静磁波器件 本发明涉及一种静磁波器件,比如静磁波共振器、静磁波过滤器等等。
静磁波器件包括由钇铁石榴石(YIG)或类似的材料形成的亚铁磁膜、是给亚铁磁膜辐射静磁波的电极的传感器以及给传感器馈送高频波信号的传输线。当将微波或准微波信号输送到传感器时,所得的电磁波在亚铁磁膜中转换为静磁波传播。由于静磁波的频率取决于所施加到亚铁磁膜的外部磁场的强度,所以通过控制所施加的磁场的强度可以将静磁波器件用作共振器或过滤器。
在JP-A10-75107和11-67540中,发明者提出了一种大小减小了并具有较好的功能的静磁波器件。附图1A和1B所示分别为在JP-A11-67540中所述的一种的静磁波器件的透视图和沿着附图1A中的B-B线的截面图。
这种静磁波器件包括用于激励并传播静磁波的亚铁磁膜1、安装在亚铁磁膜1的表面上的RF信号输送线2以及用于给亚铁磁膜1施加磁场的磁场发生器。该磁场发生器包括给亚铁磁膜1施加固定磁场的永磁体6、施加可变磁场的线圈7和一对彼此相对设置的磁扼4a和4b,在磁扼4a和4b之间设置用于容纳亚铁磁膜的气隙。该对磁扼4a和4b的一端彼此相对,永磁体6夹在它们之间,另一端彼此也彼此相对着,但在它们之间夹着非磁性的导电立柱91和92。即该对磁扼4a和4b彼此相对着,而同时在它们之间设置容纳有亚铁磁膜1的气隙。立柱91和92和永磁体6用作支撑部件。磁扼4a具有凸出部分41a和42a,磁扼4b具有凸出部分41b和42b。相对的突出部分41a和41b一起形成磁极对,而同时在它们之间形成有容纳亚铁磁膜1的气隙81。在突出部分41a和41b的整个表面上和至少在突出部分41a和41b的附近的磁扼的表面部分上形成有导电膜(未示)。相对的突出部分42a和42b一起形成磁极对并且在它们之间形成有气隙82,在该相对的突出部分42a和42b上绕有线圈绕组形成线圈7。在这种静磁波器件中,气隙81的长度La通常比永磁体6的高度更小;线圈7产生的磁通主要通过不经过永磁体6的磁通路,即,由气隙82-磁扼4a(突出部分42a-突出部分41a)-气隙81-磁扼4b(突出部分41b-突出部分42b)确定的磁路,因此永磁体6产生的固定磁场和线圈7产生的可变磁场都能够施加到亚铁磁膜1中。通过控制流经线圈7的电流量,因而能够通过增加或减少与固定磁场的强度相对应的频率来改变静磁波的共振频率。
应用这种静磁波器件,由于线圈7所产生的磁通几乎不通过永磁体6,所以可以降低通过可变磁场的磁通路的磁共振。因此能够降低形成该线圈的匝数,由此降低整个磁路的尺寸。此外,与具有同线圈串联的永磁体的装置相比能够使整个器件更小。更进一步,如果有许多气隙,在每个气隙中都容纳有亚铁磁膜,并且这些气隙都以不同的长度设置,然后在相应的气隙中对亚铁磁膜施加不同强度的磁场,以便应用不同的频率共振地激励相应的亚铁磁膜。例如,可以在以两个或更多个的离散频带振动的VOC中应用这种设置。
在所示的静磁波器件中的气隙81的长度La或气隙82的长度Lb的变化导致在容纳有亚铁磁膜1的气隙中的磁场强度的变化,而这种磁场强度的变化又使静磁波的共振频率产生变化。然而,即使在对这种静磁波器件施加了外力时,由于一对磁扼4a和4b是通过立柱91和92支撑着,间隙长度La和Lb的变化仍然极小。
在具有附图1A和1B中所示的结构的静磁波器件中,通过导电粘合层将立柱91和92的两端面都粘接到磁扼4a和4b的主表面上。然而,很难形成具有均匀厚度的导电粘合层。因此,即使当自磁扼的主表面形成磁极的每个突出部分的高度在公差范围内时,气隙的长度La和Lb也经常超出公差之外。因此,常常很难以较高的产品率生产具有给定的谐振频率的静磁波器件。
由于这种静磁波器件被设计成通过磁体6支撑一对磁扼,因此磁体6的厚度也能够影响在两磁扼之间的距离。然而,很难使立柱91和92的高度和磁体6的厚度同时在公差范围之内,因此气隙的长度可能不同。
由于静磁波器件的尺寸减小了,比如每个磁扼4a和4b具有大约10mm2的主表面大小和大约0.5mm的厚度,因此磁扼对偏斜和翘曲较敏感,结果气隙长度易受变化的影响。
在如上所述的常规静磁波器件中,将一对磁扼4a和4b连接在一起的立柱91和92每个都是由非磁性的导电材料形成的,以便防止在两磁扼之间通过立柱形成磁连接,两磁扼放在相同的电位以降低高频波信号损失。然而,当每个立柱都是由非磁性导电的金属比如黄铜或铜形成时,进一步增加具有沉重的部件比如磁扼、永磁体和线圈的静磁波器件的重量,这将导致另外一个问题,即不能满足用户所要求的降低电子部件的大小和减小重量的要求。可取的是立柱的电阻尽可能地低。然而,理想的是研制一种能够加大立柱的表面面积的装置以便在高频时降低电阻,因为高频电流仅流经立柱的表面附近,它们并不到达立柱的较深的部分。
这里可以理解的是当每个立柱91和92都是由轻的非导电材料比如陶瓷材料形成并在其表面形成有导电膜以使其具有导电性时,将可以降低任何所增加的重量。在这种情况下,能够加大立柱的表面面积的装置仍然很理想。
本发明的第一个目的是降低静磁波器件的性能的偏差,这种静磁波器件能够减小磁场发生器的大小而不会造成其性能波动。本发明的第二个目的是实现减小重量并且降低信号损失,而同时实现第一个发明目的。本发明的第三个发明目的是实现降低静磁波器件的制造成本,而同时可选择地实现第一个发明目的连同第二个发明目的。本发明的第四个发明目的是提供一种容易安装在电器设备和电子设备上的静磁波器件,而同时可选择地实现第一个发明目的以及第二个发明目的。
这些目的都可以通过如下具体示出的发明(1)至(19)实现。
(1)一种静磁波器件包括至少一种用于激励和传播静磁波的亚铁磁膜、用于给亚铁磁膜输送RF信号的RF信号输送线和给亚铁磁膜施加磁场的磁场发生器,所说的磁场发生器至少包括一个永磁体和与永磁体磁性地连接并彼此相对着的一对磁扼,在相对着的磁扼之间设置着容纳有亚铁磁膜的气隙,其中:
