书签 分享 收藏 举报 版权申诉 / 29

确定变速器可实现转矩的操作区间的方法.pdf

  • 上传人:e2
  • 文档编号:1063846
  • 上传时间:2018-03-29
  • 格式:PDF
  • 页数:29
  • 大小:1.48MB
  • 摘要
    申请专利号:

    CN200810184300.4

    申请日:

    2008.11.03

    公开号:

    CN101469767A

    公开日:

    2009.07.01

    当前法律状态:

    授权

    有效性:

    有权

    法律详情:

    授权|||实质审查的生效|||公开

    IPC分类号:

    F16H61/00; F16H61/32; F16H59/14

    主分类号:

    F16H61/00

    申请人:

    通用汽车环球科技运作公司

    发明人:

    A·H·希普

    地址:

    美国密执安州

    优先权:

    2007.11.1 US 60/984444; 2008.10.16 US 12/253215

    专利代理机构:

    中国专利代理(香港)有限公司

    代理人:

    温大鹏;曹 若

    PDF完整版下载: PDF下载
    内容摘要

    本发明涉及确定变速器可实现转矩的操作区间的方法,其中控制运转着的变速器以在输入部件和扭矩机械和输出部件之间传递功率的方法,包括确定可利用功率、马达扭矩约束和扭矩传递的其他约束。提供了方程,将其变换到第二坐标系中并联立求解。可实现的扭矩操作区间即可确定。

    权利要求书

    1.  一种控制变速器的方法,变速器操作以在输入部件和第一和第二扭矩机械和输出部件之间传递功率,第一和第二扭矩机械与能量存储装置连接,该方法包括:
    确定能量存储装置能提供的可利用功率的范围和第一和第二扭矩机械的马达扭矩约束;
    提供能量存储装置的可利用功率的范围和第一和第二扭矩机械的马达扭矩约束的方程;
    将能量存储装置的可利用功率的范围和第一和第二扭矩机械的马达扭矩约束的方程变换到第二坐标系;
    联立求解变换后的能量存储装置的可利用功率的范围和第一和第二扭矩机械的马达扭矩约束的方程;以及
    基于联立解得的变换后的方程确定在第二坐标系中变速器可实现的操作区间。

    2.
      如权利要求1所述的方法,其特征在于,包括提供表示能量存储装置的最大允许充电功率和最大允许放电功率的方程。

    3.
      如权利要求2所述的方法,其特征在于,将能量存储装置的可利用功率的范围的方程变换到第二坐标系,包括将表示能量存储装置的最大允许充电功率和最大允许放电功率的方程变换成可用同心圆图形表示的方程。

    4.
      如权利要求3所述的方法,其特征在于,同心圆的圆心表示从第一和第二扭矩机械到能量存储装置的最大充电功率。

    5.
      如权利要求3所述的方法,其特征在于,包括基于变换后的能量存储装置的可利用功率的范围的方程将第一和第二扭矩机械的马达扭矩约束的方程变换到第二坐标系。

    6.
      如权利要求1所述的方法,其特征在于,还包括:
    提供变速器相关的变速器扭矩项的方程,并将该方程变换到第二坐标系;
    联立求解变换后的能量存储装置的可利用功率的范围的方程、第一和第二扭矩机械的马达扭矩约束的方程和相关的变速器扭矩项的方程;以及
    基于联立解得的变换后的方程确定在第二个坐标系中相关的变速器扭矩项可实现的状态。

    7.
      如权利要求6所述的方法,其特征在于,包括将相关的变速器扭矩项的可实现的状态变换到第一坐标系。

    8.
      如权利要求1所述的方法,其特征在于,包括将相关的变速器扭矩项的可实现的操作区间变换到第一坐标系。

    9.
      如权利要求1所述的方法,其特征在于,还包括:
    确定包括输入部件的最大和最小加速率的通过变速器的扭矩传递的第一约束;
    确定包括最大和最小输出扭矩的通过变速器的扭矩传递的第二约束;
    基于能量存储装置的可利用功率的范围、第一和第二扭矩机械的马达扭矩约束和通过变速器的扭矩传递的第一和第二约束,确定变速器的可实现的操作区间。

    10.
      如权利要求1所述的方法,其特征在于,还包括:
    确定包括输入部件的最大和最小加速率的通过变速器的扭矩传递的第一约束;
    确定包括输出部件的最大和最小加速率的通过变速器的扭矩传递的第二约束;以及
    基于能量存储装置的可利用功率的范围、第一和第二扭矩机械的马达扭矩约束和通过变速器的扭矩传递的第一和第二约束,确定变速器的可实现的操作区间。

    11.
      一种控制变速器的方法,通过选择性地应用多个离合器来控制变速器操作以在输入部件和第一和第二扭矩机械和输出部件之间传递功率,第一和第二扭矩机械与能量存储装置连接,该方法包括:
    确定能量存储装置的可利用功率的范围、第一和第二扭矩机械的马达扭矩约束和通过变速器的扭矩传递的第一和第二约束;
    在第一坐标系中提供能量存储装置的可利用功率的范围、第一和第二扭矩机械的马达扭矩约束和通过变速器的扭矩传递的第一和第二约束的方程;
    提供关于相关的变速器扭矩项的方程;
    将能量存储装置的可利用功率的范围、第一和第二扭矩机械的马达扭矩约束和通过变速器的扭矩传递的第一和第二约束的方程变换到第二坐标系;
    将相关的变速器扭矩项的方程变换到第二坐标系;
    联立求解变换后的能量存储装置的可利用功率的范围、第一和第二扭矩机械的马达扭矩约束、通过变速器的扭矩传递的第一和第二约束和相关的变速器扭矩项的方程;
    基于联立求解的变换方程确定第二坐标系中变速器的可实现操作区间;以及
    基于第二坐标系中变速器的可实现的操作区间,确定在第二个坐标系中相关的变速器扭矩项的优选状态。

    12.
      如权利要求11所述的方法,其特征在于,相关的变速器扭矩项的优选的状态包括最大可实现的状态。

    13.
      如权利要求11所述的方法,其特征在于,相关的变速器扭矩项的优选的状态包括最小可实现的状态。

    14.
      如权利要求11所述的方法,其特征在于,通过变速器的扭矩传递的第一约束包括输入部件的最大和最小输入扭矩,以及通过变速器的扭矩传递的第二约束包括选择性应用的离合器的最大和最小的离合器作用扭矩。

