等离子显示器及其驱动方法 【技术领域】
本发明涉及一种等离子显示器及其驱动方法。
本申请要求2004年1月30日于韩国知识产权局中请的,申请号为10-2004-0005975的韩国专利的优先权和利益,该申请的内容在此引入以作参考。
背景技术
近来,液晶显示器(LCDs)、场致发光显示器(FEDs)和等离子显示器已经得到广泛的发展。在平板装置中,与其它类型的显示器相比,等离子显示器有较高的亮度和发光效率,同时具有较宽的视角,因此在大于40英寸的大屏幕显示器中,等离子显示器取代了常规的阴极射线管(CRTs)而吸引了公众的注意。
等离子显示器是利用通过气体放电过程产生的等离子来显示字符或图像的平板显示器,根据显示器的大小,在其上以矩阵的形式提供几十或几百万个像素。根据所提供的驱动电压波形和放电元件的结构,等离子显示器被分为直流等离子显示器和交流等离子显示器。
由于直流等离子显示器具有暴露于放电空间内的电极,当提供电压时,它们允许电流在放电空间内流动,因此为了限制电流它们有时需要电阻。另一方面,由于交流等离子显示器具有由介电层覆盖的电极,电容很自然地形成用来限制电流,并且在放电时防止电极受到离子冲击,因此交流等离子显示器的寿命比直流等离子显示器的寿命长。
图1示出交流等离子显示板(PDP)的透视图,图2示出图1中PDP的截面图。置于介电层14和保护薄膜15上的X电极3和Y电极4被平行设置,并在第一玻璃基底11下方相互形成一对,X电极和Y电极由透明导电材料制成,金属制成的总线电极6分别形成于X电极3和Y电极4地表面上。
介电层14′覆盖的多个地址电极5安装于第二玻璃基底12上,隔离肋17形成于地址电极5之间内的介电层14′上,并与地址电极5平行,并且磷光体18形成于介电层14′的表面以及隔离肋17的两侧边上。相互面对地设置第一和第二玻璃基底11和12,两者之间具有放电空间19,因此Y电极4和X电极3可能与地址电极5交叉,地址电极5和形成于Y电极4和X电极3的交叉部分的放电空间19形成放电单元20。
图3示出常规等离子显示器电极的布置图。等离子显示电极具有m×n的矩阵结构,纵向为地址电极A1到Am,交替地在横向为Y电极Y1到Yn和X电极X1到Xn,图3中示出的放电单元20对应图1中的放电单元20。
图4示出常规等离子显示器的驱动波形图。每个子域包括一复位周期、一寻址周期和一保持放电周期。复位周期清除前一个保持放电的壁电荷状态,并为了稳定地执行下一寻址建立壁电荷。在寻址周期选择在显示板中接通的单元和关闭的单元,并累积壁电荷到接通的单元(即被寻址的单元)上。在保持放电周期中,通过交替将保持放电电压施加到X和Y电极,来实施在被寻址的单元上实际显示图像的放电。
现在将详细描述在复位周期中常规等离子显示驱动方法的操作,如图4所示,复位周期包括一清除周期、Y斜坡上升周期和Y斜坡下降周期。
(1)清除周期(I)
在该周期中,当X电极偏置为恒定电压Vbias时,施加于Y电极的电压缓和地从保持放电电压Vs斜坡下降到接地电压(0V),从而消除了形成于前一个保持放电周期内的壁电荷。
(2)Y斜坡上升周期(II)
在该周期中,地址电极和X电极被保持为0V,从电压Vs逐渐上升到电压Vset的斜坡电压被施加到Y电极,当斜坡电压上升时,从Y电极到地址电极和X电极所有的放电单元发生弱复位,因此负壁电荷积累到Y电极,同时正壁电荷积累到地址电极和X电极。
(3)Y斜坡下降周期(III)
在复位周期的后面部分,当X电极保持为恒定电压Vbias的状态时,从电压Vs逐渐下降到接地电压的斜坡电压被施加到Y电极,当斜坡电压下降时,在所有的放电单元中再一次产生弱复位。