所说的一对磁扼通过由非磁性材料制成的至少一个立柱彼此相对着,通过将在任一个所说的磁扼和所说的立柱上形成的至少一个突出部分啮合在形成在另一个磁扼和立柱上的凹进部分中来将所说的立柱和所说的磁扼固定在一起。
(2)依据(1)的静磁波器件,其中通过粘合剂将所说的凹进部分的内周边表面固定在所说的突出部分的外周边表面。
(3)一种静磁波器件包括至少一种用于激励和传播静磁波的亚铁磁膜、用于给亚铁磁膜输送RF信号的RF信号输送线和给亚铁磁膜施加磁场的磁场发生器,所说的磁场发生器至少包括一个永磁体和与永磁体磁性连接并彼此相对着的一对磁扼,并且在相对着的磁扼之间设置着容纳有亚铁磁膜的气隙,其中:
所说的一对磁扼通过由非磁性材料制成的至少一个立柱彼此相对着,通过将杆部件啮合在形成在每个所说的立柱和所说的磁扼中的至少一个凹进部分中来将所说的立柱和所说的磁扼固定在一起。
(4)依据上述的(1)的静磁波器件,其中通过粘合剂将所说的凹进部分的内周边表面固定在所说的杆部件的外周边表面。
(5)依据上述(1)至(4)中任一静磁波器件,其中形成在所说的磁扼或所说的立柱中的所说的凹进部分是通孔。
(6)一种静磁波器件包括至少一种用于激励和传播静磁波的亚铁磁膜、用于给亚铁磁膜输送RF信号的RF信号输送线和给亚铁磁膜施加磁场的磁场发生器,所说的磁场发生器至少包括一个永磁体和与永磁体磁性连接并彼此相对着的一对磁扼,并且在相对着的磁扼之间设置着容纳亚铁磁膜的气隙,其中:
所说的一对磁扼通过由非磁性材料制成的至少一个立柱彼此相对着,所说的立柱形成有用于将在所说的磁扼的相应的主表面附近的两端面连接在一起的至少一个通孔,和
通过至少在所说的通孔中的粘合剂将所说的立柱和一对磁扼固定在一起。
(7)依据上述(6)所述的静磁波器件,其中至少所说的立柱的两端面和外部周边表面以及所说的通孔的内部周边表面都具有导电性。
(8)依据上述(1)至(7)中所述的任一静磁波器件,其中:
所说的一对磁扼中每个都包括磁扼体和至少一个自该磁扼朝另一个磁扼延伸的突出部分,并且每个突出部分与相对着的另一个磁扼的表面部分形成一个磁极对,并且在它们之间形成有气隙,和
所说的亚铁磁膜设置在跨过至少一个磁极对的气隙中。
(9)依据上述(8)所述的静磁波器件,其中线圈绕组绕在至少一个所说的磁极对上的所说的突出部分上。
(10)依据上述(1)至(9)任一所述的静磁波器件,其中:
在所说的一对磁扼中的至少一个磁扼上固定地形成有至少一个绝缘部件,
在至少一个绝缘部件的表面上形成有信号导体型板(conductorpattern),该信号导体型板与所说的一对磁扼电绝缘,但电连接到所说的RF信号馈送线,和
当安装在互连的基片的表面上时,所说的信号导体型板电连接到所说的互连基片上。
(11)依据上述(10)所说的静磁波器件,其中:
所说的磁场发生器包括用于给所说的亚铁磁膜施加可变化的磁场的线圈,
在至少一个所说的绝缘部件的表面上包括所说的线圈导体型板,所说的线圈导体型板与所说的信号导体型板电绝缘,但电连接到所说的线圈的引线,和
当安装在互连的基片的表面上时,所说的线圈导体型板电连接到所说的互连基片上。
(12)依据上述(11)的静磁波器件,进一步包括具有传输线的互连基片和用于给所说的线圈施加可变化的电流的线圈控制电路,
至少所说的静磁波器件之外的所说的线圈控制电路和所说的绝缘部件固定在所说的互连基片上,和
通过所说的传输线将所说的线圈的所说的导体型板和所说的线圈控制电路电连接在一起。
(13)依据上述(10)至(12)所述的任一静磁波器件,进一步包括具有传输线的互连基片和用于给所说的亚铁磁膜施加高频信号的高频电路,
至少所说的静磁波器件之外的所说的高频电路和所说的绝缘部件固定在所说的互连基片上,和
通过所说的传输线将所说的线圈的所说的导体型板和所说的高频电路电连接在一起。
(14)依据上述(1)至(9)所述的任一静磁波器件,其中:
所说的磁场发生器包括用于给所说的亚铁磁膜施加可变化的磁场的线圈,
至少一绝缘部件固定地形成在所说的一对磁扼的至少一个磁扼上,
在至少一个绝缘部件的表面上形成有所说的线圈导体型板,该线圈导体型板与所说的一对磁扼电绝缘但电连接到所说的线圈的引线,和
当安装在互连的基片的表面上时,所说的线圈导体型板电连接到所说的互连基片上。
(15)依据上述(14)所述的静磁波器件,进一步包括具有传输线的互连基片和用于给所说的线圈施加可变电流的线圈控制电路,
至少所说的静磁波器件之外的所说的线圈控制电路和所说的绝缘部件固定在所说的互连基片上,和
通过所说的传输线将所说的线圈控制电路和所说的线圈的导体型板电连接在一起。
(16)依据上述(10)至(15)所述的任一静磁波器件,其中:
在至少一个所说的绝缘部件的表面上的接地导体型板与在另一个绝缘部件的表面上的另一个导体型板绝缘,但电连接到所说的一对磁扼的至少一个磁扼上,和
当安装在互连的基片的表面上时,所说的接地导体型板电连接到所说的互连基片上。
(17)依据上述(10)至(16)所述的任一静磁波器件,其中:
在至少一个所说的绝缘部件的表面上的屏蔽导体型板与在另一个绝缘部件的表面上的另一个导体型板电绝缘,和
当安装在互连的基片的表面上时,所说的屏蔽导体型板电连接到所说的互连基片上。
(18)依据上述(1)至(17)所述的任一静磁波器件,其中以这样的方式形成一个立柱:包围所说的亚铁磁膜和所说的线圈并且在所说的立柱中存在至少一个开口。
(19)依据上述(1)至(18)所述的任一静磁波器件,其中通过所说的立柱将所说的一对磁扼电连接到一起。
附图1A所示为依据本发明的静磁波器件的一个实施例的透视图,和附图1B所示为沿着附图1A中所描述的静磁波器件的线B-B的垂直剖面视图。
附图2A、2B和2C所示为第一方面的静磁波器件的部分截面图。
附图3A和3B所示为静磁波器件的第一实施例的部分截面图。
附图4A和4B所示为第一方面的静磁波器件的部分截面图。
附图5所示为第一方面的静磁波器件分解透视图。
附图6A和6B所示为第二方面的静磁波器件的部分截面图。
