复合多孔纤维结构材料的制造方法 本发明要求1997年8月8日提交的美国临时申请60/055,227号和1997年11月14日提交的美国临时申请60/065,571号的优先权。
本发明涉及复合结构材料的制造,更具体地说,涉及由材料的纤维网络结构构成的多孔性产品的制造。
美国专利5,304,330;5,080,962;5,102,745和5,096,663公开了由材料的纤维网络结构构成的多孔复合材料的制造方法。按照这种制造方法,其中提供了一种混合物,该混合物包含用于制成多孔复合物的纤维和一种起粘结剂作用的结构生成剂(具体地说是一种纤维素材料),该混合物系分散于适当液体中的。在预制成所需形状后,将液体除掉并将该复合物加热到某一温度以使纤维在接触点处产生熔结,从而制成由纤维的三维网络结构构成的一种多孔复合材料。结构形成剂,尤其是纤维素材料是在熔结加工中被除掉的,也可以在熔结加工完成之后被除掉。
本发明涉及一种由材料的纤维网络结构构成的多孔复合材料的制造方法,其中所说的结构形成剂或粘结剂是在纤维的接触点处产生熔结作用之前被气化的。
在熔结之前所进行的气化作用,目的在于使至少50%、优选地为至少70%、更优选的为至少90%的结构形成剂或粘接剂产生气化。在许多情况下,至少95%、甚至99%以上的粘结剂能在熔结之前产生气化。
粘接剂或结构形成剂可包括聚合物纤维或纤维素纤维,例如可以采取加热的方法,即将纤维网络结构加热至低于纤维网络结构熔结温度的气化温度条件下使其产生气化作用。所采用的温度部分取决于所说的粘结剂、纤维网络结构的熔结温度以及需要除掉的粘结剂量。
粘结剂的气化可以在各种气体氛围中进行,且可以使用也可以不使用催化剂,如果必要,还可以采取一系列不同的预处理措施。因此,气化作用可以在惰性气氛中,在存在蒸气或不存在蒸气及使用或不使用催化剂的条件下进行;或者可以在存在氧气或基本上惰性气体的氧气中及使用或不使用催化剂的条件下进行;也可以在氢气存在下及使用或不使用催化剂的条件下进行;还可以采用任意数目的或连续的预处理步骤,在氢气和蒸汽混合物的存在下及使用或不使用催化剂条件下,或在氧气和蒸汽存在下及使用或不使用催化剂条件下进行。
若在低于熔结温度的温度条件下的气化不能基本上完全除掉粘结剂的情况下,残余的粘结剂可在熔结温度下除掉。熔结温度的选择取决于所用的金属或合金、金属纤维的直径、熔结时间以及最终金属纤维毡结构所要求的物理性能、或者复合材料结构的物理性能以及由其它纤维或无机颗粒料构成的复合材料结构的性能。
如果使用催化剂,则该催化剂应是一种能使粘结剂或结构形成剂在低于形成复合物的纤维熔结温度的温度下产生气化作用的催化剂。如上所述,按照一种优选的实施方案,粘结剂或结构形成剂是聚合物纤维或纤维素材料。按照这样的优选实施方案,用于使纤维素材料在低于所说熔结温度下产生气化的催化剂可以是一种或多种如下所述的氧化物或金属催化剂,以及它们的组合物。举例来说,氧化物催化剂可以是氢氧化钾、氧化钒、氢氧化钙、氧化铼、氧化钌。金属催化剂可以是如下的一种或多种催化剂:铂、钯、钌、铑、镍等。这些催化剂以及其它催化剂,对于本领域的技术人员来说,从本文的叙述中应该是能看清楚。如果使用催化剂的话,可将其作为粘结剂的组成部分,也可在预成形中加入。
在使用蒸汽的情况下,可以采取从外部导入蒸汽的方法,也可以例如通过使存在于复合物内的残留水分或通过“润湿”复合物而得到的水份经就地产生蒸汽的方法。通常,蒸汽的加入量为0.05~97体积百分数。
气化可在低于400℃的温度下、而更常在低于350℃的温度下进行。
在另一实施方案中,粘结剂的气化可以采用产生游离基的方法,例如采用等离子体来产生这种游离基。
在预成型包括可被氧化的金属且这种氧化作用是不易逆转的情况下,气化作用最好是在减压气氛中进行。
如上所述,优选的粘结剂或结构形成剂是一种纤维素材料,它可以是纤维素或纤维素衍生物。
如上所指出,用以制造由纤维网络结构构成的多孔复合材料的工艺和材料在前述的若干美国专利中已有叙述。正如本文所述,用于制造所说复合材料的纤维可以是金属的和/或碳的和/或陶瓷的。在制造这样一种复合材料时,纤维可以由一种或几种金属所制成,以及可以由一种或几种金属所组成,同时还包括碳和/或陶瓷纤维。