然而在常规的等离子显示器中,在完成从第一Y电极到最后Y电极的寻址操作后,在所有的放电单元上一起执行保持放电操作,因此由于常规等离子显示器中寻址周期后当施加第一保持放电脉冲时,放电单元中未产生足够的原始粒子,因此产生较差的放电。
同样,由于在常规等离子显示器中,在复位周期施加于Y电极的波形(复位和扫描波形另外施加于Y电极)与施加于X电极的波形不同,所以驱动Y电极的电路不同于驱动X电极的电路,因此在X和Y电极的驱动电路上不执行阻抗匹配,在保持放电周期交替施加于X和Y电极的波形被变形,从而产生差的放电。
【发明内容】
根据本发明提供一种防止差的放电的等离子显示器及其驱动方法,还提供一种具有简单电路结构的等离子显示器及其驱动方法。
根据本发明的一个方面,提供一种驱动等离子显示器的方法,该显示器具有多个交替布置的第一电极和第二电极,多个第三电极,每个第三电极形成于各自的第一电极和第二电极之间。第一电极通过公共连接线连接,第三电极通过柔性印刷电路连接于驱动器。该方法包括:在保持放电周期,(a)通过公共连接线将每个第一电极偏置为第一电压;(b)将大于第一电压的第二电压以及小于第一电压的第三电压交替施加于各第二电极;(c)当第二电压施加于第二电极时,将大于第一电压的第四电压施加于各第三电极,并且当第三电压施加于第二电极时,将小于第一电压的第五电压施加于各第三电极。
在本发明的另一方面,等离子显示器包括:等离子显示板,其具有多个交替布置的X电极和Y电极,多个M电极,每个M电极形成于各自X和Y电极之间,以及多个绝缘的地址电极,每个绝缘的地址电极与各X、Y和M电极交叉;形成于等离子显示板上并连接于第一电压的公共连接线,公共连接线用于共同连接X电极;用与提供驱动Y电极的波形的Y电极驱动器;用于提供驱动M电极的波形的M电极驱动器;以及用于连接M电极驱动器和M电极的柔性印刷电路。
【附图说明】
图1示出常规PDP的透视图;
图2示出图1中PDP的截面图;
图3示出等离子显示器的常规电极布置图;
图4示出常规等离子显示器的驱动波形图;
图5示出根据本发明示例性实施例等离子显示器的电极布置图;
图6和7分别示出根据本发明示例性实施例的PDP的透视图和截面图;
图8示出根据本发明示例性实施例等离子显示器的驱动波形图;
图9A到9E示出当施加图8中所示的波形时壁电荷的分布图;
图10示出根据本发明示例性实施例的等离子显示器;
图11示出根据本发明的第一示例性实施例的柔性印刷电路;
图12示出根据本发明的第一示例性实施例的等离子显示器的电路布置图;
图13和14示出根据本发明第二和第三示例性实施例等离子显示器的驱动波形图;
图15示出根据本发明第二和第三示例性实施例的柔性印刷电路;
图16示出根据本发明第二和第三示例性实施例等离子显示器的电路布置图;
图17示出根据本发明第二和第三示例性实施例驱动Y电极的电路图。
【具体实施方式】
现参考图5,纵向平行提供地址电极A1到Am,横向提供Y1′到Yn/2+1′的(n/2+1)个Y电极、X1′到Xn/2+1′的(n/2+1)个X电极以及n个中间电极(后文称为M电极)。即M电极提供于Y和X电极之间,Y电极、X电极和M电极形成独立的放电单元30,从而构建为一个四电极结构。
X和Y电极行使施加保持放电电压波形电极的功能,M电极行使施加复位波形和扫描脉冲电压电极的功能。
图6示出根据本发明示例性实施例PDP的透视图,图7示出图6中PDP的截面图。等离子显示板包括第一基底41和第二基底42,形成于第一基底41上的X电极53和Y电极54,形成于X电极53和Y电极54上的总线电极46,依次形成于X电极53和Y电极54上的介电层44和保护薄膜45。