附图7所示为第二方面的静磁波器件分解图。
附图8A所示为第三方面的静磁波器件的一个实施例的透视图,和附图8B所示为沿着附图8A中所描述的静磁波器件的线B-B的垂直剖面视图。
附图9A所示为应用在第三方面中的磁扼的一个实施例的透视图,和附图9B所示为另一个磁扼的一个实施例的透视图。
附图10A所示为第四方面的静磁波器件的一个实施例的透视图,和附图10B所示为沿着在附图10A中的静磁波器件的线B-B的垂直剖面视图。
附图11所示为第四方面的静磁波器件的一个实施例的分解透视图。
附图12所示为第四方面的静磁波器件的另一个实施例的分解透视图。
附图13所示为第四方面的静磁波器件的再一个实施例的分解透视图。
附图1A所示为应用本发明的静磁波器件的一个实施例的透视图。在附图1B中所示为包含在附图1A中的线B-B的垂直剖面视图,其中除了在它的深度方向部分外仅示出了该装置的一个端面。具有这种外部特征类型的静磁波器件例如公开在如前序中所引用的JP-A11-67540中。
本发明的第一方面的特征在应用立柱91和92将磁扼4a和4b固定在一起的装置。在本发明的第一方面中包含了第一和第二实施例。
附图2A、2B和2C和附图3A和3B都是第一实施例的剖面视图,附图4A和4B所示为第二实施例的剖面视图。在这些视图中,示出了沿着经过立柱92的平面截取的附图1A所示的静磁波器件的一部分。
首先,说明本发明的第一实施例。在静磁波器件的第一实施例中,一对磁扼彼此相对,在它们之间设置有由非磁性材料制成的至少一立柱。通过形成在每个磁扼和立柱上的至少一个突出部分啮合在形成在另一个立柱和磁扼上的一个凹进部分来将磁扼与立柱固定在一起。
在附图2A和2B中,在立柱92的两端面上形成有突出部分11a和11b,在磁扼4a和4b的相对的主表面上形成有凹进部分12a和12b。因此,通过将突出部分11a啮合进凹进部分12a和将突出部分11b啮合进凹进部分12b中磁扼4a和4b与立柱92连接在一起。在附图2A所示的情况中形成在磁扼4a和4b中的凹进部分12a和12b并不延伸穿过磁扼体,但是在附图2B所示的情况中延伸穿过磁扼体。如果凹进部分为通孔的形式,则可以降低磁扼4a和4b的重量,由此降低了静磁波器件的重量。在任一实施例,通过将突出部分啮合进该凹进部分中来将磁扼和立柱固定在一起,而不需要在立柱的两端面和磁扼的主表面之间提供任何粘合剂。换句话说,从根本上可以避免由于应用粘合剂层的厚度的变化引起的性能的变化,从而提高静磁波器件的产率。
在附图2A中,突出部分11a和11b的高度比凹进部分12a和12b的深度更小。由于在一对磁扼4a和4b之间的距离仅由立柱92的高度确定,所以应用这种结构不需要严格控制突出部分11a和11b的高度,由此降低生产成本。
与上述相同的方式通过将突出部分精确地啮合进凹进部分中来相对于磁扼固定另一个立柱91。在下文中将应用这种方式。
在附图2C中,除了在突出部分11a和11b的外周边和凹进部分12a和12b的内周边之间的间隙中施加有粘合剂13外,与附图2B一样地将磁扼和立柱固定在一起。依据这种结构设置,通过粘合剂13能够更牢固地将立柱固定到磁扼。此外,由于在立柱92的两端面和磁扼4a和4b的主表面之间没有任何粘合剂,在一对磁扼4a和4b之间的距离仅由立柱92的高度确定,因此,该距离同样地不受所应用的粘合剂的厚度的变化的影响。这里需注意的是,一部分粘合剂13经常进入到磁扼4a和4b的主表面和立柱92的两端面之间;然而,由于在磁扼4a和4b之间的距离几乎不改变,因此这种少量的粘合剂几乎不影响或根本不影响静磁波器件的性能。在附图2A所示的实施例中,如果需要的话,在突出部分11a和11b的外部周边和凹进部分12a和12b的内部周边之间也可施加粘合剂。当至少每个立柱91和92的表面部分都由下文将要描述的导电材料形成时,可取的是应用导电粘合剂作为粘合剂13。例如可以应用焊糊作为导电粘合剂。
在附图3A和3B中,凹进部分12a和2b形成在立柱92的两端面中,而同时突出部分11a和11b都形成在磁扼4a和4b的主表面上。在附图3A所示的情况下形成在立柱92中的凹进部分12a和12b并不延伸穿过立柱92,但在附图3B所示的情况下延伸穿过立柱92。在任一实施例中,由于不需要应用任何粘合剂来将立柱和磁扼固定在一起,所以能够提高静磁波器件产率。
在附图3A和3B中,如果需要的话,在突出部分11a和11b的外部周边和凹进部分12a和12b的内部周边之间填充有粘合剂。
接着,解释本发明的第一方面的第二实施例。在静磁波器件的第二实施例中,提高将杆部件啮合在形成在每个立柱和磁扼中的至少一个凹进部分中来将立柱和磁扼固定在一起。
在附图4A中,凹进部分121a和121b都形成在立柱92的两端面中,并且凹进部分122a和122b都形成在磁扼4a和4b的主表面中。通过将杆部件14a啮合在凹进部分121a和122a中和将杆部件14b啮合在凹进部分121b和122b中来将立柱和磁扼固定在一起。在附图4B中,凹进部分121以通孔的形式穿过立柱92。通过插入杆部件14并穿过磁扼4a、4b和立柱92,立柱和磁扼固定在一起。在任一实施例中,由于不需要应用任何粘合剂来将立柱和磁扼固定在一起,所以能够提高静磁波器件的产量。
在附图4A和4B中,如果需要的话,在杆部件的外部周边和凹进部分的内部周边之间应用粘合剂。
在前述的每个实施例中,一个突出部分或凹进部分形成在每个立柱的每个端面上或形成在每个立柱的每个端面中,可以理解的是每个端面可以具有许多突出部分或凹进部分,这些突出部分或凹进部分与杆部件相配合以将立柱和磁扼固定在一起。可替换的是,可以将在所参考的附图所示的两个实施例相组合起来。例如,立柱可以形成有突出部分和凹进部分,而同时磁扼形成有相对应的凹进部分和突出部分。