    15.
      如权利要求11所述的方法,其特征在于,通过变速器的扭矩传递的第一约束包括输入部件的最大和最小输入扭矩,以及通过变速器的扭矩传递的第二约束包括即将使用的离合器的最大和最小的离合器速度。

    16.
      一种控制变速器的方法,变速器操作以在输入部件和扭矩机械和输出部件之间传递功率,扭矩机械与能量存储装置连接,该方法包括:
    确定能量存储装置的可利用功率的范围、扭矩机械的马达扭矩约束和通过变速器的扭矩传递的约束;
    在第一坐标系中提供能量存储装置的可利用功率的范围、扭矩机械的马达扭矩约束和通过变速器的扭矩传递的约束的方程;
    将能量存储装置的可利用功率的范围、扭矩机械的马达扭矩约束和通过变速器的扭矩传递的约束的方程变换到第二坐标系;
    联立求解上述变换后的能量存储装置的可利用功率的范围、扭矩机械的马达扭矩约束、通过变速器的扭矩传递的约束的方程;以及
    基于联立求解的变换后的方程,在第二坐标系中确定变速器可实现的操作区间。

    17.
      如权利要求16所述的方法,其特征在于,还包括:
    提供相关的变速器扭矩项的方程;
    将相关的变速器扭矩项的方程变换到第二坐标系;
    将变速器的可实现的操作区间和变换后的相关的变速器扭矩项的方程比较;
    基于第二坐标系中变速器的可实现的操作区间,在第二坐标系中确定相关的变速器扭矩项的优选状态。

