基于冷却器温差和排放过热控制电子膨胀阀的方法 本发明涉及用于冷冻装置和/或热泵的压缩机领域,尤其是用电子膨胀阀控制冷却器温差和保护排放过热。
热泵系统使用一制冷剂将热能从循环回路的相对较热侧带到循环回路的相对较冷侧。制冷剂的压缩发生在回路的较热侧,这里,压缩机使制冷剂的温度上升。制冷剂的蒸发发生在回路的较冷侧,这里,制冷剂膨胀,从而由于膨胀时需要热量而使温度下降。由于制冷剂与室内空气之间以及制冷剂与室外空气之间的温差,分别在回路一侧的制冷剂中加入热能,从另一侧的制冷剂中吸取热能,以将室外空气用作热能源或热能的散发和吸收。
过程是可逆的,因此热泵既能用于加热也能用于冷却。住宅用加热和冷却装置是双向的,其中,合适地阀和控制结构有选择地使制冷剂经过室内和室外热交换器,使得室内热交换器在制冷剂循环回路的热侧加热而在冷侧进行冷却。一循环鼓风机使室内空气经过室内热交换器,并经过输送管引向室内空间。返回管从室内空间中吸取空气并带到室内热交换器中。同样一鼓风机使周围空气经过室外热交换器,并将热量释放到户外空气中,或从中吸取可用的热量。
这类热泵系统只有当在各自热泵中的制冷剂与空气之间有一适当的温差时才会运转,以保持热能的输送。对于加热,只要空气与制冷剂之间的温差能够使得可以得到的热能大于运行压缩机和各自鼓风机所需的电能,热泵就是有效的。对于冷却,即使在热天,空气与制冷剂之间的温差通常都是足够的。空调器或冷冻装置,其工作类似于热泵,但仅仅是将热量从室内传送到室外。对于大部分的其它方面,循环都是相同的。
当制冷剂从冷凝器到蒸发器时,它通过一诸如电子膨胀阀(EV)的阀。系统中的主流控制是该膨胀阀,它能使制冷剂从冷凝器的高压膨胀到蒸发器中的低压。膨胀使部分液体蒸发,由此将其余液体冷却到蒸发器温度。蒸发器里面的制冷剂的高度也由EV控制,制冷剂的高度由探测器的输入测定。一探测器输入来自于蒸发器里面的热探测器,而第二输入来自于饱和的吸收温度。根据这两个输入,可以估计出蒸发器里面的液体高度。但将热探测器安装在蒸发器里面和使用这两个输入来确定蒸发器里面的液体高度精度不够,这样就出现了许多问题。
简而言之,一用在一热泵或冷冻装置的制冷剂循环中的电子膨胀阀(EXV)被控制,以保持最小的温差(pinch),从而通过监控冷却器流体与饱和吸入温度之间的δ温度来确保合适的满溢式冷却器交换性能。监控排放过热,以避免压缩机中液体的缓动现象(slug)。如果排放过热低于预定值,就调节EXV的开口。一控制器监控某些用于确定EXV最佳位置的系统变量,以使系统性能、合适的排放过热值和适当的制冷剂的注入最优化。
根据本发明的实施例,控制一制冷剂循环系统中的电子膨胀阀的方法包括如下的步骤:通过监控在所述冷却器中的流体与系统饱和吸收温度之间的温度变化来确保合适的满溢式冷却器交换性能;通过监控系统的排放过热来保护系统的压缩机;以及当排放过热低于预定值时校正电子膨胀阀开口的大小。
根据本发明的一个实施例,控制一制冷剂循环系统中的电子膨胀阀的方法包括如下的步骤:为系统确定一饱和吸收温度(SST);为系统确定一饱和排放温度(SDT);为系统确定一冷却器流体温度(CFT);为系统确定一饱和冷凝温度(SCT);将温差确定为CFT减去SST;将温差误差确定为温差减去温差设定点;将温差率(pinch rate)确定为一当前温差减去一特定时间之前的温差;将排放过热设定为SDT减去SCT;将排放过热误差设定为排放过热减去一排放过热设定点;将一排放过热率确定为一当前排放过热减去一特定时间之前的排放过热;设定一特定温度的静区;以及根据温差误差、温差率、排放过热误差、排放过热率以及静区控制电子膨胀阀的移动。
根据本发明的一个实施例,一控制制冷剂循环系统中的电子膨胀阀的装置包括:确定系统一温差的装置;确定系统一温差误差的装置;确定系统温差率的装置;确定系统排放过热的装置;确定系统排放过热误差的装置;确定系统的排放过热率的装置;确定一特定温度的静区的装置;以及根据温差误差、温差率、排放过热误差、排放过热率以及静区控制电子膨胀阀的移动的装置。