立柱91和92并不将一对磁扼4a和4b磁性地连接在一起;可取的是通过立柱91和92将磁扼4a和4b电连接在一起。如果通过立柱91和92将磁扼4a和4b电连接在一起,则两磁扼在亚铁磁膜1的附近的部分可以基本在相同的电势,以便可以降低自RF信号输送线2转移至具有相对较高的电阻率的磁扼的电磁波的损失。
当将两磁扼电连接在一起时,可取的是整个立柱都由非磁性的导电材料比如黄铜和铜形成。应用在其表面上形成有导电膜的非磁性的、非导电的基片材料(比如陶瓷或树脂)也是可取的。如果立柱由陶瓷或树脂形成,则与金属的立柱相比可以更多地降低重量。在这种情况下,为在立柱的两端面之间形成电连接,应该在每个立柱的两个端面上以及至少在它的一部分侧面(可取的是整个侧面)上形成导体膜。此外,也可以应用在其表面形成有导体膜的导电基片材料,所说的导体膜的电阻率比所说的基片材料的电阻率更低。
可取的是这里所应用的导体膜由Ag、Au、Al或Cu制成。然而,也可以应用包含这些金属中的至少一种金属的合金。这里需指出的是导体膜可以是单层类型的,也可以是多层类型的。可取的是但不是唯一的,导体膜通常通过蒸发或电镀法形成。由于高频电流仅流过膜的表面部分,所以导体膜的厚度应该为2至15μm。
可以理解的是当在立柱91和92中的每个凹进部分都为通孔的形式,也可以将导体膜形成在它的内部周边上。比较有利的是将一对磁扼4a和4b的靠近亚铁磁膜1的部分放在相同的电势上,因为这样在两磁扼之间的电阻变得很低。当应用如附图4A和4B中所示的杆部件14、14a和14b时,由于类似的原因,可取的是通过这些杆部件使在磁扼和立柱之间建立电连接。在这种情况下,每个杆部件本身由导电材料形成,或者可替换的是每个杆部件至少在其外部周边上形成有导体膜,参考对立柱的解释。
可取的是,在磁扼4a和4b的每个表面上都形成有导体膜。通过将导电立柱91和92电连接到形成在磁扼的表面上的导体膜,可以将彼此相对的一对磁极放在相同的电势,在彼此相对的一对磁极之间具有气隙81,由于能够防止电磁波自RF信号输送线2进入到具有相对较高的电阻率的磁扼4a和4b中,因此能够降低电磁波的损失。每个导体膜的材料、厚度等以及如何形成它都与所解释的每个立柱的材料、厚度以及形成方法类似。例如,当所应用的导体是由Au或Cu形成时,对于10GHz或更高的电磁波能够进入导体的深度的计算值大约为0.65μm或更小,对于700MHz或更高的准微波该值大约为3μm或更小。预期值为上述计算值的3至5倍,因此,导体膜的可取厚度为上述已经提到的2至15μm的范围。例如,在突出部分41b的表面上形成的导体膜可以用作接地的导体。导体膜可以是单层型膜或多层型膜。并不总是需要在每个磁扼的整个表面上形成这种导体膜,但是至少应该在磁极的表面上(在所示的实施例中的突出部分41a和41b)和其附近形成这种导体膜。
在附图1A所示的实施例中,两圆柱形的立柱91和92每个设置在突出部分41a和41b的附近,以便它们夹在突出部分之间。因此,这个实施例的结构确保具有较高的机械强度,因此气隙长度La更不容易受到外部压力变化的影响。然而,需指出的是立柱的数量并不限定于两个;也可以是一个或三个立柱。立柱的截面不仅可以是圆形,还可以是椭圆形、多边形、方形或其它的形状。例如,可以将立柱构造成不仅包围亚铁磁膜1而且还包围线圈7甚至永磁体6。
附图5所示为包括立柱9的静磁波器件的一个实施例,将该立柱9构造成包围亚铁磁膜1和线圈7。在这个实施例中,通过应用在附图3B中所示的结构将一对磁扼4a和4b和立柱9固定在一起。在这种实施例中由于立柱9支撑着一对磁扼4a和4b的相对的主表面的几乎所有部分,因此即使在磁扼4a和4b减薄了也能够减少由磁扼4a和4b的偏移或翘曲引起的气隙长度La和Lb的变化。在这种情况下,如果稍稍减小磁体6的厚度以使仅通过立柱9支撑着一对磁扼4a和4b,即,只允许立柱9起磁扼隔板的作用,则仅要求对立柱9进行厚度控制,因为气隙长度La和Lb无论如何不受磁体6的厚度的影响。在附图5中,立柱9与磁扼4a和4b的接触面积很大,以致应用彼此相互平行的相对表面很容易将磁扼固定在适当的位置,结果降低了由装配误差引起的性能变化,因此能够提高产量并降低生产成本。这里可以理解的是即使当立柱构造成不仅包围了线圈7而且还包围了永磁体6,类似的效果也是可以实现的,甚至当将在附图5中所示的立柱9分成许多段时,即,甚至当设置许多立柱以支撑着一对磁扼的相对主表面的几乎所有部分时,仍然可以实现类似的效果。
当应用被构造成包围亚铁磁膜1的立柱时,形成一开口比如凹口或通孔,电源线穿过该通孔以将亚铁磁膜与外部电路进行通信。当应用被构造成甚至包围线圈7的立柱时,将线圈的引线与前述的电源引线一起从前述的开口中引出。可替换的是,也可形成用于引出线圈引线的独立的开口。同样地,在附图5中所示的静磁波器件的实施例类似于在附图1A和1B中所示的静磁波器件的实施例。
在上面所解释的每个实施例中,为减轻重量,在立柱9、91和92形成至少一个不具有与其相啮合的突出部分的附加的凹进部分(可取的是为通孔的形式)。当具有这种通孔时,可取的是在其内周边上形成前述的导体。
接着,解释本发明的第二方面。在依据本发明的第二方面的静磁波器件中,至少一个通孔延伸过立柱以将在磁扼的主表面附近的两端面连接在一起。然后,应用至少存在于通孔中的粘合剂将立柱和一对磁扼固定在一起。
在本发明的第二方面中,应用填充在通孔中的粘合剂将磁扼和立柱固定在一起。由于在磁扼的主表面和立柱的端面之间没有(如果有的话也很少)粘合剂,因此同样地由所应用的粘合剂层的厚度的变化引起的静磁波器件性能的变化比前述的常规的静磁波器件的性能变化减少多得多。
依据本发明的第二方面,通过形成通孔降低立柱的重量。因此,对于由金属形成的立柱形成通孔特别有效。
此外,形成通孔能够增加立柱的表面面积以使能够降低在高频范围中的立柱的电阻。这里可以理解的是,不管整个立柱都是由导电材料形成还是立柱由在其表面上形成有导体膜的绝缘基片材料构造成,这种效果都能够实现。