在本发明的实践中,可以使用的金属纤维的说明性实例但又不限于此的有:铝、钛、钒、铬、铁、钴、镍、铜、锌、锆、铌、钼、钌、铑、钯、银、镉、铟、锡、铪、钽、钨、铼、锇、铂、金、锑、铍、铱、硅、镁、锰、镓以及它们的混合物。在本发明的实践中也可使用金属合金,其例子有康铜、镍基合金、镍铬合金、铬镍铁合金、蒙乃尔镍铜锰铁合金、镍铬合金钢和各种钢、尤其是不锈钢以及其它合金。应能理解,在金属纤维的选择上存在着巨大的灵活性,这为本发明增添了吸引力。
所说纤维的直径可在很宽的范围内变动。因此,例如纤维直径可细至约0.5μm,也可粗达25μm或25μm以上。对纤维直径的选择,本领域技术人员可从本文的叙述中获悉。
在制造所说复合材料的过程中,含纤维和结构形成剂的分散体还可包含夹带于该复合材料筛网状结构缝隙中的颗粒物。在一种优选的实施方案中,这类颗粒物可以是一种催化剂、催化剂载体、催化剂前体物或一种载体型催化剂或一种载体型催化剂前体物。当在所说分散体中包含这类颗粒物时,该颗粒物是嵌入在筛网结构的缝隙中的。
纤维和其它组分(若存在的话)是通过任何合适方法分散在液体中的。虽然分散是否均匀并非实质性的,但是,通常要求分散均匀。可以采用诸如超声法、搅拌法、球磨法以及其它等方法进行分散。使用液体的目的仅在于促进固体的有效分散,尤其是想要使最终预制品的均匀性易于达到与分散体的均匀性相一致的情况下更是如此。通常,所采用的液体不应与分散体中的其它组分发生反应,但是,会面临一些特殊情况,即可以将所说介质的功能上所需要的反应性质与介质的流体性质有利地结合起来。因为液体随后是要被除掉的,所以显而易见,液体应能通过例如蒸发的方法易于除掉。虽然水通常是十分合适的液体。但是却可使用水-醇混合物、尤其是水-乙二醇混合物。其它液体的说明性例子包括甲醇、乙醇、丙醇、乙二醇、丙二醇、丁二醇、聚乙二醇类、聚丙二醇类以及其它醇类。其它有机液体也可使用,但往往没有任何优越性。如有必要,液体中还可含有盐类,因为盐类在水中的溶解度大于在有机介质中的溶解度,这使得使用水作为介质大为有利。虽然上述液体的某些混合物用以调节所说分散体的粘度,以便使在筛网或过滤器上的过滤或沉积步骤能够为“湿”预制品提供某种程度的均匀性而不必考虑密度大小和作用于各种颗粒物上的拉力大小,但是仍然可以使用包括表面活性剂和分散剂在内的其它添加剂,以便促进混合过程,同时也有利于使预制品中的至少两种固体彼此结合。
所采用的结构形成剂应这样选择,即它们是可被蒸发或可被气化的,且这类结构形成剂优选的是至少90%能够被气化,更优选的是至少95%能够被气化,而还要更优选的是至少99%能够被气化;上述所有百分数均以重量计。
在本发明的实施中可以使用的结构形成剂包括纤维素,有机树脂如聚乙烯醇、聚氨酯和丁苯乳胶,热固性树脂如环氧树脂、脲醛树脂、蜜胺甲醛树脂,以及聚酰胺-多胺表氯醇树脂。纤维素,包括其各种形式和改性物,是理想的结构形成剂,因为在相对低的温度下纤维素能完全蒸发且几乎不生成灰份,同时还不会与预制品中的其它组分发生反应。
结构形成剂在预制品中的含量为约2~约90wt%。结构形成剂的最低用量是能制得稳定预制品所必需的用量,也就是说,这种稳定预制品可以加工、成型等;结构形成剂的用量多少取决于纤维的加入量、纤维的粗细等等。预制品中的结构形成剂的用量会影响最终复合材料的空隙体积,较高的结构形成剂含量会产生较高的空隙体积,因此,结构形成剂可作为控制这种性质的一个独立变量。在使用具有不同纤维细度的两种金属纤维的情况下,也可以采用控制较细纤维用量的办法来改变空隙体积和孔径大小。在预制品中纤维素的典型用量为约25~约60wt%。
在将纤维、任选组分和结构形成剂分散于液体中之后,将这些固体物铺集成毡状。过量的液体可以采用诸如挤压法除掉,同时常将所制得的固体分散体进行干燥(即:将液体除净),尤其是在对其进行深加工之前要将其贮存起来的情况下更要如此。
按照本发明,在制成预制品之后并在纤维接触点处进行熔结之前,要使结构形成剂或粘结剂产生气化。
在结构形成剂气化之后,要使纤维在其适当的接触点处产生熔结,这些接触点可以是全部的,也可以只是部分的接触点,以便制成所说的复合材料。将该复合材料加热至使形成筛网的材料发生熔结的温度时,纤维就会在接触点处发生熔结。熔结最好是在减压气氛条件下进行的;在进行熔结的过程中可以提供氢气。典型的熔结温度为至少600℃,而通常不要超过1200℃。
在某些情况下,在经过熔结处理后可将复合材料在氧气存在的高温条件下加热以除去气化过程中生成的碳或焦化物。