地址电极55形成于第二基底42的表面,绝缘层44′形成于地址电极55上,隔离肋47形成于绝缘层44′上,从而在隔离肋47之间形成放电空间49,磷光体48被覆盖于隔离肋47之间的单元空间中隔离肋47的表面上,X电极53和Y电极54垂直于地址电极55形成,并提供放电单元30,图6中的放电单元30与图5中所示的放电单元30类似。
M电极56形成于第一基底41的表面上的一对X电极53和Y电极54之间,复位波形和扫描波形施加于M电极上,总线电极46形成于M电极56上。
根据图5到图7所示的示例性实施例等离子显示板中Xi′电极和Yi′电极以及Yi+1′电极和Xi+1′电极之间提供M电极,也就是说,当提供(n/2+1)个X和Y电极时,则提供n个M电极。然而是在Xi′电极53和Yi′电极54之间,而不是在Yi′电极和Xi+1′电极之间提供M电极56,在该情况下X、Y和M电极的数目都是n。
图8根据本发明第一示例性实施例示出等离子显示器的驱动波形图,图9A到9E根据本发明示例性实施例,基于图8的驱动波形示出壁电荷的分布图。
参考图8和9A到9E,现在将描述根据本发明第一示例性实施例的驱动方法。
每个子域包括一复位周期、一寻址周期和一保持放电周期。复位周期包括一清除周期、一M电极上升波形周期和一M电极下降波形周期。
(1-1)清除周期(I)
在清除周期中清除前一个保持放电周期中形成的壁电荷。在示例性实施例中,假定在保持放电周期的最后时刻将保持放电电压施加于X电极,将比施加于X电极的电压低的电压(例如接地电压)施加于Y电极,结果如图9A所示,正壁电荷形成于Y电极和地址电极,负壁电荷形成于X电极和M电极。
在清除周期中,当Y电极偏置为Vyc电压时,逐渐地从电压Vmc下降到接地电压的波形(斜坡波形或对数波形)施加于M电极,因此如图9A所示的在保持放电周期形成的壁电压被清除。
(1-2)M电极上升波形周期(II)
在该周期中,当X和Y电极偏置为接地电压,逐渐地从Vmd电压上升到Vset电压的波形(斜坡波形或对数波形)施加于M电极。当施加上升波形时,在所有放电单元中从M电极到地址电极、X和Y电极产生弱复位,因此如图9B所示,负壁电荷积累于M电极,正电荷积累于地址、X和Y电极。
(1-3)M电极下降波形周期(III)
在复位周期的后面部分,当X电极和Y电极分别偏置电压Vxe和Vye时,逐渐地从电压Vme下降到接地电压的波形(斜坡波形或对数波形)施加于M电极,在该情况下,尽管实施例没有限制于此,但为了简化电路结构的期望,设置电压为Vxe=Vye和Vmd=Vme。
当斜坡电压下降时再一次产生弱复位,为了逐渐地减小在M电极上升波形周期中积累的壁电荷,提供M电极下降波形周期,由于当下降波形变得更长时(即坡度变缓)能被精确地控制减少的壁电荷,从而延长下降波的时间对寻址有益处。
根据施加下降波形于M电极的结果,在所有单元各自的电极上积累的壁电荷被一致地清除,因此如图9C所示,正壁电荷被积累到地址电极,负壁电荷被积累到X、Y和M电极。
(2)寻址周期(扫描周期)
在寻址周期中,当多个M电极偏置为Vsc电压时,扫描电压(例如0V接地电压)被依次的施加于M电极从而施加扫描脉冲,并且地址电压施加于地址电极从而将地址电压施加于待放电的单元(即接通单元)。X电极保持在接地电压,Y电极施加Vye电压,也就是说大于X电极电压的电压被施加于Y电极。
放电发生在M电极和地址电极之间,且放电被延伸到X和Y电极,因此如图9D所示,正壁电荷积累到X和M电极,负壁电荷被积累到Y和地址电极。
(3)保持放电周期
在保持放电周期中,当M电极偏置为保持放电电压Vm时,保持放电电压脉冲交替的施加于X和Y电极,通过上述提到的电压在寻址周期内所选择的放电单元中产生保持放电。