图1示出了一制冷系统的示意图。
图2示出了本发明方法的有所改变的流程图。
参阅图1,一基本的制冷系统10包括一通过一电子膨胀阀EXV流体连接于一蒸发器30的冷凝器20。阀EXV由一控制器15控制。蒸发器30通过一压缩机40流体连接于冷凝器20。尽管图中只示出一个压缩机,但是,也可以将一个以上的压缩机平行连接在同一回路中。返回水(或空气)进入蒸发器33,在那儿热量传递到制冷剂。尽管图中只示出一个制冷剂回路,但是也可使用两个独立的制冷剂回路。当冷却需要时,冷却器供应水(或空气)被循环。一传感器或一热敏电阻80读出由控制器15接收的冷却器流体温度(CFT)。一压力传感器(pressure transducer)50读出制冷剂的饱和冷凝压力,并在控制器15处将读数转换成饱和冷凝温度(SCT)。一压力传感器60读出制冷剂的饱和吸收压力,并在控制器15处将读数转换成饱和吸收温度(SST)。一排气热敏电阻探测器70向控制器15提供饱和排放温度(SDT)。或者,一压力传感器读出制冷剂的饱和排放压力,并将读数转换成SDT。人们经常使用压力传感器,由于它们比直接测量温度的已知装置要精确。
温差(pinch)定义为CFT减去SST。排放过热(DSH)定义为SDT减去SCT。在本发明的方法中,这些变量用于控制EXV的活动,从而控制系统10内的制冷剂流动。最好控制得EXV能保持最小的温差,以便通过监控冷却器流体与饱和吸收温度之间的δ温度来确保合适的冷却器交换性能。打开EXV通常会降低冷却器的温差,从而增加了冷却器交换性能。但是,打开EXV太多会使排放过热下降、油的压力下降,制冷剂流量减少。因此,本发明具有两个目的,一个是保持一小的冷却器温差,另一个是保护排放过热。
参阅图2,一起始步骤110设定用于本发明方法中的各个变量的数值。尽管可使用任何合理的循环时间,但该方法的循环每一次为10秒钟。用控制器15(图1)读出CFT、SST、SDT和SCT的值。PINCH定义为CFT减去SST。PINCH_ERROR定义为PINCH减去PINCH_SETPOINT(通过制造商、安装者或使用者编程到系统控制器中),PINCH_RATE定义为当前PINCH减去10秒钟之前的PINCH。DSH定义为SDT减去SCT,DSH_ERROR定义为DSH减去DSH_SETPOINT(通过制造商、安装者或使用者编程到系统控制器中),DSH_RATE定义为当前DSH减去10秒钟之前的DSH。
在步骤112中,PINCH_ERROR的绝对值与DEADBAND(静区)比较。当温差误差(pinch error)小于“静区”(deadband)时,没有活动施加到EXV。静区用于避免探测器的不精确所引起的不稳定。静区的值可由使用者选择设定,但在用作本发明例子的实施例中,静区定为0.4°F。如果PINCH_ERROR的绝对值大于DEADBAND,在步骤114中EXV_MOV设定为(PINCH_ERROR减去DEADBAND)乘上KP加上PINCH_RATE乘上KD。否则的话,EXV_MOV的值不变。KP是比例增益,被温差误差相乘以获得比例作用。在该实施例中,KP是0.33%°F。KD是导数增益,被温差误差中的变化率相乘,以获得导数作用。对于该实施例,KD是O.33%每°F每10秒钟。比例和导数作用的总和表示以百分比计算的EXV活动。一否定的结果对应于一关闭动作,而一肯定的结果对应于一打开动作。