按照本发明方法制造的复合材料具有广泛的用途。用途之一是使用这种复合材料作为催化剂结构体,包括将催化剂涂载在纤维网上,或者将催化剂导入并保留于筛网状结构的缝隙中。
当将所说的复合材料用作催化剂结构体时,在该复合材料缝隙中保留有或纤维上涂载有催化剂颗粒的该复合材料的空隙体积应为至少45%,优选的为至少55%,更优选的为至少65%。通常,空隙体积不要超过99%,而在某些情况下不要超过90%或95%。本文中所使用的术语“空隙体积”是采用下述方法测定的,即将开放性(不含催化剂颗粒和构成筛网的材料)的筛网层体积除以筛网层总体积(含空隙、筛网材料和颗粒物)再乘以100。
在颗粒物裹夹在筛网结构缝隙中的情况下,颗粒的平均粒径通常不应大于300μm,最好不大于200μm,而在一个优选的实施方案中是不大于100μm的。通常,平均粒径为至少10μm,优选的为至少20μm,而在大多数情况下是大于50μm的。平均粒径例如可按ASTM 4464-85方法予以测定。
在一种优选的实施方案中,这类催化剂结构体是应用于固定床反应器中的。
本发明将引用如下实施例作进一步说明;但是,本发明的范围不因此而受到限制。
以下说明的特征在于,所采用的方法是预先将纤维素从复合材料中除掉的。
原材料镍和不锈钢纤维(Memtec公司)以收到的形式使用。
预制品制造按照TAPPI标准205,使用Noram设备制造纸质预制品。通常,在约10升的水中将金属纤维和纤维素纤维同时掺合一起并在50Hz下混合5分钟。将这种分散后的混合物铺集在1000cm2的方形薄板模具上,制成湿的复合材料预制品。将该湿预制品置于60℃的空气中干燥过夜。
从复合材料预制品中预先除去纤维素
将该干燥后的预制品通常切割成约200cm2的正方块片(14cm×14cm)并堆叠成由6~10单片预制品方块组成的叠层,每一预制品方块片之间用相同尺寸的由耐热不锈钢制成的筛网隔开。当要研究镍催化剂的作用时,在堆叠之前,将样品逐一用约7ml浓度为0.025wt%Ni(来源于硝酸镍)的水溶液浸湿。然后将样品置于一个总体积为约3立方英尺的高温炉(Grieve公司)中。在不同气体氛围条件下,通常是在5~50升/分气体流量(STP)和总压力为1个大气压以及250℃~500℃温度条件下完成预先除掉纤维素的处理步骤。
实施例1
按照上述方法,用12.0g的4μm镍纤维和8.0g的纤维素纤维分别制备若干复合材料预制品。简言之,将这些组分投入10升水中,在50Hz下搅拌5分钟,然后将该混合物沉积在一个1000cm2的薄板模具上制成湿的预制品。干燥过夜后,将该预制品切割成方块片并按上述方法将6片200cm2方块片堆叠起来。该6片预制品的初始总干重为22.06g。然后将这些预制品置于一个300℃下的Grieve炉中15分钟,在此期间以20SLPM(每分钟标准升)流量通入N2气流。然后从炉中取出该预制品并迅速称重。该预制品最后的总重量为15.70g。净失重为6.36g。以纤维素初始重量含量40%为基准计算,预制品中纤维素的初始重量为8.824g。因此,初始纤维素含量的72.1%已从该预制品中除掉了。
实施例2
按照上述方法,用12.0g的4μm镍纤维和8.0g的纤维素纤维分别制备若干复合材料预制品。简言之,将这些组分投入10升水中,在50Hz下搅拌5分钟,然后将该混合物沉积在一个1000cm2的薄板模具上制成湿的预制品。干燥过夜后,将该预制品切割成方块片并将6片200cm2的方块片各用7ml 0.025wt%Ni(来源于硝酸镍)浓度的水溶液浸湿。该6片预制品的初始总干重为23.31g。然后按上述方法将这些预制品堆叠起来。接着再将这些预制品(仍是湿的)置于400℃的Grieve炉中20分钟,在此期间以20SLPM(每分钟标准升)流量通入流经500ml水鼓泡而出的N2气流。然后从炉中取出该预制品并迅速称重。预制品的最后总重量为14.25g,净失重为9.06g。以纤维素初绐重量含量40%为基准计算,该预制品中纤维素的初始重量为9.32g。因此,97.2%的纤维素已从该预制品中除掉了。
本发明的特别优点在于,采用在低于纤维熔结温度的温度条件下除去粘结剂的方法,这样可以使熔结处理在较低的温度下进行。此外,如果在除掉粘结剂后再进行熔结处理,则可形成更好的熔结点。
根据以上所公开的内容,本发明可能有许多改进和变化,因此,在所附的权利要求范围内,本发明还可按照不同于上述具体实施例的方法进行实施。