《偏振旋转器、视差屏障、显示器和光学调制器.pdf》由会员分享,可在线阅读,更多相关《偏振旋转器、视差屏障、显示器和光学调制器.pdf(16页完整版)》请在专利查询网上搜索。
提供一种用于将一个线性偏振光的偏振方向旋转一个90以外的任意角度的偏振旋转器。该装置包括一个设置在对齐表面之间的液晶材料层。在一种模式中,在液晶引向器中诱导一个90的扭转。提供一个表达式将液晶层的阻滞和偏振旋转的数量以及入射光的偏振方向和液晶层的输入侧处的对齐方向之间的夹角联系起来。 。
CN200810125137.4
2003.06.30
CN101311774A
2008.11.26
授权
有权
授权|||实质审查的生效|||公开
G02B27/28; G02F1/01; G02F1/139; H04N13/00
G02B27/28
夏普株式会社
M·D·蒂林; A·M·S·雅各布斯
日本大阪府
2002.6.28 GB 0215057.1
上海专利商标事务所有限公司
侯颖媖
提供一种用于将一个线性偏振光的偏振方向旋转一个90°以外的任意角度的偏振旋转器。该装置包括一个设置在对齐表面之间的液晶材料层。在一种模式中,在液晶引向器中诱导一个90°的扭转。提供一个表达式将液晶层的阻滞和偏振旋转的数量以及入射光的偏振方向和液晶层的输入侧处的对齐方向之间的夹角联系起来。
1. 一种视差屏障,其特征在于,该视差屏障包括:偏振旋转器,用于将线性偏振的输入光的偏振方向旋转一个不同于90°的角度γ,包括第一输入对齐表面,第二输出对齐表面和液晶材料层,该液晶材料层具有一液晶引向器并被设置在所述第一对齐表面和所述第二对齐表面之间,所述旋转器有一种模式,在该模式中,跨越所述液晶层诱导所述液晶引向器的一个90°扭转,该液晶层具有一个基本由下式给出的阻滞:tan[±π2-γ]=tan[±π2·1+α2]1+α2]]>α=±2×Δn×dλ]]>2θ=γ+‾π2]]>其中λ是光的波长,Δn是所述液晶材料的双折射,d是所述液晶层的厚度,θ是所述输入光的偏振方向和所述第一对齐表面的对齐方向之间的夹角。2. 如权利要求1所述的屏障,其特征在于,该屏障包括光栅阻滞器。3. 如权利要求2所述的屏障,其特征在于,其中所述阻滞器是一种半波阻滞器。4. 如权利要求3所述的屏障,其特征在于,其中所述阻滞器包括有慢轴的第一和第二区域,并且γ等于在所述第一和第二区域的所述慢轴之间包括的一个角度。5. 如权利要求4所述的屏障,其特征在于,其中所述包括的角度在40°到70°之间。6. 如权利要求5所述的屏障,其特征在于,其中所述第一和第二区域中的一个区域的所述慢轴为平行于和垂直于所述输入光的所述偏振方向两种情况中的一种。7. 如权利要求6所述的屏障,其特征在于,其中所述第一和第二区域中的另一个区域的所述慢轴取向为与所述输入光的所述偏振方向成45°角。8. 如权利要求6所述的屏障,其特征在于,其中所述第一和第二区域中的另一个区域的所述慢轴取向为与所述输入光的所述偏振方向成55°角。
偏振旋转器、视差屏障、显示器和光学调制器 本申请是申请日为“2003年6月30日”、申请号为“03145722.3”、题为“偏振旋转器、视差屏障、显示器和光学调制器”的分案申请。 技术领域 本发明涉及一种用于将线性偏振光的偏振平面旋转到任意角度的旋转器。例如,这样的旋转器可以被用作显示器里的视差屏障的一部分,或用作长途通讯的光学调制器。本发明也涉及包括这样的偏振旋转器的视差屏障、显示器和光学调制器。 背景技术 一种液晶装置(LCD)的已知类型是经扭转的向列型(TN)。在这样的装置里,一层向列型液晶材料被设置在相对的诸如聚酰亚胺的对齐表面之间,这使液晶引向器在没有外加场的情况下从一个对齐表面向另一个对齐表面扭转90°。在没有外加场的情况下,通过该装置的线性偏振光的平面被转动90°。 0到3V之间较低的电压已经足够切换这样的向列型液晶装置。