然后,在步骤116中,检查系统时钟,看看系统是否已经运行3分钟以上。如果不,在步骤118中将EXV_POSITION_LIMIT设定为EXV活动的总的可能范围的52%,控制进入到步骤162。即,在要化些时间的启动过程中,排放过热保护被旁路,EXV位置的极限被再初始化在52%。如果系统已运行三分钟以上,在步骤120检查DSH_ERROR,如果小于-3.5°F,在步骤120中EXV_MOV设定为-0.33%加上0.033乘以DSH_RATE,控制进入步骤162。如果不,在步骤124中检查EXV_MOV,看看它是否小于零。
如果EXV_MOV小于零,即,如果温差小于设定点,在步骤126中,控制器检查,看看DSH_ERROR是否大于2°F,EXV_POSITION是否小于40%,PINCH_ERROR是否大于-0.5°F,如果是的话,在步骤128中将EXV_MOV设定为0%。如果不,在步骤130中,控制器进行检查看看DSH_ERROR是否大于-1°F,EXV_POSITION是否小于36%,如果是的话,在步骤132中将EXV_MOV设定为0%。否则的话,控制进入步骤162。在步骤124中,如果EXV_MOV不小于零,在步骤134中,控制器检查,看看DSH_ERROR是否小于-2°F,如果是的话,将EXV_MOV设定为-0.2%,此后,控制进入步骤162。否则的话,在步骤138中,控制器检查,看看EXV_POSITION减去6%是否大于EXV_OLD_POSITION。即,控制器检查,看看每当具有6%的EXV打开活动时,在冷却器温差中是否获得一真正的减少(在步骤140中定义为大于0.6°F的变化),因为如果不能获得一真正的减少,EXV在其最佳位置打开。如果在步骤138中EXV_POSITION减去6%不大于EXV_OLD_POSITION,控制进入到步骤146。如果它较大,在步骤140中控制器检查,看看PINCH_LAST_EXV减去PINCH_ERROR是否大于0.6°F,如果不,在步骤142中,EXV_POSITION_LIMIT设定为EXV_POSITION。如果PINCH_LAST_EXV减去PINCH_ERROR不大于0.6°F,在步骤144中,EXV_OLD_POSITION置于EXV_POSITION,PINCH_LAST_EXV置于PINCH_ERROR。
然后在步骤146中,控制器检查,看看DSH_ERROR是否小于-1°F,如果是的话,在步骤148中,将EXV_MOV设定为0%,EXV_POSITION_LIMIT设定为EXV_POSITION,此后,控制进入步骤162。如果不,控制器检查,看看EV_POSTION是否大于EXV_POSITION_LIMIT,如果是的话,在步骤152中,将EXV_MOV设定为0%,控制进入步骤162。如果EXV_POSITION不大于EXV_POSITION_LIMIT,在步骤154中控制器检查,看看DSH_ERROR是否小于1°F,EXV_MOV是否大于0.46%,如果是的话,在步骤156中将EXV_MOV设定为0.46%。否则的话,在步骤158中控制器检查,看看DSH_ERROR是否大于零,如果是,在步骤160中将EXV_POSITION_LIMIT设定为EXV_POSITION加上2%。
如果DSH_ERROR不大于零,在步骤162控制器检查,看看PINCH_RATE是否大于0.4°F,这样表明,操作条件可能已经改变。如果是的话,在步骤164中将EXV_OLD_POSITION设定为EXV_POSITION。如果不是,在步骤166控制器检查,看看PINCH_LAST_EXV减去PINCH_ERROR是否小于-0.2°F,如果是,在步骤168将PINCH_LAST_EXV设定为PINCH_ERROR。然后在步骤170中,EXV移动,EXV_MOV变量再设定为零。然后再开始循环。
根据本发明,控制EXV保持最小的温差,以通过观察CFT与SST之间的温度的变化来确保冷却器交换性能。EXV的打开活动通常使冷却器温差下降,从而提高冷却器交换性能。