应用许多相对较精细的立柱,也能够降低立柱的整个重量并增加立柱的表面面积。然而,在这种情况下,由于需要在立柱的两端面和磁扼之间提供粘合剂层,所以性能变化很显著。此外,形成许多立柱的静磁波器件的组装变得很笨拙。此外,为降低在磁极之间的距离的变化,由于所有的立柱的高度必需严格控制,所以生产成本增加。
依据本发明的第二方面,其中通过在立柱中形成通孔来实现降低重量和增加表面面积,应用比迄今在已有技术中所要求的立柱数量少得多的立柱能够实现与已有技术中相同的重量降低和表面面积增加,因此,容易控制立柱的高度,提高了产量。此外,静磁波器件的组装变得更容易。
附图6A和6B所示为依据在附图1A所示的第二方面的静磁波器件沿着经过立柱92的轴线的平面截取的部分截面图。
在附图6A和6B中,通孔120延伸过立柱92以将在磁扼4a和4b的主表面附近的两端面连接在一起。通过在通孔120中填充的粘合剂将立柱92固定到磁扼4a和4b。将立柱92构造成具有通孔120的基片的圆柱形,在其基片的整个表面上具有导体膜。换句话说,立柱92的两端面和外部周边和通孔120的内部周边都由导体膜43形成。这种导体膜与在本发明的第一方面中所解释的导体膜相同。
附图6A所示为如何将粘合剂13从在通孔120的两端处的开口注入以将磁扼粘接到立柱。在通孔120内存在气隙。附图6B所示为在整个通孔120中填充有粘合剂13。在任何情况下,由于在立柱92的两端面和磁扼4a和4b的主表面之间没有任何粘合剂,所以都能够实现上述的效果。
这里需指出的是,在粘接的过程中,一部分粘合剂13常常进入到立柱92的两端面和磁扼4a和4b的主表面之间,由于在磁扼4a和4b之间的距离保持几乎不变,这种少量的粘合剂对静磁波器件的性能影响很小甚至不影响。当每个立柱91和92的表面部分都由如下所述的导电材料形成时,可取的是应用导电粘合剂作为粘合剂13。例如可以应用焊糊作为导电粘合剂。
在每个立柱91和92的一对磁扼之间的电连接所要求的结构与本发明的第一方面相同。可取的是,由于在高频范围中立柱的电阻显著地降低,如在附图6A和6B所示,通孔12的整个内部周边上形成导体膜43。
在这里所应用的立柱的数量和形状并不严格与在本发明的第一方面完全相同;例如,可接受的是利用具有在附图7中所示的结构的立柱。在附图7中所示的立柱9在附图5所示的凹进部分12的位置上具有通孔120。
在每个立柱中可以具有一个或多个通孔,该通孔的截面可以是圆形、椭圆形、方形、不规则形状或其它的形状。通孔的数量和截面形状以及通孔所占立柱截面的面积比率都依据立柱的截面形状等适当确定,以使立柱具有足够的机械强度和降低足够的重量,并且增加表面面积。例如,在附图6A和6B中,一个截面为圆形的通孔延伸过圆柱形立柱,并且在附图7中,在框架形立柱9具有四个通孔120,每个通孔的截面与立柱一致。
依据如所解释的本发明的第一和第二方面对怎样制造静磁波器件没有特别的限制;然而,可取的是按照如下的方式制造它们。首先,应用模子挤压由磁性材料比如铁形成的片状部件以形成具有磁极的突出部分。然后,如果需要的话,在每个磁扼的表面上形成如上所述的导体膜。可取的是在磁扼的整个表面上的导体膜的厚度差应该限制在1μm或更小。然后,在一对磁扼之间插入线圈、永磁体和立柱。最后,在其表面形成有RF信号输送线的亚铁磁膜设置在磁极之间,由此完成静磁波器件。
在下文中,解释本发明的第三方面。本发明的第三方面应用到静磁波器件,其中并入对本发明第一和第二方面的限定。在本发明第三方面中,一对磁扼的每个磁扼都包括片状的磁扼体和从一个磁扼体朝另一个磁扼体延伸的至少一个突出部分。每个突出部分和相对着的另一个磁扼体的一部分表面一起形成磁极对,在该磁极对中具有气隙。亚铁磁膜设置在位于至少一个磁极对的气隙中。
现在解释与本发明的第三方面相关的一种已有技术。在附图1A和1B中,通过研磨或其它的构造步骤将突出部分41a、41b、42a和42b与磁扼体整体地形成。在这种情况下,由于在突出部分41a和41b之间的距离La不同于在突出部分42a和42b之间的距离Lb,每个磁扼应该具有两个高度不同的突出部分。然而,很难与磁扼体整体地形成具有不同高度的这种突出部分以使它们的尺寸在前述的尺寸范围内。在研磨之后,选出突出部分尺寸在前述的尺寸范围之内的磁扼。因此所选出的磁扼具有两个突出部分,它们的尺寸在前述的尺寸范围之内。然而,出现这种磁扼的可能性很低,不可避免地导致产量很低,因而成本增加。
由于第一次研磨运行很慢,必需将超出预定的尺寸范围的突出部分的高度的磁扼抛光,由此使突出部分的高度在预定尺寸范围之内。在这种情况下,必需以较高的精确抛光形成在具有不同的高度的每个磁扼上的突出部分。然而,很难实施这种抛光工作,结果再次导致成本增加。
可以通过应用本发明的第三方面可以解决这种问题。在附图8A中示出了依据本发明的第三方面的静磁波器件的一个典型实施例,该附图8A为其透视图,附图8B为沿着线B-B截取的截面视图。在附图8B中,需指出的是仅示出了该装置的一个端面;没有示出在深度方向的其它部分。
这种静磁波器件包括用于激励和传播静磁波的亚铁磁膜1、形成在亚铁磁膜1的表面上的RF信号输送线2和给亚铁磁膜1施加磁场的磁场发生器。磁场发生器包括一对磁扼4a和4b、永磁体6和线圈7。该对磁扼4a和4b彼此相对着,而同时永磁体6夹在一端侧之间,而在另一端侧之间插入导电立柱91和92。每个磁扼包括片状磁扼体和从该磁扼体朝另一个磁扼体延伸的突出部分。每个磁扼的一端与永磁体6磁性地连接。一个磁扼4b在其它端部形成有突出部分41b,而在另一个磁扼4a的中心附近具有突出部分42a,在突出部分42a的周围缠绕着绕组以形成线圈7。
在这种静磁波器件中,突出部分41b和与突出部分41b相对着的相对磁扼4a(磁扼体)的表面面积一起形成第一磁极对,突出部分42a和与突出部分42a相对着的相对磁扼4b(磁扼体)的表面面积一起形成第二磁极对。在整个第一磁极对上具有气隙长度La的气隙81,在整个第二磁极对上具有气隙长度Lb的气隙82。在本发明的第三方面中,仅通过形成在一个磁扼上的突出部分所确定的一个磁极安装一个磁极对,通过与这个突出部分相对的另一个磁扼体的表面的一部分确定其它的磁极对。