在被切换到非旋转状态时,液晶引向器的中间平面倾斜角升高到一个预先确定的角度以上,这样邻近对齐表面的液晶材料的表面区域可以被认为是基本去耦的压敏(voltage-dependent)光学阻滞器。每一个这样地阻滞器都可以由沿对齐表面的对齐方向的一个光轴表示。相对表面的对齐方向互相垂直,这样,如果在对齐表面处的液晶分子的预先倾斜基本相等,液晶层的表面区域的阻滞就有效地互相消除,如此,装置就提供基本为零的阻滞。但是,这种自补偿仅发生于90°的扭转角。 也已知有90°以外扭转的向列型液晶装置。当线性偏振光通过这样的装置时,偏振被转换成椭圆偏振。为了切换这样的装置而使通过该装置的光的偏振基本没有影响,就需要一个理论上无限大的电压才能将阻滞减到零。 Beynon等人在Journal of the SID,1999,7,71上揭示了一种计算在TN LCD中的从线性偏振到圆偏振转换的技术以及将结果应用到包括设置在反射器和偏振器之间的液晶空间光调制器的反射显示器中。 发明内容 根据本发明的第一方面,提供一种用于将线性偏振光的偏振方向旋转到不同于90°的角度γ的偏振旋转器,该旋转器包括设置在第一输入对齐平面和第二输出对齐平面之间的一层液晶材料,该旋转器有一种模式,在该模式中,液晶引向器的90°的扭转被诱导通过该层,该液晶层有基本由下式给出的阻滞: tan[±π2-γ]=tan[±π2·1+α2]1+α2]]> α=±2×Δn×dλ]]> 其中λ是光的波长,Δn是液晶材料的双折射,d是液晶层的厚度,θ是输入光的偏振方向和第一对齐表面的对齐方向之间的夹角。 λ可以是可见光的波长。 旋转器可以有另外的模式,在该模式中,基本没有液晶引向器的旋转通过该液晶层。 第一和第二对齐表面可以诱导引向器的90°的扭转通过该液晶层。 液晶材料可以包含手性的掺杂。手性的掺杂可以诱导引向器90°的扭转通过液晶层。 液晶材料可以是一种向列型的正电介质各向异性的液晶材料。 液晶材料可以是一种层列型的液晶材料。 液晶材料可以是一种向列型的负电介质各向异性的液晶材料。 第一和第二对齐表面处的预先倾斜可以互相基本相等。 旋转器可以包括一个用于选择性地施加跨越至少是液晶层的一个区域的电场的电极排列。该电极排列可以包括一个有源的或无源的矩阵。 旋转器可以包括一个有从-θ到第一对齐表面的对齐方向的取向的传输轴的输入偏振器。 旋转器可以包括一个有基本和输入光的偏振方向垂直的传输轴的输出偏振器。 旋转器可以包括一个有基本在从(γ±n×90)°到输入光的偏振方向的取向的传输轴的输入偏振器,其中n是整数。 γ的绝对值可以大于或等于40°以及小于或等于70°。γ可以等于±45°以及Δn×d/λ可以等于0.487。θ可以等于±22.5°。作为替代,θ可以等于±12.5°。 γ可以等于±55°以及Δn×d/λ可以等于0.55。θ可以等于±17.5°。 γ的绝对值可以大于或等于175°以及小于或等于180°。γ可以等于180°,θ可以等于±45°以及Δn×d/λ可以等于1.414。作为替代,γ可以等于±178°,θ可以等于±44°,Δn×d/λ可以等于0.105。 根据本发明的第二方面,提供一种包括根据本发明的第一方面的旋转器的视差屏障。 该屏障可以包括一个光栅阻滞器,如一种半波阻滞器。该阻滞器可以包括第一和第二区域,并且γ可以等于在第一和第二区域的慢轴之间包括的角度。该包括的角度可以在40和70°之间。第一和第二区域中的一个区域的慢轴可以平行或垂直于输入光的偏振方向。第一和第二区域中的另一个区域的慢轴可以与输入光的偏振方向成45°取向。作为替代,第一和第二区域中的另一个区域的慢轴可以与55°到输入光的偏振方向成55°取向。 根据本发明的第三方面,提供一种包括根据本发明的第一方面的旋转器或根据本发明的第二方面的屏障的显示器。 根据本发明的第四方面,提供一种包括根据本发明的第一方面的旋转器的光学调制器。 