    说明书

    确定变速器可实现转矩的操作区间的方法
    相关申请的交叉引用
    本申请要求了2007年11月1日提交的序列号为60/984,444的美国临时申请的优先权,上述申请的内容通过参考并入本文。
    技术领域
    本申请属于电动机械变速器的控制系统领域。
    背景技术
    本部分的描述仅仅提供涉及本申请的背景信息,并不构成现有技术。
    现有的传动系的结构包括扭矩产生装置、内燃机和电机,该扭矩产生装置通过传动装置将扭矩传递给输出部件。示例的传动系包括一个双模式、复合分解、电动机械变速器,该变速器用输入部件从最好为内燃机的最终功率源接受传递过来的扭矩,和输出部件。输出部件可以可操作地连接到一个车辆功率传动系统来往那里传递牵引扭矩。电机,可实施地作为电动机或者发电机,产生输入变速器的扭矩,与从内燃机输入的扭矩相独立。电机可以将从车辆功率传动系统传递过来的动能转变成可以存储在电能存储装置里面的电能。控制系统监控着来自车辆和操作者的各种输入,为传动系提供操作控制,包括控制变速器工作档位状态和齿轮换档,控制扭矩产生装置,调节电能在电能存储装置和电机之间的相互交换,来控制变速器的输出,包括扭矩和转速。
    发明内容
    变速器运行以在输入部件、第一和第二扭矩机械和输出部件之间传递能量,第一和第二扭矩机械与一个能量存储装置相连。控制变速器的方法包括,确定能量存储装置能提供的可利用的能量的范围和第一和第二扭矩机械的马达扭矩约束,提供关于能量存储装置的可利用的能量范围和第一和第二扭矩机械的马达扭矩约束的方程,将上述关于能量存储装置的可利用的能量范围和第一和第二扭矩机械的马达扭矩约束的方程变换到第二坐标系,联立求解变换后的关于能量存储装置能提供的可利用的能量的范围和第一和第二扭矩机械的马达扭矩约束的方程;基于联立解得的变换后的方程确定在第二坐标系中为变速器可实现的扭矩操作区域。
    附图说明
    下面将会通过举例的方式描述一个或者更多的实施例,参考如下附图:
    图1是根据本发明的示例的传动系的示意图;
    图2是根据本发明的示例的传动系及其控制系统结构的示意图;
    图3是根据本发明的信号流图;
    图4和图5是根据本发明的图形描述。
    具体实施方式
    现在参照附图,其中的表示是为了说明某些具体的实施方式而不是作为限制,图1和图2描述了一种示例的混合功率传动系。图1中描述了根据本发明的作为示例的混合功率传动系,其包括一个可操作地与一个发动机14连接在一起的双模式、复合分解、电动机械变速器10,包括第一和第二电机(‘MG-A’)56和(‘MG-B’)72的扭矩机械。发动机14与第一和第二电机56和72能够各自产生传递向变速器10的机械功率。本实施例中的发动机14,变速器10与包括第一和第二电机的扭矩机械包括扭矩致动器。发动机14与第一和第二电机56和72产生的、传递到变速器10的功率以输入和马达扭矩的形式描述,分别用TI、TA和TB表示,而速度分别用NI、NA和NB表示。
    示例的发动机14包括一个多缸内燃机,在多种情况下有选择地可操纵地通过输入杆12向变速器10传递扭矩,既可以是点燃式内燃机也可以是压燃式内燃机。发动机14包括一个可操纵地与变速器10的输入轴12配合的曲轴(图中没有显示)。一个转速传感器11监控输入轴12的转速。从发动机14输出的功率,包括转速与发动机扭矩,可能与变速器10输入的转速NI和输入的扭矩TI不同,由于在输入轴12和发动机14以及变速器10之间安置了扭矩消耗元件,例如液压泵(图中没有显示)和/或扭矩控制装置(图中没有显示)。
    示例的变速器10包括三个行星齿轮装置24、26和28,四个可选择安装配合的扭矩传递装置,比如离合器C1 70、C2 62、C3 73和C4 75。在这里使用的离合器指任何种类的摩擦式扭矩传递装置,例如包括单盘或者多盘离合器或者,或者制动器。一个液压控制回路42,最好用传动控制模块17(下文用TCM表示)控制,可操纵的来控制离合器状态。离合器C2 62和C4 75最好包括液压旋转摩擦离合器。离合器C1 70和C3 73最好包括液压控制固定装置,可以选择安装在传动箱68的底部。每一个离合器C1 70、C2 62、C3 73和C4 75最好使用液压装置,可选择地通过液压控制回路42接受加压液压流体。
    第一和第二电机56和72最好包括三相交流电机,每一个都包括一个定子(图中没有显示)和一个转子(图中没有显示),和相应的分相器80和82。每一个电机的电动机定子安装在传动箱68的外侧部分的底部,并且包括一个从那里延伸的绕有线圈的定子铁芯。第一电机56的转子被支撑在一个毂衬齿轮上,该齿轮通过第二行星齿轮组26可操纵地安装在轴60上。第二电机72的转子固定安装在套轴毂66上。
    每一个分相器80和82最好包括一个可变磁阻装置,包括一个分相器定子(图中没有显示)和一个分相器转子(图中没有显示)。将分相器80和82合适地定位和装配在第一和第二电机56和72上。分相器80和82相应的定子可操纵地与第一和第二电机56和72的定子连接。分相器的转子可操作地与相应的第一和第二电机56和72的转子连接。每一个分相器80和82可操纵地与变速器功率变换器控制模块(下文用TPIM表示)19连接,并获取信号,每一个都传感监控分相器转子相对于分相器定子的旋转位置,由此监控第一和第二电机56和72相应的转子相对于定子的旋转位置。另外,从分相器80和82输出的信号被编译出来,用来提供第一和第二电机56和72的转速,也就是相应的NA和NB
    变速器10包括输出部件64,即轴,与车辆的功率传动系统90(图中没有显示)可操作地连接在一起,来为功率传动系统提供传递向车辆车轮93的功率,其中一个在图1中显示。输出部分64的输出功率可以以输出转速NO和输出扭矩TO的形式描述。变速器的输出转速传感器84可以用来监控输出部分64的转速与转向。每一个车轮93最好装配一个传感器94来监控车轮速度,该传感器94的输出可以通过图2中描述的分配控制模块系统的控制模块来监控,为制动控制、牵引控制和车辆加速度管理确定车辆速度和车轮的绝对与相对速度。
    发动机14的输入扭矩和第一和第二电机56和72产生的马达扭矩(分别为TI、TA和TB)是从燃料或者从存储在电能存储装置(下文用ESD表示)74中的电能发生能量转化而产生。ESD74是高压直流电源,通过直流变换传导器27与TPIM19配合。直流变换传导器27包括传导器开关38。当传导器开关38闭合的时候,在正常运转情况下,电流可以在ESD74和IPIM19中流动。当传导器开关38断开的时候,在ESD74和IPIM19之间的电流中断。IPIM19可以通过变换传导器29向第一电机56传送或者接受电能,同样地,IPIM19可以通过变换传导器31向第二电机72传送或者接受电能,来满足第一和第二电机56和72对扭矩的要求以响应马达扭矩TA和TB的要求。电流是流向还是流出ESD74与ESD74是充电还是放电状态一致。