依据所示的实施例,由于每个磁扼仅具有一个突出部分以形成一个磁极,因此容易构造磁扼,因而能够降低产生成本。
在所选出的在一定的尺寸精度范围内的磁扼中,如下文具体解释,即使当它们的构造精度的级别相同,具有一个突出部分的磁扼的产量比具有两个或更多个突出部分的磁扼的产量高得多。
现在用P1表示当磁扼具有一个突出部分时从突出部分的主表面到顶部(磁极的表面)的高度落在预定的尺寸范围内的可能性。当一个磁扼具有不同高度的两个突出部分时,虽然实际的可能性随着制造工艺而变化,突出部分的高度均落在预定的尺寸范围内的可能性小于P1或几乎等于P1×P1。由于通过将具有在预定的尺寸范围内的两突出部分的两磁扼相组合来制造静磁波器件,因此内磁极距落在预定的范围的静磁波器件的产量很低。如附图9A和9B所示,当每个磁扼4a和4b都仅形成有一个突出部分时,换句话说,可以实现具有突出部分高度在预定的范围中的磁扼的可能性为P1。因此能够以较高的产量制造内磁极距在预定的范围的静磁波器件。
当根据突出部分的高度通过抛光控制具有两个不同高度的突出部分的磁扼时,很难以较高的精度同时抛光。此外,基本不可能同时抛光许多磁扼。通过对比,不仅很容易抛光具有一个突出部分的磁扼从而以较高的精度控制它的高度,而且还能够同时抛光许多这种磁扼。因此能够极大地降低抛光成本。
参考两磁极对已经解释本发明的第三方面,可以理解的是即使应用三个或更多个磁极对,也能够实现较高的产量。在常规的静磁波器件中,必须在两个磁扼上形成的突出部分为磁极对的两倍。然而,依据本发明的第三方面,可以提供与磁极对一样多的突出部分;即使当在本发明的第三方面中在至少一个磁扼上形成许多突出部分时,与常规的具有相同总数量的磁极静磁波器件相比,仍然能够实现更高的产量。
在下文中,解释如何制造依据本发明的第三方面的静磁波器件。
首先,应用模子将由磁性材料比如铁形成的片状部件压在一起以形成具有磁极的突出部分,由此得到如在附图9A中所示的磁扼4a和在附图9B中所示的磁扼4b,并测量突出部分41b的高度Hb和突出部分42a的高度Ha。将突出部分的高度在预定尺寸范围中的磁扼筛选到一组中。这里称之为组A。如果需要的话,在这个组A中的每个磁扼至少在其表面上具有前述的导体膜。在该磁扼的整个表面上的导体膜的厚度之差应该限制在1μm或更小。然后,在一对磁扼之间插入线圈、永磁体和立柱。最后,在磁极之间插入在其表面上形成有RF输送线的亚铁磁膜,由此获得如在附图8A和8B中所示的静磁波器件。
从具有超出预定尺寸范围之外的高度Ha和Hb的一组磁扼中将具有比预定高度更大的高度Ha和Hb的磁扼筛选到一组中。这里称其为组B。从属于组B中的磁扼中将磁扼体的厚度t在预定的尺寸范围内的磁扼筛选到一组中,这里称其为组C。将一个属于组C的磁扼在其远离形成有突出部分的表面的主表面处固定到保持器。在这种状态下,突出部分的上部表面抛光以使Ha和Hb在预定的范围内。在这种情况下,如上面已经提到,许多磁扼可以同时抛光。然后,清洗磁扼并进行后处理,如果需要的话,如在组A中的情况,形成导体膜。最后,组装静磁波器件。
可以理解的是,可以将属于组B中的磁扼(还没有从中选出组C)抛光以校正Ha和Hb。然而,在这种情况下,需指出的是,不能同时抛光许多磁扼。当将它们固定在到保持器的同时抛光许多磁扼时,对于每个磁扼从每个保持器的表面到突出部分的顶部的高度(t+Ha或t+Hb)总是相同。然而,并不总是能够实现相同的且一致的Ha或Hb。当许多磁扼同时抛光时,因而要求从具有t在预定的尺寸范围中的组C中选取。
当静磁波器件安装在电气设备和电子设备上时,要求将用于给亚铁磁膜输送RF信号的高频电路和给线圈输送可变电流的线圈电流控制电路电连接到静磁波器件。然而,前述的JP-A10-75107和11-67540没有公开当它安装时如何将这些部件连接到静磁波器件。
依据本发明为便于安装静磁波器件,因此可取的是应用下文所解释的本发明的第四方面。将本发明的第四方面应用到至少依据本发明的第一或第二方面构造的静磁波器件中。
附图10A所示为依据本发明第四方面的静磁波器件的一个实施例,它作为一种共振器。附图10B所示为沿着线B-B截取的静磁波器件的垂直截面视图。在附图10B中,需指出的是,仅示出了该装置的一个端面;没有示出在其深度方向上的任何其它部分。
这种静磁波器件包括用于激励和传播静磁波的亚铁磁膜1、形成在该亚铁磁膜1的表面上的RF信号输送线2和给亚铁磁膜1施加磁场的磁场发生器。磁场发生器包括一对磁扼4a和4b、永磁体6和线圈7。该对磁扼4a和4b彼此相对着,在一侧端中永磁体6夹在其中,在其它侧导电立柱91和92插在其间。每个磁扼包括片状磁扼体和自该磁扼体朝另一磁扼体延伸的突出部分。每个磁扼的一端磁连接到永磁体6。在具有突出部分41a的另一端上形成有一个磁扼4a,而在其具有突出部分42b的中心附近形成有另一磁扼4b,线圈绕组绕在突出部分42b周围以形成线圈7。形成线圈7以产生可变磁场以及控制施加到亚铁磁膜1的d.c.磁场的强度。
在这种静磁波器件中,突出部分41a和与突出部分41a相对着的磁扼4b的表面一起形成了第一磁极对,在突出部分41a和磁扼4b的表面之间具有气隙81,突出部分42b和与突出部分42b相对着的磁扼4a的表面一起形成了第二磁极对,在突出部分42b和磁扼4a的表面之间具有气隙82。换句话说,这种装置是依据本发明的第三方面构造的。在气隙81内,容纳由YIG或类似的材料的形成的亚铁磁膜1。在每个磁扼4a和4b的整个表面上都形成有导体膜43。
在亚铁磁膜1的附近,通过粘合剂(未示)将绝缘部件20固定在磁扼4b上。除了与磁扼4b相对着的绝缘部件20的表面面积外,在一部分绝缘部件20的表面面积上形成有信号导体型板21,其在绝缘部件20的底面折回处终止。这种信号导体型板21通过一根带状导线23a电连接到RF信号输送线2。通过另一根带状导线23b在磁扼4b的表面上的导体膜43上将RF信号输送线2接地。