已经发现,带有90°扭转的TN LCD可以被用于将线性偏振光的偏振面旋转任意角度。该效应可以(在提供偏振旋转和提供非偏振旋转之间)通过相对低的有限电压而调制。这样的装置有很多应用,例如在可切换的2D/自动立体3D显示器中作为视差屏障以及在光学远距离通讯系统中作为光学调制器。 在本说明书中,角度的正值可以以顺时针或逆时针计算,相应的负值就在相反的方向。还有,偏振方向的所有角度和阻滞器慢轴被表达为“模量180°”。这样,每个角度β相当于每个角度(β+n×180),其中n是任何整数。但是,在一些实施例中,因为其结构的特性,β的值可以因性能的改善而最好超过(β+180°)的值。 附图说明 本发明将通过实例的方式参考附图做进一步的描述。 图1是偏振旋转相对于阻滞的曲线图; 图2是说明构成本发明的第一实施例的偏振旋转器的示意图; 图3是图2的旋转器的剖面图; 图4是说明图2的旋转器作为显示器的用途的剖面示意图; 图5是说明图2的旋转器作为在显示器中的视差屏障的一部分的用途的剖面示意图,该显示器可在两维(2D)模式和自动立体三维(3D)模式之间切换。 图6是说明图5中显示的显示器的一部分的示意图; 图7是说明构成本发明的第二实施例的偏振旋转器的示意图; 图8是说明经修改的图5的显示器的一部分的示意图; 图9是说明构成本发明的第三实施例的偏振旋转器的示意图;和 图10是说明构成本发明的第四实施例的偏旋转器的示意图。 所有附图中同一个标号代表相同的零件。 具体实施例 可以得到这样的情况,基于Beynon等人在Journal of the SID,1999,7,71上揭示的技术,LCD将一个诸如是可见光的第一线性偏振转换到任意的不同的线性偏振。通过将扭转角φ设定到+或-90°(+或-π/2),下面的情况将线性偏振方位旋转的角度γ(相对与入射偏振方位)和向列型的液晶层的阻滞联系起来: tan[±π2-γ]=tan[±π2·1+α2]1+α2]]> α=±2×Δn×dλ]]> 其中d是液晶层的厚度,λ是光的波长,Δn是液晶材料的双折射,θ是入射线性偏振的方位和液晶的输入方向之间的夹角。这在图1中由图示描绘,图中标出了第一个三“分支”的作为阻滞Δn×d/λ的函数的旋转角γ或γ的正值的解法。γ的负值可以通过绕x轴反射图1的曲线而得到,但是因为+45°的偏振旋转和-135°的偏振旋转基本相同,图中未显示这些曲线。这些曲线在正角或负角γ上周期性变化,或根据阻滞,分支数在范围上是无限的。γ=90°的交叉点是已知的Gooch-Tarry 90°TN最小值。 图2显示的偏振光旋转器被设置来提供线性偏振的45°旋转。该旋转器包括一个输入偏振器1,该偏振器接收非偏振的输入光2并有一个垂直取向、定义一个参考方向的传送轴3。如图3所示,偏振器1形成在或附接于第一液晶(LC)衬底4,该衬底和第二衬底5一起限定一个包含液晶层6的单元。衬底4和5的内表面在其上形成例如用氧化铟锡(ITO)制作的导电的透明电极7和8,以及例如包括磨光的聚酰亚胺层的对齐层9和10。对齐层9和10的摩擦方向互相垂直。 对齐层9的对齐方向在图中的11处说明,并相对于传送轴3成-22.5°的取向。对齐层10的对齐方向12因此相对于传送轴3成+67.5°取向。 层6的液晶材料是向列型的,并且对齐层9和10在跨越电极7和8之间的层6中未施加电场的情况下对液晶引向器诱导从对齐层9到对齐层10的-90°的扭转。对齐层的情况当使层6的表面区域上的预先倾斜有基本相同的大小。少量的手性掺杂可以用来在液晶中诱导(正的或负的)所希望的扭转。 液晶层6有阻滞Δn×d/λ=0.487,并且在电极7和8之间不施加电场的情况下,旋转器将来自偏振器1的光的偏振平面旋转45°,如图2的13处所示。