    IPIM19包括一对变极器(图中没有显示)和各自的电动机控制模块(图中没有显示),设定成接受扭矩要求与控制变极器状态的形式,来提供电动机是处于驱动还是发电功能的状态,以满足马达扭矩TA和TB的要求。变极器包括已知的补充性的三相功率电子装置,每一个三相功率电子装置包括许多绝缘栅双极晶体管(图中未显示),来将从ESD74的直流电转变成交流电,来通过高频转换的方式驱动第一和第二电机56和72的相应个体。绝缘栅双极晶体管通过接受控制指令形成一个开关模式的功率供应。典型地,对每一个三相电机的每一相位有一对绝缘栅双极晶体管。控制绝缘栅双极晶体管的状态来为电动机提供产生机械功率或产生电能的信号。三相变极器通过直流变换传导器27来接受或者提供直流电能,将直流电能转变成交流电或者相反,将该交流电往返传送到第一和第二电机56和72,第一和第二电机56和72各自通过变换传导器29和31作为电动机或者是发动机运转。
    图2是分类的控制模块系统的示意性的块状图。在下文中描述的元件包括所有车辆控制结构的子集,提供一种和在图1中描述的示例的混合功率传动系协同的控制系统。分类控制模块系统综合了相关的信息,输入执行运算法则来控制各种致动器以满足包括与燃油经济性、排放、操纵性、功率性和对包括ESD74的电池组与第一和第二电机56和72在内的硬件的保护相关的控制目标。分类控制模块系统包括发动机控制模块(下文用ECM表示)23,TCM17,电池组控制模块(下文用BPCM表示)21和TPIM19。混合功率控制模块(下文用HCP表示)5提供管理控制并与ECM23、TCM17、BPCM21和TPIM19协同。车辆操作者可以通过与很多装置可操作的连接起来的用户界面(UI)13控制或指令电机混合功率传动系的运行。这些装置包括加速踏板113(AP),操作员制动踏板112(BP),变速器档位选择器114(PRNDL)和车辆速度巡航控制器(图中没有显示)。变速器档位选择器114可以有多个离散的操作者可选择的档位,包括输出部件64的旋转方向来允许前进和相反方向的操作。
    前述控制模块与其他控制模块、传感器和致动器之间通过局域网(下文用LAN表示)总线6相互通信。局域网总线6允许在各种控制模块之间进行执行参数状态和致动器命令信号的结构化通信。所使用的专用的协议是应用专用的。局域网总线6与合适的协议为前述控制模块和其他比如防抱死制动、牵引控制和车辆稳定性等功能性控制模块之间提供鲁棒通信和多控制模块交互手段。多重通信总线可以用来提高通信速度和提供多个信号冗余和完整水平。个别控制模块之间的通信也可以使用直接连接的方式施以影响,比如一系列的串行外设接口(SPI)总线(图中没有显示)。
    HCP5为混合功率传动系提供管理控制,与ECM23,TCM17,TPIM19和BPCM21的运转协同。在从用户界面13和包括ESD74的混合功率传动系传递过来的各种输入信号的基础上,HCP5决定操作者的扭矩要求、输出扭矩要求,发动机输入扭矩要求、变速器10中应用的扭矩传递离合器C1 70、C2 62、C3 73和C4 75的离合器作用扭矩和第一和第二电机56和72的马达扭矩TA和TB。TCM17与液压控制回路42可操作的连接起来,提供包括监控各种压力感应装置(图中没有显示)和为各种螺线管(图中没有显示)产生和传输控制信号从而控制压力开关和控制液压控制回路42中包括的阀门在内的各种功能。
    ECM23与发动机14之间可操作的连接,从传感器获取数据并通过多个离散线路来控制发动机14的致动器,作为集成双向接口电缆35的简要表示。ECM23从HCP5获得发动机输入扭矩命令。ECM23与HCP5之间通信,在受监控的发动机转速与载荷的基础上及时确定实时的提供给变速器10的发动机输入扭矩TI。ECM23监控从转速传感器11传递过来的输入信号来确定从发动机输入给输入轴12的转速,该转速转变成传动输入转速NI。ECM23监控传感器(图中没有显示)的输入信号来确定其他包括比如进气压力、发动机冷却液温度、环境气温和环境压力在内的发动机运转参数的状态。发动机载荷可以通过进气压力或者可选择地通过监控操作者对加速踏板113的输入来确定。ECM23产生并传输指令信号来控制发动机致动器,包括燃料喷射器、点火模块、节气门控制模块(图中均未显示)。
    TCM17与变速器10之间可操作地连接,监控从传感器(图中没有显示)传递过来的输入信号来确定变速器运转参数的状态。TCM17产生并传输指令信号来控制变速器10,包括控制液压控制回路42。从TCM17和HCP5的输入信号包括离合器C1 70、C2 62、C3 73和C4 75的作用离合器扭矩与输出部件64的输出转速NO。其他的传感器和致动器可以为控制目的提供从TCM17到HCP5的附加信息。TCM17监控从压力开关(图中没有显示)传递过来的输入信号并可选择地触发压力控制螺线管(图中没有显示)并转换液压控制回路42的螺线管(图中没有显示)的状态来可选择地触发各种离合器C1 70、C2 62、C3 73和C4 75来实现各种如下文所述的变速器工作档位状态。
    BPCM21与传感器(图中没有显示)信号连接,监控ESD74,包括电流电压参数状态,来为HCP5提供关于ESD74电池的参数状态的指示信息。所述电池参数状态最好包括电池充电状态、电池电压、电池温度和用区间(PBAT_MIN,PBAT_MAX)表示的可用电能。
    制动控制模块(下文用BrCM表示)22可操作地与每个车轮93上的摩擦制动器(图中没有显示)连接。BrCM22监控操作者对制动踏板112的输入,产生控制信号来控制摩擦制动器,给HCP5传送控制信号来操作第一和第二电机56和72。
    每一个控制模块ECM23、TCM17、TPIM19、BPCM21和BRCM22最好是通常目的的包括微处理器或者中央处理器、包括只读存储器(ROM)的存储媒介、随机存储器(RAM)、可编程只读存储器(EPROM)、高速时钟、模数(A/D)和数模(D/A)的转变电路、输入输出电路和装置(I/O)和合适的信号调理和缓冲电路的数字计算机。每一个控制模块有一套控制运算法则,包括存储在其中一个存储媒介中且通过执行来为每个计算机提供各自功能的驻留指令和校准程序。在各控制模块之间的信息传递最好用LAN总线6和SPI总线来实现。控制运算法则在预先设定的循环周期中执行以确保每一个控制运算法则至少在每一个循环周期中执行一次。使用预先设定的校准程序通过其中一个中央处理器来执行在非可变存储装置中存储的运算法则,用来监控从传感装置传递过来的输入信号并执行控制与诊断程序来控制致动器的操作。在传动系持续的操作期间,循环周期在规则的时间间隔例如每一3.125、6.25、12.5、25和100毫秒执行。可选择地,运算法则可以根据某些情况的发生来执行。
    示例性的混合功率传动系可选择地在多个可以从包括发动机开动状态(ON)和发动机停止状态(OFF)的发动机状态和包括多个固定齿轮和连续可变操作模式的变速器状态的形式描述的工作档位状态之一操作,参考下表1加以描述。
    表1