除信号导体型板21应该电连接到磁扼4b并在绝缘部件20的底面折回处端接外,对它没有特殊的限制。虽然在所示的实施例中仅提供一个信号导体型板,但是可以理解的是,当将两个RF信号输送线连接到亚铁磁膜1或当形成两个或更多个亚铁磁膜时,每个都具有一连接到它的RF信号输送线,根据RF信号输送线的数量确定信号导体型板的数量。
需指出的是,用于将RF信号输送线2分别连接到导体型板21和导体膜43的带状导线23a和23b可以是通过导线粘接等方法形成的金(Au)带状线或通过导电粘合剂比如焊糊等粘接形成的铜(Cu)条状薄片。
用于将绝缘部件20固定到磁扼4b的粘合剂可以是任何导电型或电绝缘型的粘合剂。
虽然在所示的实施例中所应用的绝缘部件20为立方形,但可以理解的是,只要绝缘部件20的形状对本发明的第四方面的作用和效果没有不利的影响,则对它的要求并不严格。构成在本发明的第四方面中所使用的绝缘部件的材料要求也并不严格;例如,可以从陶瓷或树脂中进行适当的选择。
在线圈7的附近,通过粘合剂(未示)将第二绝缘部件30固定在磁扼4b上。在第二绝缘部件30的表面上形成有用于线圈的导体型板31a和31b,在第二绝缘部件的底部表面弯折处导体型板31a和31b端接。线圈的导体型板31a和31b每个都电连接到线圈7的引线(未示)。除了导体型板31a和31b都必需与磁扼4b电绝缘并在第二绝缘部件30的底面弯折处端接外,其它要求并不严格。将第二绝缘部件30固定到磁扼4b的粘合剂可以是任何导电型或电绝缘型的粘合剂。
在所示的实施例中,磁扼4b形成有楔形凹口,通过使第二绝缘部件30与凹口一致,当将第二绝缘部件30固定到磁扼时,可以防止从磁扼的表面突出的任何突出物。反过来这又能够使静磁波器件降低尺寸并容易处理。这里所应用的凹口可以是其它形状。当第二绝缘部件30的高度增加时,如果需要的话,为防止线圈的导体型板31a和31b与磁扼4a的任何接触,另一个磁扼4a也可以形成凹口。在这方面,可以理解的是,在磁扼上形成这些凹口并不是实施本发明的关键。
在附图10A和10B中所示的静磁波器件中,将电源线的底部端确定到亚铁磁膜1的信号导体型板21存在于绝缘部件20的底部表面,而将电源线的底部端确定到线圈7的线圈导体型板31a和31b存在于绝缘部件30的底部表面。因此,当将这种静磁波器件安装在互连的基片上时,可以将它作为所谓的表面安装器件对待。在这种情况下,在绝缘部件上的导体型板电连接到形成在互连基片上的平头电极上。除了该静磁波器件外,在互连基片上还安装有给亚铁磁膜1输送RF信号的高频电路和给线圈7输送可变电流的线圈控制电路。
在一定的情况下,电绝缘保护膜通常形成在每个磁扼的表面上。然而,在这种情况下,当磁扼安装在互连基片上时很难将磁扼接地。因此,可取的是将磁扼直接接地,虽然在互连基片附近的磁扼的底部上以及在该磁扼的至少一部分侧面上没有形成绝缘保护膜,而是在互连基片的表面上形成接地导体型板。
然而,甚至当在磁扼的所有表面上都形成有绝缘保护膜时,可以通过应用在附图11中所示的实施例将磁扼接地。除了在绝缘部件20的表面上形成有接地导体型板22a和22b并通过导电粘合剂固定到磁扼上以外,在附图11中所描述的静磁波器件按照在附图10所描述的情况进行构造。接地导体型板22a和22b都形成在信号导体型板21的两侧面并与其电绝缘。此外,这些信号导体型板跨在立方形绝缘部件20的6个表面的5个上。然而,这些接地导体型板并不限于所示的这些;只要它们与信号导体型板21电绝缘并电连接到磁扼4b,并且在绝缘部件20的底部表面弯折处端接,可以应用任何所需的型板。依据本实施例,通过接地导体型板22a和22b将磁扼4b接地。虽然在所示的实施例中接地导体型板22a和22b如信号导体型板21一样形成在绝缘部件20上,但是可以理解的是,并不总是需要在相同的绝缘部件上形成型板。换句话说,接地导体型板也可以形成在第二绝缘部件30上或在另外形成的绝缘部件的表面上。
由于在所示的接地导体型板22a和22b之间已有信号导体型板21,因此接地导体型板22a和22b也具有屏蔽掉从信号导体型板21中辐射的电磁波的屏蔽导体的作用。当使这些接地导体型板只起屏蔽导体型板的作用时,不需要将它们电连接到磁扼。然而,屏蔽导体型板必需电连接到静磁波器件安装在其上的互连基片上的接地导体型板。
需指出的是,在本发明的前文所述的每个实施例中的情况下,立柱的数量和形状并不是关键。在附图13中所述的静磁波器件中,用所提供的立柱9替换在附图11中所示的立柱91和92以包围突出部分41b和线圈7。在附图13中,参考标号71a和71b表示线圈7的引线,它们分别连接到线圈的导体型板31a和31b。立柱9进一步形成有使引线通过的槽93。此外,立柱9还具有通孔120。
在本发明的第四方面中,安装有传输线、信号输入/输出导体、接地导体等的互连基片50如附图12所示。静磁波器件10固定到这种互连基片50,该静磁波器件10具有绝缘部件20和第二绝缘部件30、设置静磁波组件的高频电路101和线圈控制电路102,而互连基片50又与其它的电子部件一起安装在主互连基片上。为固定静磁波器件10,可以应用到互连基片50的高频电路101和线圈控制电路102和导电粘合剂比如焊糊。在所示的实施例中,通过传输线51将信号导电型板21和高频电路101都连接在一起,并且通过信号输入/输出导体53将高频电路101连接到主互连基片。通过传输线52a和52b将线圈导体型板31a和31b连接到线圈控制电路102,并且通过线圈控制信号输入/输出导体54将线圈控制电路102连接到主互连基片。通过接地导体55a和55b将接地导体型板22a和22b都连接到主互连基片。
在附图12中,在磁扼4a和4b之间的空间中填以树脂60作为模制材料。如果需要的话,将树脂填充到该空间中,以使静磁波器件容易处理,并防止在磁扼等之间的部件被氧化。