如果一个足够大的电压,例如在3V数量级,施加到跨越层6的电极7和8之间,在层6的中间区域的液晶引向器的中间平面倾斜角上升到一个值,从而层6的表面区域被用作基本去耦的压敏的光学阻滞器。然后这些区域的光(慢)轴由对齐层9和10的摩擦方向有效地确定并因此而互相垂直。因此,这些去耦的阻滞器的阻滞互相消除并且装置基本没有影响通过其的光的偏振。在该状态下,装置使来自偏振器1的垂直偏振的光通过,基本没有旋转或改变光的偏振状态。 如图4所示,这种类型的旋转器可以被用作像素化的液晶显示器。电极7被分解成个别的像素电极,每一个电极和一个薄膜晶体管(TFT)14相联系,这些晶体管形成了显示器的有源矩阵寻址排列的一部分。为了提供彩色显示,彩色滤波器15,诸如红,绿和蓝滤波器,形成在衬底5上,并且一个分析偏振器16形成或设置在衬底5的外表面上。分析偏振器16的传送轴垂直于偏振器1的传送轴,因此,当一个充分的电场被施加到像素之间时,分析偏振器16基本上消除了通过该像素的光,该像素因此而显示其暗或黑状态。当施加的电压被移走,像素旋转偏振平面45°,这样偏振平面相对于分析偏振器16的传送轴取向为45°角。像素因此而显示其明亮或最大的传送状态。 图5说明了该旋转器在英国专利申请号0215059.7所揭示的显示器类型中的应用。该显示器包括一个设置在输入偏振器1背后的背光20和一个有图2显示的旋转器形式的切换LCD。来自旋转器的光通到形成在玻璃衬底22上的光栅阻滞器21。该光栅阻滞器21具有第一区域23,用作视差屏障狭缝,和第二区域24,在显示器的自动立体3D模式中用作“不透明”的屏障区域的。 图6中显示了各个轴的取向。偏振器1的传送轴3取向为45°。对齐层9的对齐方向11取向为22.5°。对齐层10的对齐方向12取向为112.5°。区域23有取向为90°的慢轴25,而区域24有取向为45°的慢轴26。用于切换LCD的分析偏振器27有取向135°,即垂直于输入偏振器1的传送轴3,的传送轴28。 该显示器进一步包括一个像素化、“显示器LCD”形式的空间光调制器(SLM)。显示器LCD包括一个设置在衬底31和32之间的像素化的液晶层30。为清楚起见,对齐层,电极,彩色滤波器和寻址排列在图5中未示出。分析偏振器27被用作LCD的输入偏振器,输出偏振器33设置在衬底32的外表面上。显示器LCD可以是用于显示图象的任何适当的类型。 在3D模式中,偏振旋转器通过施加一个通过液晶层6的电压而被关闭,因此没有偏振旋转发生。来自其偏振方向平行于传送轴3的偏振器的光通过旋转器,其偏振不发生变化,并同样通过区域24,其偏振也不发生变化。分析偏振器27的传送轴28垂直于偏振,因此通过区域24的光基本消除。 在区域23入射的光相对于光轴25被偏振-45°。偏振方向通过区域23被旋转90°,以便于和分析偏振器27的传送轴28对齐。这样狭缝区域23显示基本透明,因此阻滞器21和相关元件被用作后视差屏障。 在2D模式中,跨越液晶层6不施加电场。因此该层提供45°的偏振旋转,这样在光栅阻滞器21入射的光的偏振方向为90°。区域23不影响偏振方向,而区域24使偏振旋转-90°。因此来自区域23和24的光具有相对于分析偏振器27的传送轴28有45°取向的偏振方向,显示器LCD接收来自区域23和24的有基本相同强度的光。所以屏障结构基本上不可见,并且显示器工作在2D模式。 图7所示是为了提供在英国专利申请号0215058.9揭示的显示器中应用的排列而对图5和6中显示的排列的修改。在这样的显示器中,2D模式的亮度有实质性提高,其代价是3D模式的明亮状态的亮度有少许降低。。对于这样的显示器需要55°的偏振旋转,图7中说明了相应的取向。这样,对齐方向11的取向为27.5°,对齐方向12的取向为117.5°,光轴25的取向为100°。其他取向如图6中所示。为了提供55°旋转,液晶层的阻滞Δn×d/λ为0.55。 虽然图7说明了带有55°偏振旋转的实例,根据特殊显示器实例的需要可以提供必要的其他旋转。 