在初始保持放电和正常时间内通过不同的放电机械产生放电,为了描述简单,初始保持放电时产生的放电称之为短间隙放电周期,正常时间的放电称为长间隙放电周期。
(3-1)短间隙放电周期
如图9E的(a)和(b)部分所示,正电压脉冲施加于X电极,负电压脉冲施加于Y电极(对于比较施加于X和Y电极的电压强度,正和负信号是相对概念,施加于X电极的正脉冲表示施加于X电极的电压大于施加于Y电极的电压),在保持放电的起始周期将正电压脉冲一致地施加于M电极,因此与常规情况中X电极和Y电极之间产生的放电不同、放电产生在X电极/M电极与Y电极之间。尤其,由于M和Y电极之间的距离小于X和Y电极之间的距离,从而M和Y电极之间施加的电场变大。因此相较于X和Y电极之间的放电,M和Y电极之间的放电处于主导地位。如上所述,具有相对较短距离的M和Y电极在早期的保持放电周期中处于主导地位,因此称之为短间隙放电。
因此,当在寻址周期后施加第一保持脉冲时在放电单元内不能产生足够的初始粒子时,由于产生了通过施加相对较高的电场,在早期保持放电阶段进行的短间隙放电,从而实施了充分放电。
(3-2)长间隙放电周期
因为在施加保持放电的第一保持脉冲后M电极的电压被偏置为恒定电压VM,M和X电极之间或M和Y电极之间的放电(即短间隙放电)处于次要地位,X和Y电极之间的放电变为主要放电,根据交替施加于X和Y电极的放电脉冲的数量来显示输入的图像。
也就是说如图9E中(d)部分所示,在正常的保持放电周期,负壁电荷不断的积累到M电极,负壁电荷和正壁电荷交替地积累到X和Y电极。
因为在早期保持放电阶段,放电由X和M电极之间(或Y和M电极之间)的短间隙放电执行,因此当初始粒子较少时实施了充分的放电,又由于在正常状态中放电由X和Y电极之间的长间隙放电执行,因此实施稳定的放电过程。
另外,因为施加于X和Y电极的波形实质是对称电压波形,驱动X和Y电极的电路实际上以相同的方式设计,因此由于实际上已消除了X和Y电极之间电路阻抗的差别,从而在保持放电周期施加于X和Y电极的脉冲波形的变形被减小了,并提供了稳定的放电过程。
根据图8所示的第一实施例,X和Y电极的相反波形能被驱动,另外X和Y电极的相反波形能在寻址周期被驱动。
根据第一示例性实施例的驱动方法,复位波形和扫描脉冲波形主要施加到M电极,保持放电电压波形主要施加到X和Y电极,在该情况下,各种不同类型的复位波形以及图8中所示的复位波形能被施加到M电极。
在这种情况下,根据本发明示例性实施例,当将不同类型的复位波形施加到四电极结构时应当满足下面四个条件:
第一,在上升复位波形周期,确立施加到M电极的电压波形Rm(v)大于施加到X电极的电压波形Rx(v)或施加到Y电极的电压波形Ry(v)(Rm(v)>(Rx(v)或Ry(v)))。
第二,在下降复位波形周期,确立施加到M电极的电压波形Fm(v)小于施加到X电极的电压波形Fx(v)或施加到Y电极的电压波形Fy(v)(Fm(v)<(Fx(v)或Fy(v)))。
第三,在寻址周期,确立施加到M电极的电压波形Am(v)小于施加到X电极的电压波形Ax(v)或施加到Y电极的电压波形Ay(v)(Am(v)<(Ax(v)或Ay(v)))。
第四,在保持放电周期,确立施加到M电极的电压波形Sm(v)大于施加到X电极的电压波形Sx(v)或施加到Y电极的电压波形Sy(v),(Sm(v)>(Sx(v)或Sy(v)));另外在保持放电周期中施加到M电极的电压波形Sm(v)大于在寻址周期中施加到M电极的电压波形Am(v)(Sm(v)>Am(v))。
图10示出根据本发明示例性实施例等离子显示器示意图。等离子显示器包括等离子显示板100、寻址驱动器200、Y电极驱动器300、X电极驱动器400、M电极驱动器500和控制器600。