    表中描述了每一个变速器工作档位状态,并且指出了每一个变速器工作档位状态应用具体的离合器C1 70、C2 62、C3 73和C4 75中的哪多个。第一连续可变模式,比如EVT模式1或者M1,通过应用离合器C1 70被选择,只是为了将第三行星齿轮组28的外部齿轮部件接地。发动机状态可以是ON(M1_Eng_On)或者OFF(M1_Eng_Off)之一。第二连续可变模式,比如EVT模式2,通过应用离合器C2 62被选择,只是为了将轴60与第三行星齿轮装置28的架子连接起来。发动机状态可以是ON(M2_Eng_On)或者OFF(M2_Eng_Off)之一。这样描述的目的,当发动机状态是OFF的时候,发动机的转速是零转每分钟(RPM),即发动机曲轴不转。固定齿轮操作为变速器10提供了一个固定的输入输出速度比,比如NI/NO。第一固定齿轮操作(G1)通过应用离合器C170和C4 75被选择。第二固定齿轮操作(G2)通过应用离合器C1 70和C2 62被选择。第三固定齿轮操作(G3)通过应用离合器C262和C475被选择。第四固定齿轮操作(G4)通过应用离合器C2 62和C3 73被选择。固定的输入输出速度比随着固定齿轮操作的增加而增加,由于行星齿轮24、26和28传动比的降低。第一和第二电机56和72的转速NA和NB相应地依赖于由离合装置定义的机械装置的内部旋转并与在输入轴12测得的输入速度成比例。
    响应从用户界面13获取的加速踏板113和制动踏板112的操作者输入,HCP5与一个或者多个其他控制模块确定扭矩命令来控制包括发动机14和第一和第二电机56和72在内的扭矩产生装置以满足操作者在输出部件64和传递到功率传动系统90的扭矩要求。基于从用户界面13和包括ESD74的混合功率传动系产生的输入信号,HCP5确定操作者扭矩要求、从变速器10传递给功率传动系统90的有要求的输出扭矩、发动机14的输出扭矩、变速器10的扭矩传递离合器C1 70、C2 62、C3 73和C4 75的扭矩和第一和第二电机56和72的马达扭矩,相应的在下文加以描述。
    最终车辆加速度可以被其他比如路面负荷、路面等级和车辆重量等因素影响。基于混合功率传动系的各种操作特征来确定变速器10的工作档位状态。包括前述的从加速踏板113和制动踏板112传递给用户界面13的操作者扭矩要求。工作档位状态可以用一个指令引起的混合功率传动系扭矩命令预测,以在电能产生模式或者扭矩产生模式下操作第一和第二电机56和72。工作档位状态可以通过在操作者指令的基础上为传动系确定优选系统效率的优选化运算法则或者程序、电池充电状态和包括发动机14与第一和第二电机56和72的能量效率来确定。在优选化程序执行结果的基础上控制系统管理发动机14与第一和第二电机56和72的扭矩输入并且将系统效率优选化,来管理燃油经济性和电池充电。进一步,基于元件或者系统的错误可以确定操作。HCP5监控着扭矩产生装置,确定响应输出元件64的要求输出扭矩的变速器10的输出功率,以满足操作者扭矩要求。因此通过上文的描述,ESD74与第一和第二电机56和72为功率传递而电操作地连接是显而易见的了。进一步,发动机14与第一和第二电机56和72以及电动机械变速器10是机械操作地连接来传递功率来为输出部件64产生功率流。
    图3显示了为有多扭矩产生装置的混合功率传动系系统控制和管理信号流的控制系统结构,参考图1和图2中的混合功率传动系系统在下文加以描述,以执行的运算法则和校准程序的形式位于前述的控制模块。对例如有一个发动机和单个电机的或者有一个发动机和多个电机的可选择的有多扭矩产生装置的混合功率传动系系统来讲,上述控制系统结构是可应用的。可选择地,混合功率传动系系统也可以使用非电的扭矩机器和能量存储系统,比如使用液压功率扭矩机械(图中没有显示)的液压—机械混合功率变速器。
    在操作中,通过监控操作者对加速踏板113和制动踏板112的输入来确定操作者扭矩要求。操作者对加速踏板113和制动踏板112的输入包括独立可确定的操作者扭矩要求输入,包括即时加速器输出扭矩要求(Output Torque RequestAccel Immed)、预测的加速器输出扭矩要求(Output Torque Request Accel Prdtd)、即时制动器输出扭矩要求(Output Torque Request Brake Immed)、预测的制动器输出扭矩要求(Output Torque Request Brake Prdtd)和车轴扭矩响应类型(AxleTorque Response Type)。在此使用的术语“加速器”指的是在前进方向上当操作者选择的变速器档位选择器114的位置要求车辆有所操作的时候,操作者对最好可以导致增加车辆速度的前推进力的要求。术语“减速”和“制动”指的是操作者对最好可以导致降低车辆速度的要求。即时加速器输出扭矩要求,预测的加速器输出扭矩要求,即时制动器输出扭矩要求,预测的制动器输出扭矩要求和车轴扭矩响应类型是独立输入给控制系统的。另外,发动机14和变速器10的运转被监控以确定输入速度(NI)和输出速度(NO)。
    即时加速器输出扭矩要求包括基于操作者对加速踏板113的输入确定的即时扭矩要求。根据即时加速器输出扭矩,控制系统控制混合功率传动系统的输出扭矩来产生车辆的正加速。即时制动器输出扭矩要求包括基于操作者对制动踏板112的输入确定的即时制动扭矩要求。根据即时制动器输出扭矩,控制系统控制混合功率传动系统的输出扭矩来产生车辆的减速或者负加速。受混合功率传动系统的输出扭矩的控制影响的车辆减速与受车辆制动系统(图中没有显示)影响的车辆减速联合起来降低车辆速度以实现即时制动要求。
    即时加速器输出扭矩要求由当前操作者对加速踏板113的输入来决定,包括在输出部件64产生最好给车辆加速的即时输出扭矩。即时加速器输出扭矩要求是不定型的,但可以通过传动系控制之外影响车辆运转的因素定型。这些因素包括为了防抱死制动在传动系控制中的车辆水平干涉,牵引控制和车辆稳定性控制,都可以用来定型或者限制不定型或者速率限制加速器输出扭矩要求。
    预测的加速器输出扭矩要求由操作者对加速踏板113的输入来决定,包括在输出部件64产生的优选或者最希望的输出扭矩。在正常的运转情况下比如当防抱死制动、牵引控制和车辆稳定性控制都没有命令的时候,预测的加速器输出扭矩要求最好和即时加速器输出扭矩要求相同。当防抱死制动、牵引控制或者车辆稳定性中有任何一个有命令的时候,根据与防抱死制动、牵引控制和车辆稳定性控制相关的输出扭矩命令,预测的加速器输出扭矩要求保持其希望的输出扭矩和即时加速器输出扭矩要求降低。
    即时制动器输出扭矩要求由操作者对制动踏板112的输入和控制摩擦制动器产生摩擦制动扭矩的控制信号来决定。
    预测的制动器输出扭矩要求包括在输出部件64产生的优选或者最希望的由操作者对制动踏板112的输入来决定制动输出扭矩,取决于在输出部件64产生的可允许不考虑操作者对制动踏板112的输入的最大制动输出扭矩。在一个例子中在输出部件64产生的最大制动输出扭矩限制在-0.2g。当车辆速度接近零的时候,预测的制动器输出扭矩要求可以逐步降低到零而不考虑操作者对制动踏板112的输入。如使用者希望的那样,可以有多个将预测的制动器输出扭矩要求设定为零的情况,例如当设置变速器档位选择器114的操作器被设成倒转档位,当传动箱(图中没有显示)被设置成四轮驱动低范围。预测的制动器输出扭矩要求被设置为零的情况是那些不希望由车辆运转因素决定混合制动的情况。
