的金属化压接件片是用钨(W)或钼(Mo)制成的,其面积与阴极的面积基本相同。

        最重要的技术特征是一个简单的阴极连接面。在极端情况下,予先考虑最高的单个沟槽(例如,在所说的凸台栅极上),但它只占阴极面的一个很小部分。因此能保证在主要的阴极面上的压力是均匀的,最多在边缘区域会有很小的局部过压情况。

        在GTO-可控硅整流器中,半导体片在阴极的一面具有很多长方形的岛状阴极凸台,大多数这种凸台安装在基座(Rosettenstruktur)结构里(见DE-OS3134074图3)。阳极面的接触面是一种最简单的没有刻划的面,但也可以是台面结构,例如是分开的短阳极,或阳极面的深埋的栅极区形状。

        图中所示是一个有平面形阳极面的这种可控硅整流器。安装在中心的元件是一个具有各种不同掺杂层的半导体片2,它的边界在图中用虚线画出。

        阴极面(在图的上部)的半导体片有台面形栅极-阴极结构,它有许多被深处的栅极区包围的凸起的阴极凸台7。

        阴极凸台7被用如铝(Al)制造的金属化阴极层6复盖。位于其中的栅极区设有金属化栅电极5,栅电极位于比阴极层6更深的地方。

        阳极面(在图的下部)的半导体片2是一种最简单的形式,几乎是一个完整的平面,它也被用铝(Al)制备的阳极层4复盖。在边缘处用惯用方法将半导体片2固定,并设有一边缘钝化区9。在所述的例子中,栅电极5不是压接连接的,它复盖一层绝缘层8,如聚酰亚氨层,使栅电极得到保护。

        直接压接件包括金属片形的阴极面的压接件1和阳极面的压接件3,最好是用钼或钨的薄板做成。从两个压接件1、3的两边对着半导体片2施加足够的匹配压力P,以保证构件内部的电气接触和热接触。

        在基座结构中,带有阴极凸台7的阳极面AA和阴极面Ak的典型比例为:

        2< (AA)/(Ak) <5

        为了保证有允许的热传输,所述构件阳极面上的压力必须满足惯用的10-15毫巴(MPa)的特定值。对于阴极面上的压力,则得出一个相应于比例 (AA)/(Ak) 提高的值。

        此外,对使用不合适的面积比例值而提高的压力必然考虑了更进一步的局部过压,通常考虑了

        a)在紧靠压接件的边缘处明显的过压(这就是所谓的印章效应),及

        b)在半导体片的凹槽区域中的过压。

        对于一个规定数值的几何形状,就能计算出这些机械应力(参见A.C.Zinkiewicz,Y.K.Cheung,“The    finiteelement    method    in    structural    and    continuum    mechanics”,Mc    Graw-Hill,1970)。

        在实际中,过压(a)会引起例如,首先在阴极层6以及阳极层4的边缘处出现击穿点。一个这样类型的微小击穿就自动地抵消了过压。只要金属化涂敷范围的面积没有明显的增大,那么对这种情况而言,加压技术一般说来不是关键的问题。

        类型(b)的过压会导致沟道效应。典型应用情况的理论计算表明,半导体片2中的局部机械应力随着一个大于2的系数增大。这种附加的应力特别有害,因为由不同材料的热膨胀而引起的移动或者剪应力还会叠加在附加的应力上。如果受机械压力的片的厚度是很大的,像不受压范围的横向膨胀(阴极凸台7之间开口GTO的陷井内),半导体片内部的应力用增大阴极表面的间隔可完全抵消。这种效应原则上说是由Saint-Venant发现的(参见I.Szabo“Einfiihrung    in    die    technische    Mechanik”,T.Auflagc,Springer-Verlag    1966,S.130)。这种效应在合金型压接件上是有效的。因为半导体片和焊接好的衬底结合成一个厚度较大的单片。

        在直接压接件情况下,受压半导体片不是合金型,也就不会出现上述状态。在整个半导体片中,机械应力是不均匀的,甚至会出现局部的符号改变(所谓的菲利翁(Filion)效应,即受压片局部从平垣的背面翘起)。因此必然得出在所述的岛形结构情况下,直接压接件导致半导体片的破坏。

        在一族试验中,实现了在有直接压接件的GTO-可控硅整流器上加最大压力一温度负荷的试验,现在可以用令人满意的结果证明,只要采取规定的措施,在具有构成的阴极表面的GTO情况下,可以应用直接压接件。

        重要的是,首先要平整,即相互接触的半导体片和压接件平面的平整度,这些面的不平整性,平面偏差不能大于5微米,最好小于1微米。

        还要指出,一定要避免在压接件1和3上有尖锐的棱角,当压接件在半导体片平面的内部终止时,压接件的尖锐棱角会导致已陈述过的击穿现象。

        最简单的情况,平面形阳极边(见图),至少要将阳极面的压接件3面向半导体片2的一面,在其边缘处削平或锉园。

        最后,必须使相对着的压接件1和3所表明的界边达到较窄的误差范围内。使压接件1和3的中心轴之间的相互误差小于500微米,相同直径的片子要有同样大小的半径误差△r(图中已画出)就足够了。

        误差最好小于100微米。

        阴极面的压接件1的直径也最好如此选择,以使压接件边缘横向地超过阴极凸台7。也可以对两个压接件1,3选择稍小的直径(图中虚线所示)。

        在这个结构下,详细地优选了如下的尺寸:

        压接件直径    >20毫米

        阴极凸台宽度    >0.1毫米

        阴极凸台长度    >1毫米

        阴极凸台之间的沟深度    >5-50微米

        阴极凸台数目100

        对所述的试验采用了直径是48.6毫米,厚度为350毫米的半导体片。用钼做的压接件,直径为44.5毫米,厚度为2毫米。阴极面的压接件中心处,有一个直径为8毫米的孔(见图)。

        带压接件的半导体片总是装入一个3吋的可控硅整流器外壳内,并且每5个元件装成一个整流堆,用20至40千牛顿(KN)的力加载。

        要求阳极面的压力为13至27毫巴(MPa),而阴极面的压力(相当于微小的面积)是阳极面压力的4倍。

        测试元件被加热到最高温度为180℃,接着将元件在冷空气流中冷却到室温。

        温循次数≥20次。

        在第二组的实验中,用GTO-构件的电流负荷来改变负荷,使温度升到125℃(负荷变换12000次;阳极面压力为14毫巴)。

        实验结果表明,在上述两种情况下,半导体片的电参数,经过试验负荷之后,仅仅在测量误差范围内变化。

        同样,经过压力试验之后,用铝(Al)制造的阳极层和阴极层的变化同样是很微小的,尽管超过了Al阴极面的理论击穿点。

        尽管按照本发明的直接压接件只用了一个带平面阳极面的GTO的简单实施例来说明,但本发明也适合阳极边有同样台面结构的GTO,带双栅极(阴极一面和阳极一面的)的GTO的情况,原则上也落入本发明范围。

        因此,总的来说,按照本发明的预防措施,则能产生一个具有良好负荷变换稳定性的,带直接压接件的GTO-可控硅整流器。

    关 键  词:
    接触 GTO 可控 硅整流器
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:压接触GTO可控硅整流器.pdf
    链接地址:https://www.zhuanlichaxun.net/p-1076236.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1