通常,所需要的偏振旋转角和阻滞区域23和24的慢轴25和26之间所包括的角相同。 图8说明了和图5和6中显示的排列不同的一种排列,在该排列中,取向和阻滞都发生改变以优化光栅阻滞器21的输出,以便得到2D模式中来自区域23和24的基本一致的频谱响应。液晶层6有Δn×d/λ=0.415的阻滞,对齐方向11的取向为57.5°,对齐方向12的取向为147.5°。 图9说明了不同于图2的排列的通用排列,在该排列中,提供了有传送轴28的输出偏振分析器27。对齐层9的对齐方向11的取向为在相对于输入偏振器1的传送轴3的任何方向上的一个角度e。对齐层10的对齐方向12垂直于对齐方向11。和来自偏振器1的光的输入偏振3’相比较,输出偏振13旋转γ°,传送轴28相对于传送轴3的取向为(γ±n×90),其中n为任何整数(正整数或负整数或零)。这样,在通过液晶层6不施加电场的情况下传送轴28可以平行于或垂直于输出偏振13。 图10说明了不同于图9的排列的一种排列,在该排列中,分析偏振器27的传送轴28相对于传送轴3的取向为(±n×90)。同样,n可以为任何整数(正整数或负整数或零)。因此传送轴28可以平行或垂直于传送轴3。 上文所述的实施例使用了有正电介质各向异性的向列型液晶材料层。在这样的实施例中,液晶材料的对齐表面提供了相对小的预先倾斜角(pre-tlits),其方位互相垂直。在不施加电场的情况下,在液晶引向器中有从一个对齐表面到另一个对齐表面的90°的扭转。 可以应用其他的各种液晶模式,例如在附图显示的排列中,适应所运行的实际模式进行适当改变。例如,液晶材料可以包括负电介质各向异性的向列性材料,在不施加电场的情况下对齐表面可以排列成能诱导液晶引向器成垂直(hometropic)的取向。相邻于对齐表面的液晶有例如接近90°的高预先倾斜。在不施加电场的情况下,垂直对齐导致通过该层的光的偏振状态基本不发生变化。 当通过这样的材料的液晶层施加电场时,由对齐表面和/或结构,如在对齐表面下的电极结构,引起的预先倾斜使靠近对齐表面的分子的液晶引向器被重新取向到一个预定的方向。液晶材料也可以包括手性的掺杂,掺杂的浓度可以在液晶层中诱导一个扭转的斜度,使该斜度和液晶层的厚度之比基本上等于0.25。当一个大于预先确定的电压的电场施加到通过液晶层时,该液晶层采取一个基本上为90°的扭转。由此,在这样的实施例中,在施加电场的情况下,偏振旋转器是工作的,而在不施加电场的情况下,偏振旋转器是不工作的。 还可能提供其液晶材料是层列型的实施例。 图2中显示类型的偏振旋转器可以被用到其他的应用中去,其中的一个实例是作为例如在远程通讯应用中的光学调制器。例如,旋转器可以被用以通过选择性地提供180°的偏振旋转而提供一种π相位的调制器,相当于在线性偏振光中诱导一个π的相位滞后。为了产生180°的偏振旋转,液晶层的阻滞Δn×d/λ可以为1.414,以及入射线性偏振和液晶的输入引向器的方位之间的夹角可以为45°。由调制器提供的相位变化可以由相对低的例如为3伏的调制电压控制,和CMOS技术相容。 作为一个替代,接近180°的偏振旋转可以被用于实现几乎是同样的效应。例如,178°的旋转可以用Δn×d/λ=0.105和θ=44°实现。这样的低阻滞允许使用很薄的液晶层,反过来也提供了很快速的响应时间。这将有利于远程通讯的应用,在该应用中快速的切换是极其重要。 对于本领域的普通技术人员来说,不脱离本发明范围和精神的各种变化是显而易见的。因此,不希望所附的权利要求的范围仅被限制于本文的叙述,而是应该被更广泛地理解。
下载文档到电脑,查找使用更方便
30 金币 0人已下载
还可以输入200字符
暂无评论,赶快抢占沙发吧。
copyright@ 2017-2018 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1