    车轴扭矩响应类型包括定型或者限制不定型或者速度限制通过第一和第二电机56和72的输出扭矩响应的输入状态。车轴扭矩响应类型的输入状态可以是一个积极的状态,最好包括希望限制的状态、最大范围状态和非活动状态之一。当受到指令的车轴扭矩响应类型是积极状态的时候,这种响应类型的输出扭矩响应是尽可能的快。
    混合功率制动扭矩包括在车轮93产生的摩擦制动扭矩和在输出部件64产生的输出扭矩的合成,与功率传动系统90一起根据操作者对制动踏板112的输入来降低车轮转速。BrCM22控制车轮93上的摩擦制动器来应用制功率并产生对变速器10的命令来产生响应即时制动要求与功率传动系统90一起作用的负输出扭矩。最好地,只要应用的制功率和负输出扭矩足以克服车辆在车轮93上的动能,它们就可以减速并停下车辆。负输出扭矩与功率传动系统90一起作用,由此给电动—机械变速器10和发动机14传递扭矩。通过电动—机械变速器10作用的负输出扭矩可以传递给第一和第二电机56和72来为ESD74中的存储装置产生电能。
    战略优选化控制方案(Strategic Control)310确定基于输出速度、操作者扭矩要求的和基于混合功率传动系统的其他包括电池功率限制和发动机14、变速器10和第一和第二电机56和72的响应限制在内的操作参数的希望的输入速度(Ni_Des)、希望的发动机状态和变速器工作档位状态(Hybrid Range State Des)。预测的加速器输出扭矩要求和预测的制动器输出扭矩要求输入到战略优选化控制方案310中。战略优选化控制方案310最好在每一100毫秒循环周期与每一25毫秒循环周期通过HCP5来执行。希望的变速器10的工作档位状态和希望的从发动机14传递给变速器10的输入速度输入给转变执行和发动机启动/停止控制方案320。
    换档执行与发动机启动/停止控制方案320命令变速器操作(TransmissionCommands)的改变,包括改变基于传动系系统输入与操作的工作档位状态。这包括如果希望的工作档位状态与当前的工作档位状态不同时,通过改变一个或者多个离合器C1 70、C2 62、C3 73和C4 75的应用的命令或者其他变速器命令来执行改变变速器工作档位状态。当前的工作档位状态(Hybid Range StateActual)和输入速度曲线(Ni_Prof)可以被确定。输入速度曲线是即将产生的输入速度的估计值,最好包括作为即将到来的循环周期的目标输入速度的标量参数化值。
    战术控制方案(Tactical Control And Operation)330在一个控制循环周期中重复执行来确定发动机命令(Engine Commands)来操作发动机14,包括基于输出速度、输入速度和包括即时加速器输入扭矩要求、预测的加速器输出扭矩要求、即时制动器输入扭矩要求、预测的制动器输出扭矩要求、车轴扭矩要求类型和当前变速器工作档位状态在内的操作者扭矩要求的从发动机14给变速器10的希望的输入扭矩。发动机命令也包括包括全体汽缸运转状态和部分发动机汽缸非活动不供给燃料的断缸操作状态之一的发动机状态和包括供给燃料状态和切断燃料状态之一的发动机状态。包括希望的发动机14的输入扭矩以及发动机14和输入部件12之间的的当前输入扭矩(Ti)的发动机命令最好在ECM23中确定。包括当前应用的和不应用的离合器每一个C1 70、C2 62、C3 73和C4 75的离合器扭矩(Tcl)最好在TCM17中估计。
    执行输出与马达扭矩确定方案(Output And Motor Torque Determination)340来确定希望的传动系的输出扭矩(TO_CMD)。这包括确定马达扭矩命令(TA,TB)来通过控制该实施例中的第一和第二电机56和72给变速器10的输出部件64传递满足操作者扭矩要求的净命令输出扭矩。即时加速器输出扭矩要求、即时制动器输出扭矩要求、当前发动机14的输入扭矩、估计的离合器扭矩、当前变速器10的工作档位状态、输入速度、输入速度曲线与车轴扭矩响应类型是输入量。通过执行输出与马达扭矩确定方案340来确定在每个循环周期中的发动机扭矩命令。输出与马达扭矩确定方案340包括运算法则代码,该代码在6.25毫秒和12.5毫秒循环周期中被规则地执行来确定希望的马达扭矩命令。
    控制混合功率传动系来给输出部件64传递输出扭矩,使其与功率传动系统90一起作用来产生在车轮93的牵引扭矩,当操作者选择的变速器档位选择器114的档位命令车辆在前进方向上运转的时候,该牵引扭矩根据操作者对加速踏板113的输入向前驱动车辆。类似地,控制混合功率传动系来给输出部件64传递输出扭矩,使其与功率传动系统90一起作用来产生在车轮93的牵引扭矩,当操作者选择的变速器档位选择器114的档位命令车辆在相反方向上运转的时候,该牵引扭矩根据操作者对加速踏板113的输入向相反方向驱动车辆。最好地,只要输入扭矩足以克服内部在车辆上的例如取决于路面等级、空气功率学载荷和其他载荷的外部载荷,该驱功率导致车辆加速。
    从传动系系统的功率输出由功率、扭矩、速度容量、包括发动机14和第一和第二电机56和72和ESD74在内的扭矩产生装置与在一个实施例中包括包含扭矩传递离合器C1 70、C2 62、C3 73和C4 75的传动系10的扭矩传递装置的极限定义和限制。发动机14和变速器10的操作约束可以被编译成一系列的作为包括HCP5在内的控制模块中的一个或者更多的运算法则被执行的系统约束方程。在全面运转中,变速器10通过一个或两个扭矩传递离合器的选择性的应用在工作档位状态中运转,或者在齿轮空档的情况下不使用离合器。对发动机14和第一和第二电机56和72的扭矩约束与对发动机14和第一和第二电机56和72以及变速器10的输出轴64的速度约束可以被确定。ESD74的电池功率约束被确定,用以进一步限制对第一和第二电机56和72的发动机扭矩约束。传动系的优选操作区间基于电池功率约束、发动机扭矩约束和速度约束决定。该优选操作区间包括一个可实现和允许的发动机14和第一和第二电机56和72的操作扭矩或者速度的范围。
    对发动机14和第一和第二电机56和72的扭矩约束和对ESD74的功率约束可以用公式数学地表示,考虑扭矩约束、能量存储装置的功率约束和机械系统的限制。速度约束可以包括发动机输入速度约束,NI=0(发动机关闭状态)和从600转每分(怠速)到6000转每分的发动机14的转速NI。第一和第二电机56和72的速度约束可以用如下式子表示:
    -10500rpm≤NA≤+10500rmp
    -10500rpm≤NB≤+10500rmp
    扭矩约束包括对第一和第二电机56和72的发动机扭矩约束,包括TA_MIN≤TA≤TA_MAX和TB_MIN≤TB≤TB_MAX。发动机扭矩约束TA_MAX和TA_MIN分别包括对第一电机56作为扭矩发动机和正转速发电机工作时的扭矩限制。发动机扭矩约束TB_MAX和TB_MIN分别包括对第二电机72作为扭矩发动机和正转速发电机工作时的扭矩限制。发动机扭矩的最大值和最小值TA_MAX、TA_MIN、TB_MAX和TB_MIN最好从存储在某一控制模块中的某一存储装置中的列表格式中的数据系列获得。这样的数据系列可以从例行的在各种温度和电压状况下对电动机和功率电子比如TPIM19的功率测定中根据经验获得。电池功率约束包括在区间PBAT_MIN到PBAT_MAX中可以应用的电池功率,其中PBAT_MIN是允许的电池充电功率的最小值,PBAT_MAX是允许的电池放电功率的最大值。下面描述的系统的运转由已知的发动机输入速度和扭矩决定,因此方程的引出建立在变速器14的扭矩传递的基础上。