在前述的实施例中,提供了两个绝缘部件,一个以信号导体型板或接地导体型板安装,另一个以线圈导体型板安装。然而,可以理解的是,也可以仅形成一个绝缘部件以在其表面上以电绝缘的状态形成相应的导体型板。在前述的实施例中,提供了信号导体型板和线圈导体型板。然而,可以理解的是,如果需要的话可以形成信号导体型板或线圈导体型板。在前述的实施例中,绝缘部件只固定到一个磁扼。然而,可以理解的是,绝缘部件也可以跨越两个磁扼。
如上所解释,本发明的第四方面能够使静磁波器件容易地安装在互连基片的表面上。然而,需指出的是,例如,如果形成在至少磁扼4a的一部分的表面上的绝缘膜具有在磁扼4b的底部表面端接的传输线,甚至具有如附图1A和1B中所示的结构的静磁波器件也可以安装在互连基片的表面上。然而,很难将静磁波器件本身构造成正好如上所述的那样,因此制造过程极其复杂。
在下文中,说明依据本发明的静磁波器件的每个部件的优选的结构。
对RF信号输送线2的要求是它必需从气隙81中引出,其中它电磁地耦合到亚铁磁膜1,并且外部干扰不可能使其移动;但是并不总是需要它与亚铁磁膜1接触。例如,可以在亚铁磁膜1和RF信号输送线2之间提供粘合剂层等。
在所示的实施例中,应用GGG(钆镓柘榴石)基片3作为电介质基片,然后在GGG基片3上形成亚铁磁膜1。然而,如何在气隙81中设置亚铁磁膜1并不限于所示的实施例。例如,可以通过LPE(液相外延)方法或类似的方法在GGG基片3的一个主表面上形成亚铁磁膜1,而同时将RF信号输送线2形成在GGG基片3的另一主表面上。因此,通过导电粘合剂将亚铁磁膜1直接或大约厚度为100μm或更小的电介质基片固定到磁扼4b上(或者当它形成在其上时固定到导体膜的表面上)。在某些情况中,并不需要提供GGG基片。
虽然在所示的实施例中,在磁扼上形成突出部分,线圈绕组缠绕在突出部分上以形成线圈7,可以理解的是线圈绕组可以缠绕在平面薄片形磁扼上。在这种情况下,被线圈绕组所缠绕部分的磁扼截面是圆形、多边形、椭圆形或其它类似的形状。可替换的是,在没有任何线圈的情况下仅将由永磁体产生的固定磁场施加到亚铁磁膜。
可以应用高导磁性的材料比如铁或坡莫合金形成具有整体突出部分的磁扼。考虑到成本、制造的简易性和较高的饱和通量密度,可取的是磁扼应该由铁材料比如SS41制成。
通常对于线圈7,可以应用绝缘材料包覆的铜线。对于永磁体6,可以应用烧结或粘接型的铁氧体和稀土磁体。
可取的是,形成在亚铁磁膜1上的RF信号输送线2由金属比如Ag、Au、Al和Cu或包含这些金属的中的至少一种合金制成。RF输送线2可以是单层型的或是多层型的。通常但并不是唯一的,可以通过蒸发方法和光刻技术形成RF信号输送线。
通过建立如在附图1A和1B中所示的磁路,在其中容纳有亚铁磁膜1的气隙81的长度La可以降低到1mm或更短,以使在具有包括气隙82-磁扼4a-气隙81-磁扼4b的封闭的磁回路的磁阻降低的气隙81中产生的磁场更强。应用这种结构,可以降低线圈的体积,因此降低了磁路的整体尺寸。
通常但不是唯一的,在所示的实施例中的每个部件的尺寸如下。GGG基片3的厚度大约为400μm或更小;亚铁磁膜1的宽度大约为0.5至2mm,长度大约为0.5至2mm和厚度大约为5至60μm;RF信号输送线2的厚度大约为2至15μm。磁扼4a和4b的长度(在磁路方向测量)大约为3至20mm,宽度大约为2至20mm,厚度大约为0.5至3.0mm;磁极部分的横截面积大约为1至20mm2;永磁体6的横截面积大约为1至30mm2,高度大约为0.1至15mm;线圈7的内直径大约为1至5mm,外部直径大约为1至20mm,厚度大约为0.5至1.4mm。气隙81具有长度大约为0.12至0.5mm的气隙,而气隙82具有长度大约为0.01至0.5mm的气隙。这里需指出的是线圈7的截面(垂直于轴线)可以是圆形、椭圆形、多边形、方形或其它形状。
现在回到在附图1A中所示的实施例,在其中有一个用于容纳亚铁磁膜1的气隙。然而,可以接受的是可以形成两个或更多个气隙,在每个气隙中容纳有亚铁磁膜。在这种情况下,如果形成具有许多不同长度的气隙,则可以使亚铁磁膜的共振频率彼此各不相同。因此,可以将本实施例应用到VCO(电压控制振荡器),例如通过应用转换开关这种振荡器能够在两个或更多个信道频率下同时传输和接收。
虽然将静磁波谐振器已经描述为依据本发明的静磁波器件的一些实际的实例,可以理解的是对于在本领域的熟练技术人员来说,很显然本发明并不限于这种静磁波谐振器,并且它可以以各种改进或变型的实施例的形式实施而不脱离所要求保护的范围。因此,本发明可以应用到其它的静磁波器件,例如,谐振的静磁波滤波器。
依据本发明的第一方面,一对磁扼和作为隔板的立柱可以固定在一起而在磁扼的主表面和立柱的两端面之间不需要任何粘合剂层,因此在磁扼之间的间隔的任何变化可以降低或最小化。为此,容纳有亚铁磁膜的气隙的长度没有变化或变化很小。这就使得能够大量生产性能不变或变化很小的静磁波器件。
在本发明的第二方面中,应用填充在通孔中的粘合剂将一对磁扼和立柱固定在一起,该通孔在将两个磁扼连接在一起的方向上延伸过立柱。由于在磁扼的主表面和立柱的端面之间没有粘合剂,如果有的话也很少,所以能够比常规的静磁波器件更多地降低由于粘合层的厚度变化引起的静磁波器件的性能的变化。此外,通过形成通孔能够降低立柱的重量。因此,对金属形成的立柱形成通孔特别有效。此外,形成通孔还能够增加立柱的表面面积以使在高频范围中的立柱的电阻能够降低。
在本发明第三方面中,形成在一个磁扼上的突出部分和与其相对着的另一个磁扼体的表面部分一起构成了一磁极对。由于这个缘故容易构造磁扼,因此,降低制造成本。具有一个突出部分的磁扼比常规具有两个或更多个突出部分的磁扼的产量高得多,即使它们的构造精度级相同。
依据本发明的第四方面的静磁波器件能够容易地安装在电气设备和电子设备的互连基片的表面上。