等离子显示板100包括纵向排列的多个地址电极A1到Am,横向排列的多个Y电极Y1到Yn、X电极X1到Xn以及Mij电极。Mij电极表示形成于Yi电极和Xj电极之间的电极。
寻址驱动器200从控制器600接收地址驱动控制信号SA,并向各自的地址电极施加用于选择将要显示的放电单元的显示数据信号。
Y电极驱动器300从控制器600接收Y电极驱动信号SY,并将图8所示的波形施加到Y电极。
X电极驱动器400从控制器600接收X电极驱动信号SX,并将图8所示的波形施加到X电极。
M电极从控制器500从控制器600接收M电极驱动信号SM,并将图8所示的相应波形施加到M电极。
控制器600接收外部视频信号、产生地址驱动控制信号SA、Y电极驱动信号SY、X电极驱动信号SX和M电极驱动信号SM。
图11根据本发明第一示例性实施例示出柔性印刷电路(FPC)的示例,图12根据本发明第一示例性实施例示出驱动等离子显示器的电路设置图。在本发明第一示例性实施例中,X和M电极与独立的M&X电极FPC300连接,M&X电极FPC300与基底110和120结合一起形成的X1,X2…和M1,M2…电极相连。
如图12所示,根据第一示例性实施例,缓冲器510、M电极驱动器520、X电极驱动器530、逻辑单元540、图像处理器550、电源供给器560、Y电极驱动器570和寻址驱动器580安装于底板500上。
连接于M&X电极FPC300的缓冲器510顺电路分开M和X电极,由于被本领域技术人员熟知,因此将不提供缓冲器510结构的描述。
被缓冲器510分开的信号线连接于M电极驱动器520和X电极驱动器530。
M电极驱动器520、X电极驱动器530、Y电极驱动器570和寻址驱动器580用于施加图8中示出的驱动波形。逻辑单元540、图像处理器550和电源供给器560被广泛的用于等离子显示器,由于它们被技术人员熟知,因此不提供相应的说明。
由于M和X电极同时连接FPC300,因此在第一示例性实施例中FPC电路可能较复杂,另外因为两电极通过独立的FPC连接,因此需要顺电路区分两电极的缓冲器,从而增加了所需的驱动器数量。
图13和14是根据本发明第二和第三实施例的驱动波形图。在保持放电周期,当X电极被偏置为接地电压时,接地电压(0V)和电压Vs交替地施加到M电极;当接地电压施加到M电极时,-Vs电压施加到Y电极;当Vs电压施加到M电极时,Vs电压施加到Y电极。
可以理解,当附图13的波形施加到X、Y和M电极时,在保持放电周期,X和Y电极之间、X和M电极之间以及Y和M电极之间的电压波形将对应于图8所示的波形。即,如果应用图13的波形,则以与图8所示的波形相同的方式执行保持放电过程,应用图13所示波形的情形不再需要驱动Y电极的电路,因为Y电极被偏置为接地电压。
参考图14,X和Y电极的波形对应于图13所示的波形,除了M电极在保持放电周期处于浮置状态。
当M电极被浮置时,由于保持X和Y电极的电压均值,M电极具有与图13所示的相同的波形,因此当在保持放电周期内将图14所示的波形施加到X、Y和M电极时,在保持放电周期内,X和Y电极之间、X和M电极之间以及Y和M电极之间的电压波形基本上对应于图8的波形。
因此当应用图14的波形时驱动Y电极不需要附加电路,因为在保持放电周期要求浮置M电极,因此M电极驱动器的电路结构将变得更加简单。
图15根据本发明第二和第三示例性实施例示出FPC,图16根据本发明第二和第三示例性实施例示出等离子显示器的电路设置图。
参考图15,M电极连接到FPC130上,X电极在平板上连接于公共连接线120并接地,根据本发明第二和第三示例性实施例中FPC的结构比图11所示的FPC的结构简单。