    包括扭矩输出区间的操作区间是基于电池功率约束和第一和第二电机56和72(也称之为MG-A56和MG-B72)确定。电池功率使用PBAT的计算如下:
    PBAT=PA,ELEC+PB,ELEC+PDC_LODA     [1]
    其中,PA,ELEC包括从MG-A56获得的电能,
    PB,ELEC包括从MG-B72获得的电能,
    PDC_LODA包括已知的直流载荷,包括附加载荷。
    将PA,ELEC和PB,ELEC替换方程,产生如下方程:
    PBAT=(PA,MECH+PA,LOSS)+(PB,MECH+PB,LOSS)+PDC_LODA  [2]
    其中,PA,MECH包括从MG-A56获得的电能,
    PA,LOSS包括从MG-A56损失的电能,
    PB,MECH包括从MG-B72获得的电能,
    PB,LOSS包括从MG-B72损失的电能。
    方程2可以用如下的方程3重新表述,其中速度NA和NB与扭矩TA和TB用来替代功率PA和PB。这包括一个假定,假定电动机和逆变器损失可以在扭矩的基础上作为二次方程在数学上建模,如下面方程3所示:
    PBAT=(NATA+(a1(NA)TA2+a2(NA)TA+a3(NA)))     [3]
    +(NBTB+(b1(NB)TB2+b2(NB)TB+b3(NB)))+PDC_LODA其中,NA,NB包括第一和第二电机56和72的电动机速度,
    TA,TB包括第一和第二电机56和72的马达扭矩,
    a1,a2,a3,b1,b2,b3每一个包括分别是电动机速度NA,NB函数的二次系数。
    可以用下面的方程4重新表述。
    PBAT=a1*TA2+(NA+a2)*TA+b1*TB2+(NB+b2)*TB       [4]
    +a3+b3+PDC_LODA
    这导出下面的方程5。
    PBAT=a1[TA2+TA(NA+a2)/a1+((NA+a2)/(2*a1))2]      [5]
    +b1[TB2+TB(NB+b2)/b1+((NB+b2)/(2*b1))2]
    +a3+b3+PDC_LODA-(NA+a2)2/(4*a1)-(NB+b2)2/(4*b1)
    这导出下面的方程6。
    PBAT=a1[TA+(NA+a2)/(2*a1)]2+b1[TB+(NB+b2)/(2*b1)]2     [6]
    +a3+b3+PDC_LODA-(NA+a2)2/(4*a1)-(NB+b2)2/(4*b1)
    这导出下面的方程7。
    PBAT=[SQRT(a1)*TA+(NA+a2)/(2*SQRT(a1))]2[   [7]
    +[SQRT(b1)*TB+(NB+b2)/(2*SQRT(b1))]2
    +a3+b3+PDC_LODA-(NA+a2)2/(4*a1)-(NB+b2)2/(4*b1)
    这导出下面的方程8。
    PBAT=(A1*TA+A2)2+(B1*TB+B2)2+C     [8]
    其中,A1=SQRT(a1),
    B1=SQRT(b1),
    A2=(NA+a2)/(2*SQRT(a1)),
    B2=(NB+b2)/(2*SQRT(b1)),且
    C=a3+b3+PDC_LODA-(NA+a2)2/(4*a1)-(NB+b2)2/(4*b1)
    马达扭矩TA和TB可以用如下式子转换成TX和TY
    T X T Y = A 1 0 0 B 1 * T A T B + A 2 B 2 - - - [ 9 ] ]]>
    其中,TX是TA的转换,
    TY是TB的转换,
    A1,A2,B1,B2包括第一和第二电机的在当前电动机速度NA和NB下的应用专用二次系数。
    方程9进一步导出下面的方程10和11。
    PBAT=(TX2+TY2)+C     [10]
    PBAT=R2+C          [11]
    方程9描述了从发动机扭矩TA到TX,TB到TY的变换。因此,定义一个新的称之为TX/TY区域的坐标系,方程10包括变换到TX/TY区域的电池功率PBAT。因此,在最大值和最小值PBAT_MAX和PBAT_MIN之间的电池功率范围可以计算出来,并在变换过的TX/TY区域中以半径为(RMAX和RMIN),圆心为原点(0,0)的同心圆作图表示,并用字母K表示,其中RMIN和RMAX在下面的方程12和13中向前设置。
    RMIN=SQRT(PBAT_MIN-C)      [12]
    RMAX=SQRT(PBAT_MAX-C)      [13]
    最小和最大的电池功率PBAT_MIN和PBAT_MAM,最好与各种状况相关联,比如充电状态、温度、电压和使用(amp-hour/hour)。上述参数C被定义成在给定的电动机转速NA和NB的情况下绝对最小的可能电池功率,不考虑马达扭矩限制。自然地,当TA=0,TB=0的时候从第一和第二电机56和72的输出功率为0。自然地,用K表示的TX=0和TY=0的点与对传动系系统的最小的充电功率相符。正号(+)被定义成从ESD74中释放电能,符号(—)被定义成给ESD74充电。RMAX定义了最大的电池功率,典型地是一个放电功率,RMIN定义了最小的电池功率,典型地是充电功率。
    图4图形地显示了可用电池功率(Battery Power Constraints)和变换到TX/TY空间的包括第一和第二电机56和72(Motor Torque Constraints)在内的扭矩致动器的最大和最小的马达扭矩约束。对第一电机56的最大和最小的马达扭矩约束(TA_MAX和TA_MIN)和对第二电机72的最大和最小的马达扭矩约束(TB_MAX和TB_MIN)用上述公式9变换到TX/TY区域。可用的电池功率的表示用半径为(RMAX和RMIN)同心圆描绘,最大和最小的马达扭矩约束的表示TA_MAX、TA_MIN、TB_MAX和TB_MIN(马达扭矩约束)用直线描绘。电池功率约束与马达扭矩约束限制了一个允许的操作范围。分析地,方程9中确定的变换过的向量[TX/TY]与方程10同时解出以确定在TX/TY区域中允许的操作范围,包括用最小和最大的电池功率PBAT_MIN和PBAT_MAM限制的马达扭矩TA和TB。在TX/TY区域中的允许的操作范围在图4中用点A,B,C,D,E和上述的直线和半径显示来代表范围。允许的操作范围被用线段AB,弧BC,线段CD,弧DE和线段AE描述的马达扭矩约束和电池功率约束限制。
    图5显示了图4中的元素,还包括了传动系系统的附加约束的最大和最小值。传动系系统的操作约束可以用线性方程表示,比如下面方程14所示:
    T M 1 T M 2 T M 3 = a 11 a 12 b 21 b 22 c 31 c 32 * T A T B + d 1 d 2 d 3 T J - - - [ 14 ] ]]>
    其中,TM1包括相关的变速器扭矩,
    TM2和TM3表示特定的附加扭矩约束,
    TJ包括基于传动系系统和当前操作状态的特定细节为特定应用确定的一般扭矩项。
    因此,在上文描述的方程体系的一个执行中,相关相关的变速器扭矩项TM1可以包括输出扭矩TO和最大最小输出扭矩值,可以由系统约束决定。方程系统的其他执行可以包括由发动机14的输入扭矩TI组成的相关相关的变速器扭矩项TM1,由正在进行的或者即将进行的离合器之一的离合器扭矩组成的相关相关的变速器扭矩项TM1。附加扭矩约束TM2和TM3表示附加的系统约束,可以包括应用中的离合器的作用扭矩、发动机输入扭矩、输入部件12的加速率NI_DOT和某一离合器的打滑加速度NC1_DOT。约束方程对包括齿轮、模式和空档工作档位状态在内的变速器工作档位状态是完备的。
    通过推导与同步求解变速器10的功率学方程,如方程14所示,相关的变速器扭矩项TM1的可实现的操作范围可以确定。下面的线性方程在上述一个具体例子中包括方程14的实质。
    TM1=TAtoTM1*TA+TBtoTM1*TB+Misc_TM1    [15]
    TM2=TAtoTM2*TA+TBtoTM2*TB+Misc_TM2     [16]
    TM3=TAtoTM3*TA+TBtoTM3*TB+Misc_TM3    [17]
    在一个实施例中,扭矩值可以包括:
    TM1表示输出部件64的输出扭矩TO
    TM2表示输入轴12的输入扭矩TI
    TM3表示变速器10的应用的扭矩传递离合器C1 70、C2 62、C3 73和C4 75的作用扭矩;
    TAtoTM1,TAtoTM2,TAtoTM3分别表示TA对TM1,TM2,TM3的起作用的因素;
    TBtoTM1,TBtoTM2,TBtoTM3分别表示TB对TM1,TM2,TM3的起作用的因素;
    Misc_TM1,Misc_TM2,Misc_TM3是通过NI_DOT,NO_DOT,NI,NO,没应用的离合器TCS1,TCS2,TCS3的离合器滑动扭矩和空档状态下离合器C1的加速度NC1_DOT对TM1,TM2,TM3起作用的常数。
    扭矩参数TA和TB是第一和第二电机56和72的马达扭矩。
    TM1包括相关相关的变速器扭矩项,扭矩参数TM1,TM2,TM3可以根据使用表示任何三个独立的状态方程。
    方程15、16和17可以在TX/TY区域中用代入法重新描述,如下述方程18、19和20所示。
    TM1=TAtoTM1*(TX-A2)/A1+TBtoTM1*(TY-B2)/B1+Misc_TM1    [18]
    TM2=TAtoTM2*(TX-A2)/A1+TBtoTM2*(TY-B2)/B1+Misc_TM2    [19]
    TM3=TAtoTM3*(TX-A2)/A1+TBtoTM3*(TY-B2)/B1+Misc_TM3    [20]
    定义TM1_XY,TM2_XY,TM3_XY是TM1,TM2,TM3的部分,只由TA和TB决定,导出如下方程21,22和23。
    TM1_XY=TAtoTM1*(TX-A2)/A1+TBtoTM1*(TY-B2)/B1          [21]
    TM2_XY=TAtoTM2*(TX-A2)/A1+TBtoTM2*(TY-B2)/B1          [22]
    TM3_XY=TAtoTM3*(TX-A2)/A1+TBtoTM3*(TY-B2)/B1          [23]
    可以定义下面的系数和截距:
    TXtoTM1=TAtoTM1/A1
    TYtoTM1=TBtoTM1/B1
    TM1_Intercept=TAtoTM1*A2/A1+TBtoTM1*B2/B1
    TXtoTM2=TAtoTM2/A1
    TYtoTM2=TBtoTM2/B1
    TM2_Intercept=TAtoTM2*A2/A1+TBtoTM2*B2/B1
    TXtoTM3=TAtoTM3/A1
    TYtoTM3=TBtoTM3/B1;且
    TM3_Intercept=TAtoTM3*A2/A1+TBtoTM3*B2/B1
    因此,方程15、16和17可以根据方程24、25和26中的设置变换到TX/TY区域中,如下:
    TM1_XY=TXtoTM1*TX+TYtoTM1*TY               [24]
    +(Misc_TM1-TAtoTM1*A2/A1-TBtoTM1*B2/B1)
    TM2_XY=TXtoTM2*TX+TY2TM2*TY                [25]
    +(Misc_TM2-TAtoTM2*A2/A1-TBtoTM2*B2/B1)
    TM3_XY=TXtoTM3*TX+TYtoTM3*TY               [26]
    +(Misc_TM3-TAtoTM1*A2/A1-TBtoTM3*B2/B1)
    基于电池功率约束与马达扭矩约束,包括变换后的扭矩约束TM2_XY和TM3_XY的最大和最小值在内的附加的约束可以在图5中确定并用图形表示为(TM2_Max,TM2_Min,TM3_Max,TM4_Min)。在这个实施例中,附加的直线显示增加(增加TM3)和减少(减少TM3)的一个变换后的扭矩约束,即TM3_XY,来显示最大和最小值可以用图形表示的过程,就像系统中变换后的扭矩约束之间的相互作用。最小和最大扭矩约束TM2_XY和TM3_XY与变换后的最小和最大的马达扭矩约束和变换后的最小和最大的电池功率约束的交叉点限制了可实现的TM1的操作范围,用点H,I,G,F,E和J描述。相关的变速器扭矩项TM1的可实现的操作范围用线段EJ,线段JH,线段HI,弧BG,线段GF,弧FE和线段EA包围限制。因此,项TM1的优选状态,即最大或最小扭矩,可以由TM1_XY的方程和用点H,I,G,F,E和J描述的项TM1的可实现的操作范围的交点确定。
    优选的解可以通过计算约束的交点与确定某个点比如点J来确定。解比如点J,可以变换到TA/TB空间来确定优选马达扭矩TA和TB来控制传动系系统达到可实现输出扭矩。在操作中,前述方程可以公式化并还原成在持续的传动系的操作中执行的运算法则来确定可能的或者可实现的基于传动系运转状态、操作者扭矩要求和附加扭矩约束的输出扭矩。运算法则可以在一个循环周期中执行以持续确定可实现的扭矩范围,影响在那上面的传动系系统的控制。
    已经以特定的实施例及其变形对本发明作了说明。通过阅读及理解说明书可以产生的其他进一步的修改及改变。因此,本发明并不限于作为预期实现本发明的最佳模式而公开的特定的实施例,本发明将包括落入所附权利要求范围内的所有实施方式。

    关 键  词:
    确定 变速器 实现 转矩 操作 区间 方法
      专利查询网所有文档均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:确定变速器可实现转矩的操作区间的方法.pdf
    链接地址:https://www.zhuanlichaxun.net/p-1063846.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2017-2018 zhuanlichaxun.net网站版权所有
    经营许可证编号:粤ICP备2021068784号-1