例如,SD等级(SD-level)等离子显示器所需要连接包括480条M电极线的和240条X电极线的720条电极线的FPC,根据图11所示的第一示例性实施例,该X电极的线数是M电极的线数的一半。根据图15所示的第二和第三示例性实施例,相同的SD等级(SD-level)等离子显示器所需要连接480条M电极线的FPC,从而允许更简单的FPC结构。
另外,根据图11所示的第一示例性实施例,因为HD等级(HD-level)等离子显示器需要包括768条M电极线和384条X电极线的1152条电极线,很难将连接M和X电极的FPC排列在平板的一侧,因此FPC设置为覆盖在平板的两侧。
然而在第二和第三示例性实施例中,由于HD等级(HD-level)等离子显示器需要连接768条M电极线的FPC,因此FPC可布置在平板的一侧。
参考图16,M电极驱动器1100、Y电极驱动器1500、逻辑单元1200、图像处理器1300和电源供给器安装于底板1000上。
如图16所示,由于X电极公共接地,因而驱动X电极不需要附加的驱动器,根据本发明第二和第三示例性实施例,由于FPC130连接于M电极,因此不再需要图12中所示的缓冲器51。
图17根据本发明第二和第三实施例示出驱动Y电极的电路图。
Y电极驱动电路包括能量恢复单元320、保持放电电压发生器340和保持放电电压供给器360。
保持放电电压发生器340包括串联于电源供给电压Vs和接地电压之间的晶体管Ys和Yg;具有连接于晶体管Ys和Yg之间节点的第一端a1的电容C1;具有正极连接于电容C1的第二端a2和负极连接于接地电压之间的二极管D1。
保持放电电压发生器340接通晶体管Ys、关闭晶体管Yg,以电压Vs为电容C1充电,从电容C1的第一端a1输出电压Vs,并从电容C1的第二端a2输出电压-Vs。
更详细的,保持放电电压发生器340关闭晶体管Ys和Yg,给电容C1的第二端a2提供接地电压,从而输出电压Vs到电容C1的第一端a1。同样,保持放电电压发生器340关闭晶体管Ys并接通晶体管Yg,给电容C1的第一端a1提供接地电压,从而输出电压-Vs到电容C1的第二端a2。
保持放电电压供给器360包括串联于电容C1第一端a1和第二端a2的晶体管Yh和Ye,还可包括具有正极连接于电容C1第一端a1、负极连接于晶体管Yh的二极管D2。晶体管Yh和Ye之间的节点连接于平板电容Cp的Y电极,在这种情况下,平板电容等价于X电极和Y(或M)电极之间的电容值。
保持放电电压供给器360通过晶体管Yh提供保持放电电压发生器340产生的电压Vs到Y电极,并通过晶体管Ye提供保持放电电压发生器340产生的电压-Vs到Y电极。
能量恢复单元320包括具有第一端连接于平板电容的Y电极的电感L、并联于电感L的第二端和接地点之间的晶体管Yr和Yf,还可能包括具有正极连接于晶体管Yr、负极连接于电感L的第二端的二极管D3,以及具有正极连接于电感L的第二端、负极连接于晶体管Yf的二极管D4。
能量恢复单元320利用LC振荡将平板电容Y端的电压增加到电压Vs,并将其该电压减小到-Vs,因为被本领域技术人员熟知,因此不详细描述能量恢复单元320的操作。
根据本发明的第二和第三实施例,X电极已被接地,且放电电压脉冲已被施加到Y电极,另外,Y电极也能被接地,且放电电压脉冲也能被施加到X电极。
如上所述,由于利用中间电极执行第一保持放电的复位过程,从而防止了差的放电的发生。
另外由于X和Y电极接地来驱动等离子显示器,因此简化了电路结构。
尽管通过结合目前认为是可使用的实施例对本发明进行了描述,可以理解本发明并不限于已公开的实施例,而是与此相反,试图覆盖在所附权利要求书的范围和实质内所包括的各种修改和等同物。